PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理。这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么。

当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导。希望读者在看完这篇文章后能更好的明白PCA的工作原理
数据的向量表示及降维问题
一般情况下,在数据挖掘和机器学习中,数据被表示为向量。例如某个淘宝店2012年全年的流量及交易情况可以看成一组记录的集合,其中每一天的数据是一条记录,格式如下:

(日期, 浏览量, 访客数, 下单数, 成交数, 成交金额)

其中“日期”是一个记录标志而非度量值,而数据挖掘关心的大多是度量值,因此如果我们忽略日期这个字段后,我们得到一组记录,每条记录可以被表示为一个五维向量,其中一条看起来大约是这个样子:

(500,240,25,13,2312.15)^\mathsf{T}

注意这里我用了转置,因为习惯上使用列向量表示一条记录(后面会看到原因),本文后面也会遵循这个准则。不过为了方便有时我会省略转置符号,但我们说到向量默认都是指列向量。

我们当然可以对这一组五维向量进行分析和挖掘,不过我们知道,很多机器学习算法的复杂度和数据的维数有着密切关系,甚至与维数呈指数级关联。当然,这里区区五维的数据,也许还无所谓,但是实际机器学习中处理成千上万甚至几十万维的情况也并不罕见,在这种情况下,机器学习的资源消耗是不可接受的,因此我们必须对数据进行降维。

降维当然意味着信息的丢失,不过鉴于实际数据本身常常存在的相关性,我们可以想办法在降维的同时将信息的损失尽量降低。

举个例子,假如某学籍数据有两列M和F,其中M列的取值是如何此学生为男性取值1,为女性取值0;而F列是学生为女性取值1,男性取值0。此时如果我们统计全部学籍数据,会发现对于任何一条记录来说,当M为1时F必定为0,反之当M为0时F必定为1。在这种情况下,我们将M或F去掉实际上没有任何信息的损失,因为只要保留一列就可以完全还原另一列。

当然上面是一个极端的情况,在现实中也许不会出现,不过类似的情况还是很常见的。例如上面淘宝店铺的数据,从经验我们可以知道,“浏览量”和“访客数”往往具有较强的相关关系,而“下单数”和“成交数”也具有较强的相关关系。这里我们非正式的使用“相关关系”这个词,可以直观理解为“当某一天这个店铺的浏览量较高(或较低)时,我们应该很大程度上认为这天的访客数也较高(或较低)”。后面的章节中我们会给出相关性的严格数学定义。

这种情况表明,如果我们删除浏览量或访客数其中一个指标,我们应该期待并不会丢失太多信息。因此我们可以删除一个,以降低机器学习算法的复杂度。

上面给出的是降维的朴素思想描述,可以有助于直观理解降维的动机和可行性,但并不具有操作指导意义。例如,我们到底删除哪一列损失的信息才最小?亦或根本不是单纯删除几列,而是通过某些变换将原始数据变为更少的列但又使得丢失的信息最小?到底如何度量丢失信息的多少?如何根据原始数据决定具体的降维操作步骤?

要回答上面的问题,就要对降维问题进行数学化和形式化的讨论。而PCA是一种具有严格数学基础并且已被广泛采用的降维方法。下面我不会直接描述PCA,而是通过逐步分析问题,让我们一起重新“发明”一遍PCA。

向量的表示及基变换
既然我们面对的数据被抽象为一组向量,那么下面有必要研究一些向量的数学性质。而这些数学性质将成为后续导出PCA的理论基础。

内积与投影
下面先来看一个高中就学过的向量运算:内积。两个维数相同的向量的内积被定义为:

(a_1,a_2,\cdots,a_n)^\mathsf{T}\cdot (b_1,b_2,\cdots,b_n)^\mathsf{T}=a_1b_1+a_2b_2+\cdots+a_nb_n

内积运算将两个向量映射为一个实数。其计算方式非常容易理解,但是其意义并不明显。下面我们分析内积的几何意义。假设A和B是两个n维向量,我们知道n维向量可以等价表示为n维空间中的一条从原点发射的有向线段,为了简单起见我们假设A和B均为二维向量,则A=(x_1,y_1),B=(x_2,y_2)。则在二维平面上A和B可以用两条发自原点的有向线段表示,见下图:
这里写图片描述
好,现在我们从A点向B所在直线引一条垂线。我们知道垂线与B的交点叫做A在B上的投影,再设A与B的夹角是a,则投影的矢量长度为|A|cos(a),其中|A|=\sqrt{x_1^2+y_1^2}是向量A的模,也就是A线段的标量长度。

注意这里我们专门区分了矢量长度和标量长度,标量长度总是大于等于0,值就是线段的长度;而矢量长度可能为负,其绝对值是线段长度,而符号取决于其方向与标准方向相同或相反。

到这里还是看不出内积和这东西有什么关系,不过如果我们将内积表示为另一种我们熟悉的形式:

A\cdot B=|A||B|cos(a)

现在事情似乎是有点眉目了:A与B的内积等于A到B的投影长度乘以B的模。再进一步,如果我们假设B的模为1,即让|B|=1,那么就变成了:

A\cdot B=|A|cos(a)

也就是说,设向量B的模为1,则A与B的内积值等于A向B所在直线投影的矢量长度!这就是内积的一种几何解释,也是我们得到的第一个重要结论。在后面的推导中,将反复使用这个结论。


下面我们继续在二维空间内讨论向量。上文说过,一个二维向量可以对应二维笛卡尔直角坐标系中从原点出发的一个有向线段。例如下面这个向量:
这里写图片描述
在代数表示方面,我们经常用线段终点的点坐标表示向量,例如上面的向量可以表示为(3,2),这是我们再熟悉不过的向量表示。

不过我们常常忽略,只有一个(3,2)本身是不能够精确表示一个向量的。我们仔细看一下,这里的3实际表示的是向量在x轴上的投影值是3,在y轴上的投影值是2。也就是说我们其实隐式引入了一个定义:以x轴和y轴上正方向长度为1的向量为标准。那么一个向量(3,2)实际是说在x轴投影为3而y轴的投影为2。注意投影是一个矢量,所以可以为负。

更正式的说,向量(x,y)实际上表示线性组合:

x(1,0)^\mathsf{T}+y(0,1)^\mathsf{T}

不难证明所有二维向量都可以表示为这样的线性组合。此处(1,0)和(0,1)叫做二维空间中的一组基。
这里写图片描述
所以,要准确描述向量,首先要确定一组基,然后给出在基所在的各个直线上的投影值,就可以了。只不过我们经常省略第一步,而默认以(1,0)和(0,1)为基。

我们之所以默认选择(1,0)和(0,1)为基,当然是比较方便,因为它们分别是x和y轴正方向上的单位向量,因此就使得二维平面上点坐标和向量一一对应,非常方便。但实际上任何两个线性无关的二维向量都可以成为一组基,所谓线性无关在二维平面内可以直观认为是两个不在一条直线上的向量。

例如,(1,1)和(-1,1)也可以成为一组基。一般来说,我们希望基的模是1,因为从内积的意义可以看到,如果基的模是1,那么就可以方便的用向量点乘基而直接获得其在新基上的坐标了!实际上,对应任何一个向量我们总可以找到其同方向上模为1的向量,只要让两个分量分别除以模就好了。例如,上面的基可以变为(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})和(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})。

现在,我们想获得(3,2)在新基上的坐标,即在两个方向上的投影矢量值,那么根据内积的几何意义,我们只要分别计算(3,2)和两个基的内积,不难得到新的坐标为(\frac{5}{\sqrt{2}},-\frac{1}{\sqrt{2}})。下图给出了新的基以及(3,2)在新基上坐标值的示意图:
这里写图片描述
另外这里要注意的是,我们列举的例子中基是正交的(即内积为0,或直观说相互垂直),但可以成为一组基的唯一要求就是线性无关,非正交的基也是可以的。不过因为正交基有较好的性质,所以一般使用的基都是正交的。

基变换的矩阵表示
下面我们找一种简便的方式来表示基变换。还是拿上面的例子,想一下,将(3,2)变换为新基上的坐标,就是用(3,2)与第一个基做内积运算,作为第一个新的坐标分量,然后用(3,2)与第二个基做内积运算,作为第二个新坐标的分量。实际上,我们可以用矩阵相乘的形式简洁的表示这个变换:

(1/21/21/21/2)
(32)
=
(5/21/2)

太漂亮了!其中矩阵的两行分别为两个基,乘以原向量,其结果刚好为新基的坐标。可以稍微推广一下,如果我们有m个二维向量,只要将二维向量按列排成一个两行m列矩阵,然后用“基矩阵”乘以这个矩阵,就得到了所有这些向量在新基下的值。例如(1,1),(2,2),(3,3),想变换到刚才那组基上,则可以这样表示:

(1/21/21/21/2)
(112233)
=
(2/204/206/20)

于是一组向量的基变换被干净的表示为矩阵的相乘。

一般的,如果我们有M个N维向量,想将其变换为由R个N维向量表示的新空间中,那么首先将R个基按行组成矩阵A,然后将向量按列组成矩阵B,那么两矩阵的乘积AB就是变换结果,其中AB的第m列为A中第m列变换后的结果。

数学表示为:

p1p2pR
(a1a2aM)
=
p1a1p2a1pRa1p1a2p2a2pRa2p1aMp2aMpRaM

其中p_i是一个行向量,表示第i个基,a_j是一个列向量,表示第j个原始数据记录。

特别要注意的是,这里R可以小于N,而R决定了变换后数据的维数。也就是说,我们可以将一N维数据变换到更低维度的空间中去,变换后的维度取决于基的数量。因此这种矩阵相乘的表示也可以表示降维变换。

最后,上述分析同时给矩阵相乘找到了一种物理解释:两个矩阵相乘的意义是将右边矩阵中的每一列列向量变换到左边矩阵中每一行行向量为基所表示的空间中去。更抽象的说,一个矩阵可以表示一种线性变换。很多同学在学线性代数时对矩阵相乘的方法感到奇怪,但是如果明白了矩阵相乘的物理意义,其合理性就一目了然了

协方差矩阵及优化目标
上面我们讨论了选择不同的基可以对同样一组数据给出不同的表示,而且如果基的数量少于向量本身的维数,则可以达到降维的效果。但是我们还没有回答一个最最关键的问题:如何选择基才是最优的。或者说,如果我们有一组N维向量,现在要将其降到K维(K小于N),那么我们应该如何选择K个基才能最大程度保留原有的信息?

要完全数学化这个问题非常繁杂,这里我们用一种非形式化的直观方法来看这个问题。

为了避免过于抽象的讨论,我们仍以一个具体的例子展开。假设我们的数据由五条记录组成,将它们表示成矩阵形式:

(1113234424)

其中每一列为一条数据记录,而一行为一个字段。为了后续处理方便,我们首先将每个字段内所有值都减去字段均值,其结果是将每个字段都变为均值为0(这样做的道理和好处后面会看到)。

我们看上面的数据,第一个字段均值为2,第二个字段均值为3,所以变换后:

(1210002101)

我们可以看下五条数据在平面直角坐标系内的样子:
这里写图片描述
现在问题来了:如果我们必须使用一维来表示这些数据,又希望尽量保留原始的信息,你要如何选择?

通过上一节对基变换的讨论我们知道,这个问题实际上是要在二维平面中选择一个方向,将所有数据都投影到这个方向所在直线上,用投影值表示原始记录。这是一个实际的二维降到一维的问题。

那么如何选择这个方向(或者说基)才能尽量保留最多的原始信息呢?一种直观的看法是:希望投影后的投影值尽可能分散。

以上图为例,可以看出如果向x轴投影,那么最左边的两个点会重叠在一起,中间的两个点也会重叠在一起,于是本身四个各不相同的二维点投影后只剩下两个不同的值了,这是一种严重的信息丢失,同理,如果向y轴投影最上面的两个点和分布在x轴上的两个点也会重叠。所以看来x和y轴都不是最好的投影选择。我们直观目测,如果向通过第一象限和第三象限的斜线投影,则五个点在投影后还是可以区分的。

下面,我们用数学方法表述这个问题。

方差
上文说到,我们希望投影后投影值尽可能分散,而这种分散程度,可以用数学上的方差来表述。此处,一个字段的方差可以看做是每个元素与字段均值的差的平方和的均值,即:

Var(a)=\frac{1}{m}\sum_{i=1}^m{(a_i-\mu)^2}

由于上面我们已经将每个字段的均值都化为0了,因此方差可以直接用每个元素的平方和除以元素个数表示:

Var(a)=\frac{1}{m}\sum_{i=1}^m{a_i^2}

于是上面的问题被形式化表述为:寻找一个一维基,使得所有数据变换为这个基上的坐标表示后,方差值最大。

协方差
对于上面二维降成一维的问题来说,找到那个使得方差最大的方向就可以了。不过对于更高维,还有一个问题需要解决。考虑三维降到二维问题。与之前相同,首先我们希望找到一个方向使得投影后方差最大,这样就完成了第一个方向的选择,继而我们选择第二个投影方向。

如果我们还是单纯只选择方差最大的方向,很明显,这个方向与第一个方向应该是“几乎重合在一起”,显然这样的维度是没有用的,因此,应该有其他约束条件。从直观上说,让两个字段尽可能表示更多的原始信息,我们是不希望它们之间存在(线性)相关性的,因为相关性意味着两个字段不是完全独立,必然存在重复表示的信息。

数学上可以用两个字段的协方差表示其相关性,由于已经让每个字段均值为0,则:

Cov(a,b)=\frac{1}{m}\sum_{i=1}^m{a_ib_i}

可以看到,在字段均值为0的情况下,两个字段的协方差简洁的表示为其内积除以元素数m。

当协方差为0时,表示两个字段完全独立。为了让协方差为0,我们选择第二个基时只能在与第一个基正交的方向上选择。因此最终选择的两个方向一定是正交的。

至此,我们得到了降维问题的优化目标:将一组N维向量降为K维(K大于0,小于N),其目标是选择K个单位(模为1)正交基,使得原始数据变换到这组基上后,各字段两两间协方差为0,而字段的方差则尽可能大(在正交的约束下,取最大的K个方差)。

协方差矩阵
上面我们导出了优化目标,但是这个目标似乎不能直接作为操作指南(或者说算法),因为它只说要什么,但根本没有说怎么做。所以我们要继续在数学上研究计算方案。

我们看到,最终要达到的目的与字段内方差及字段间协方差有密切关系。因此我们希望能将两者统一表示,仔细观察发现,两者均可以表示为内积的形式,而内积又与矩阵相乘密切相关。于是我们来了灵感:

假设我们只有a和b两个字段,那么我们将它们按行组成矩阵X:

X=

(a1b1a2b2ambm)

然后我们用X乘以X的转置,并乘上系数1/m:

\frac{1}{m}XX^\mathsf{T}=

1mi=1ma2i1mi=1maibi1mi=1maibi1mi=1mb2i

奇迹出现了!这个矩阵对角线上的两个元素分别是两个字段的方差,而其它元素是a和b的协方差。两者被统一到了一个矩阵的。

根据矩阵相乘的运算法则,这个结论很容易被推广到一般情况:

设我们有m个n维数据记录,将其按列排成n乘m的矩阵X,设C=\frac{1}{m}XX^\mathsf{T},则C是一个对称矩阵,其对角线分别个各个字段的方差,而第i行j列和j行i列元素相同,表示i和j两个字段的协方差。

协方差矩阵对角化
根据上述推导,我们发现要达到优化目前,等价于将协方差矩阵对角化:即除对角线外的其它元素化为0,并且在对角线上将元素按大小从上到下排列,这样我们就达到了优化目的。这样说可能还不是很明晰,我们进一步看下原矩阵与基变换后矩阵协方差矩阵的关系:

设原始数据矩阵X对应的协方差矩阵为C,而P是一组基按行组成的矩阵,设Y=PX,则Y为X对P做基变换后的数据。设Y的协方差矩阵为D,我们推导一下D与C的关系:

D=====1mYYT1m(PX)(PX)T1mPXXTPTP(1mXXT)PTPCPT

现在事情很明白了!我们要找的P不是别的,而是能让原始协方差矩阵对角化的P。换句话说,优化目标变成了寻找一个矩阵P,满足PCP^\mathsf{T}是一个对角矩阵,并且对角元素按从大到小依次排列,那么P的前K行就是要寻找的基,用P的前K行组成的矩阵乘以X就使得X从N维降到了K维并满足上述优化条件。

至此,我们离“发明”PCA还有仅一步之遥!

现在所有焦点都聚焦在了协方差矩阵对角化问题上,有时,我们真应该感谢数学家的先行,因为矩阵对角化在线性代数领域已经属于被玩烂了的东西,所以这在数学上根本不是问题。

由上文知道,协方差矩阵C是一个是对称矩阵,在线性代数上,实对称矩阵有一系列非常好的性质:

1)实对称矩阵不同特征值对应的特征向量必然正交。

2)设特征向量\lambda重数为r,则必然存在r个线性无关的特征向量对应于\lambda,因此可以将这r个特征向量单位正交化。

由上面两条可知,一个n行n列的实对称矩阵一定可以找到n个单位正交特征向量,设这n个特征向量为e_1,e_2,\cdots,e_n,我们将其按列组成矩阵:

E=

(e1e2en)

则对协方差矩阵C有如下结论:

E^\mathsf{T}CE=\Lambda=

λ1λ2λn

其中\Lambda为对角矩阵,其对角元素为各特征向量对应的特征值(可能有重复)。

以上结论不再给出严格的数学证明,对证明感兴趣的朋友可以参考线性代数书籍关于“实对称矩阵对角化”的内容。

到这里,我们发现我们已经找到了需要的矩阵P:

P=E^\mathsf{T}

P是协方差矩阵的特征向量单位化后按行排列出的矩阵,其中每一行都是C的一个特征向量。如果设P按照\Lambda中特征值的从大到小,将特征向量从上到下排列,则用P的前K行组成的矩阵乘以原始数据矩阵X,就得到了我们需要的降维后的数据矩阵Y。

至此我们完成了整个PCA的数学原理讨论。在下面的一节,我们将给出PCA的一个实例。
算法及实例
为了巩固上面的理论,我们在这一节给出一个具体的PCA实例。

PCA算法
总结一下PCA的算法步骤:

设有m条n维数据。

1)将原始数据按列组成n行m列矩阵X

2)将X的每一行(代表一个属性字段)进行零均值化,即减去这一行的均值

3)求出协方差矩阵C=\frac{1}{m}XX^\mathsf{T}

4)求出协方差矩阵的特征值及对应的特征向量

5)将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P

6)Y=PX即为降维到k维后的数据

实例
这里以上文提到的

(1210002101)

为例,我们用PCA方法将这组二维数据其降到一维。

因为这个矩阵的每行已经是零均值,这里我们直接求协方差矩阵:

C=\frac{1}{5}

(1210002101)
1102020011
=
65454565

然后求其特征值和特征向量,具体求解方法不再详述,可以参考相关资料。求解后特征值为:

\lambda_1=2,\lambda_2=2/5

其对应的特征向量分别是:

c_1

(11)
,c_2
(11)

其中对应的特征向量分别是一个通解,c_1和c_2可取任意实数。那么标准化后的特征向量为:

(1/21/2)
,
(1/21/2)

因此我们的矩阵P是:

P=

(1/21/21/21/2)

可以验证协方差矩阵C的对角化:

PCP^\mathsf{T}=

(1/21/21/21/2)
(6/54/54/56/5)
(1/21/21/21/2)
=
(2002/5)

最后我们用P的第一行乘以数据矩阵,就得到了降维后的表示:

Y=

(1/21/2)
(1210002101)
=
(3/21/203/21/2)

降维投影结果如下图:
这里写图片描述
进一步讨论
根据上面对PCA的数学原理的解释,我们可以了解到一些PCA的能力和限制。PCA本质上是将方差最大的方向作为主要特征,并且在各个正交方向上将数据“离相关”,也就是让它们在不同正交方向上没有相关性。

因此,PCA也存在一些限制,例如它可以很好的解除线性相关,但是对于高阶相关性就没有办法了,对于存在高阶相关性的数据,可以考虑Kernel PCA,通过Kernel函数将非线性相关转为线性相关,关于这点就不展开讨论了。另外,PCA假设数据各主特征是分布在正交方向上,如果在非正交方向上存在几个方差较大的方向,PCA的效果就大打折扣了。

最后需要说明的是,PCA是一种无参数技术,也就是说面对同样的数据,如果不考虑清洗,谁来做结果都一样,没有主观参数的介入,所以PCA便于通用实现,但是本身无法个性化的优化。

希望这篇文章能帮助朋友们了解PCA的数学理论基础和实现原理,借此了解PCA的适用场景和限制,从而更好的使用这个算法。

转载自:http://blog.codinglabs.org/articles/pca-tutorial.html

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. SVD与PCA的问题

    摘要:继上一篇文章对PCA分析后,这篇文章将介绍一个每提及PCA时,都会提到的名字SVD。SVD是什么?SVD,奇异值分解。是属于矩阵分解里面的一种方法。 在谈论SVD之前,其实有必要回忆另外的一种很常用的矩阵分解。 可以看到,对于任意的nn的对称矩阵A,都存在A=VDVT" rol…...

    2024/4/27 21:18:51
  2. 详解2D-PCA (二维PCA)

    传统的一维PCA和LDA方法是在图像识别的时候基于图像向量,在这些人脸识别技术中,2D的人脸图像矩阵必须先转化为1D的图像向量,然后进行PCA或者LDA分析。缺点是相当明显的:一、转化为一维之后,维数过大,计算量变大。二、主成分分析的训练是非监督的,即PCA无法利用训练样本的…...

    2024/4/19 10:04:36
  3. Python - 降维(PCA、核PCA、SVD、高斯随机映射 和 NMF)

    以下内容来自《Python数据科学指南》降维方法比较:PCA:计算代价高昂,特征向量得存在线性相关。核PCA: 特征向量是非线性相关也可以。SVD:比PCA更能解释数据,因为是直接作用于原数据集,不会像PCA一样,将相关变量转换为一系列不相干的变量。另外,PCA是单模因子分析方法,…...

    2024/4/28 17:38:10
  4. 推荐一款非常好用的java反编译工具

    用c++写成,可反编译class文件,支持jar包级的反编译,可将整个jar包直接保存为*.src.zip源代码包,反编译迅速,错误率极少,详细的看下面 下载地址:http://java.decompiler.free.fr/?q=jdgui IntroductionThe aim of “Java Decompiler” project is to develop tools to decompil…...

    2024/4/28 14:36:09
  5. 基于PCA的ORL人脸识别---Python

    PCA的理论知识已经有很多博客都做了清晰的解释,主要概括为找到投影的面使得类间误差最大,转化为找到构建的协方差矩阵的特征值与特征向量,再在新的投影方向上(特征向量)上投影,构建数据库和带检索人脸进行比对,得到相似度最高的视为查询结果。下面针对ORL人脸数据库进行…...

    2024/4/8 20:26:35
  6. Java反编译工具 jad安装及使用的指南

    目录引用教程演示jad常见用法jad详细用法 引用jad官网——下载地址 jad非官网下载地址 jad百度百科教程点击该链接下载用于windows的jad,适用于其他系统的jad请到jad非官网下载地址去下载 解压下载的压缩包到某路径 打开win10的cmd命令行(按键win+r) 进入到jad.exe所在的路径…...

    2024/4/28 18:15:25
  7. 利用PCA降维的手工计算实例

    转载:https://blog.csdn.net/dugudaibo/article/details/78931825PCA 的原理相信大家十分熟悉了已经,但是很多人没有真正的进行过相关的推到。在这里本文将举一个利用 PCA 降维的手工计算实例。1 .问题的描述已知现在有一个二维矩阵如下所示这个是一个已经去掉均值的矩阵。其…...

    2024/4/20 5:32:26
  8. java反编译查看字节码

    深入理解字节码点击这里 jdk中的bin里面自带有反编译的程序,叫javap.exe,利用他可以从编译生成的.class查看出对应的字节码代码 具体方法如下: 1.javap -verbose ** >> **.txt 例: 随便写个java类Personclass Person{String name; char sex;int age;Person(){}Person(S…...

    2024/4/28 5:20:59
  9. 对PCA降维的理解

    对PCA降维的理解这几天要参加数学建模了,突然想起在建模中可能会遇到从大量的特征指标中选出关键特征的这个工作,有可能会用到PCA降维的知识,所以在比赛前又对这个知识点做一番整理。 这篇博客的首要目的是说明PCA的降维原理。示例方面的话在之后有时间就进行补充。我的叙述…...

    2024/4/17 3:18:25
  10. STC12系列单片机PCA模块应用

    STC12C5系列单片机属于增强性单片机,有多强呢?带有SPI接口,PCA模块,定时器输出,16K+的片上ROM,越来越妖孽了!前面见识了定时器输出功能,现在来领教一下STC12C5A60S单片机的PCA捕捉比较模块,后面有心情再看看SPI模块。按我个人理解捕捉比较的意思应该是捕捉外部引脚上的…...

    2024/4/18 6:31:55
  11. PCA-SIFT:一个更鲜明地局部图像描述符

    本节主要对论文《PCA-SIFT: A More Distinctive Representation for Local Image Descriptors》中,前5部分进行Transtion.========================TRANS.===================================摘要稳定的局部特征检测和描述是很多图像配准和对象识别算法的基本组成部分。Miko…...

    2024/4/13 1:31:07
  12. 在eclipse中添加java反编译工具调试

    一、打开Eclipse,Help --> Eclipse Marketplace,在打开的窗口中 搜索 Enhanced Class Decompiler 二、未下载的状态为install,下载过后状态为installed,下载好后,打开源码文件,页面会多出反编译工具的选项栏三、打开调试模式,就可以在源码中打断点调试了...

    2024/4/13 1:31:27
  13. 从零开始实现主成分分析(PCA)算法

    声明:版权所有,转载请联系作者并注明出处: http://blog.csdn.net/u013719780?viewmode=contents知乎专栏: https://www.zhihu.com/people/feng-xue-ye-gui-zi前面两篇文章详细讲解了线性判别分析LDA,说到LDA,就不能不提到主成份分析,简称为PCA,是一种非监督学习算法,…...

    2024/4/17 3:19:07
  14. java反编译工具在线安装

    最近做项目,需要查看一些jar包中的类,搜索了百度,80%都是手动下载jad.exe,还有一个相关的jar包,这个方法一般可以满足要求。但是很不幸,无论如何也装不成功,把jad.exe放入jdk后,MyEclipse下就是不出现jadclipse。这里搞了好久,尝试成功了一个在线安装的方法。下面是详…...

    2024/4/20 3:40:08
  15. pca 降纬原理

    pca降纬原理:让N纬输入变量降为M纬:让输出变量不同纬度的协方差(即相关性,或影射到空间中的基向量正交无关)为0,并且取输入变量不同纬度的方差最大的M个纬度。PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线…...

    2024/4/14 16:35:51
  16. 机器学习系列:(七)用PCA降维

    声明:版权所有,转载请联系作者并注明出处 http://blog.csdn.net/u013719780?viewmode=contents博主简介:风雪夜归子(英文名: Allen),机器学习算法攻城狮,喜爱钻研Machine Learning的黑科技,对Deep Learning和Artificial Intelligence充满兴趣,经常关注kaggle数据挖掘…...

    2024/4/13 1:31:07
  17. myeclipse6.5 反编译工具 jadclipse jad java反编译

     http://download.csdn.net/download/chenhu520/2707596MyEclipse6.5和eclipse3.3 的反编译插件的安装 以下介绍我的安装步骤,请根据自己实际路径稍作更改: MyEclipse6.5的安装目录是C:\Program Files\MyEclipse 6.5 第一步:下载jadclipse_3.3.0.zip里边有jad.exe和net.…...

    2024/4/13 1:31:17
  18. 分享java反编译工具,超级好用

    百度云盘链接:https://pan.baidu.com/s/1jxDQVwIqzFIjX13Av4bgCQ...

    2024/4/13 8:07:45
  19. PCA的原理简述

    PCA的实质就是要根据样本向量之间的相关性排序,去掉相关性低的信息,也就是冗余的特征信息。 我们都知道噪声信号与待测量的信号之间实际上是没有相关性的,所以我我们利用这个原理就可以将与待测量无关的噪声信号PCA去噪PCA的原理也就是它的简单的实现过程就是: 首先将样本数…...

    2024/4/13 1:31:53
  20. 配置java反编译工具及添加源码

    先记下:添加源码,在eclipse的preference-->Java-->Build Path-->user library,点开想要添加的jar文件,选择“添加源文件” 一、下载: 下载插件: jadclips插件网站: http://jadclipse.sourceforge.net/ 下载Jad反编译工具:http://www.kpdus.com/jad.html#dow…...

    2024/4/17 23:25:58

最新文章

  1. APQC是美国生产力与质量中心

    APQC简介 APQC是美国生产力与质量中心( American Productivity and Quality Center)的简称。该中心自1991年开始研究开发流程分类框架(简称PCF),1992年发布PCF1.0。PCF将运营与管理等流程汇总成12项企业级流程类别,每个流程类别包…...

    2024/4/28 18:36:47
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言,在此感激不尽。 权重和梯度的更新公式如下: w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. 【php快速上手(四)】

    目录 PHP快速上手(四)PHP 类型比较1.松散比较(Loose Comparison)2.严格比较(Strict Comparison)3.类型转换 PHP 常量PHP字符串函数1. 字符串长度和截取2. 字符串查找和替换3. 字符串转换和格式化4. 字符串分…...

    2024/4/27 9:24:35
  4. audio_video_img图片音视频异步可视化加载

    最近在做即时消息,消息类型除了文字还有音频、视频、图片展示,如果消息很多,在切换聊天框时,会有明显卡顿,后续做了懒加载,方案是只加载用户能看到的资源,看不到的先不加载; LazyAud…...

    2024/4/27 13:10:31
  5. 论文阅读AI工具链

    文献检索 可以利用智谱清言来生成合适的文献检索式,并根据需要不断调整。 谷歌学术 在Google Scholar中进行检索时,您可以使用类似的逻辑来构建您的搜索式,但是语法会有所不同。Google Scholar的搜索框接受普通的文本搜索,但是…...

    2024/4/28 2:14:55
  6. 【外汇早评】美通胀数据走低,美元调整

    原标题:【外汇早评】美通胀数据走低,美元调整昨日美国方面公布了新一期的核心PCE物价指数数据,同比增长1.6%,低于前值和预期值的1.7%,距离美联储的通胀目标2%继续走低,通胀压力较低,且此前美国一季度GDP初值中的消费部分下滑明显,因此市场对美联储后续更可能降息的政策…...

    2024/4/28 13:52:11
  7. 【原油贵金属周评】原油多头拥挤,价格调整

    原标题:【原油贵金属周评】原油多头拥挤,价格调整本周国际劳动节,我们喜迎四天假期,但是整个金融市场确实流动性充沛,大事频发,各个商品波动剧烈。美国方面,在本周四凌晨公布5月份的利率决议和新闻发布会,维持联邦基金利率在2.25%-2.50%不变,符合市场预期。同时美联储…...

    2024/4/28 3:28:32
  8. 【外汇周评】靓丽非农不及疲软通胀影响

    原标题:【外汇周评】靓丽非农不及疲软通胀影响在刚结束的周五,美国方面公布了新一期的非农就业数据,大幅好于前值和预期,新增就业重新回到20万以上。具体数据: 美国4月非农就业人口变动 26.3万人,预期 19万人,前值 19.6万人。 美国4月失业率 3.6%,预期 3.8%,前值 3…...

    2024/4/26 23:05:52
  9. 【原油贵金属早评】库存继续增加,油价收跌

    原标题:【原油贵金属早评】库存继续增加,油价收跌周三清晨公布美国当周API原油库存数据,上周原油库存增加281万桶至4.692亿桶,增幅超过预期的74.4万桶。且有消息人士称,沙特阿美据悉将于6月向亚洲炼油厂额外出售更多原油,印度炼油商预计将每日获得至多20万桶的额外原油供…...

    2024/4/28 13:51:37
  10. 【外汇早评】日本央行会议纪要不改日元强势

    原标题:【外汇早评】日本央行会议纪要不改日元强势近两日日元大幅走强与近期市场风险情绪上升,避险资金回流日元有关,也与前一段时间的美日贸易谈判给日本缓冲期,日本方面对汇率问题也避免继续贬值有关。虽然今日早间日本央行公布的利率会议纪要仍然是支持宽松政策,但这符…...

    2024/4/27 17:58:04
  11. 【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响

    原标题:【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响近日伊朗局势升温,导致市场担忧影响原油供给,油价试图反弹。此时OPEC表态稳定市场。据消息人士透露,沙特6月石油出口料将低于700万桶/日,沙特已经收到石油消费国提出的6月份扩大出口的“适度要求”,沙特将满…...

    2024/4/27 14:22:49
  12. 【外汇早评】美欲与伊朗重谈协议

    原标题:【外汇早评】美欲与伊朗重谈协议美国对伊朗的制裁遭到伊朗的抗议,昨日伊朗方面提出将部分退出伊核协议。而此行为又遭到欧洲方面对伊朗的谴责和警告,伊朗外长昨日回应称,欧洲国家履行它们的义务,伊核协议就能保证存续。据传闻伊朗的导弹已经对准了以色列和美国的航…...

    2024/4/28 1:28:33
  13. 【原油贵金属早评】波动率飙升,市场情绪动荡

    原标题:【原油贵金属早评】波动率飙升,市场情绪动荡因中美贸易谈判不安情绪影响,金融市场各资产品种出现明显的波动。随着美国与中方开启第十一轮谈判之际,美国按照既定计划向中国2000亿商品征收25%的关税,市场情绪有所平复,已经开始接受这一事实。虽然波动率-恐慌指数VI…...

    2024/4/28 15:57:13
  14. 【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试

    原标题:【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试美国和伊朗的局势继续升温,市场风险情绪上升,避险黄金有向上突破阻力的迹象。原油方面稍显平稳,近期美国和OPEC加大供给及市场需求回落的影响,伊朗局势并未推升油价走强。近期中美贸易谈判摩擦再度升级,美国对中…...

    2024/4/27 17:59:30
  15. 【原油贵金属早评】市场情绪继续恶化,黄金上破

    原标题:【原油贵金属早评】市场情绪继续恶化,黄金上破周初中国针对于美国加征关税的进行的反制措施引发市场情绪的大幅波动,人民币汇率出现大幅的贬值动能,金融市场受到非常明显的冲击。尤其是波动率起来之后,对于股市的表现尤其不安。隔夜美国股市出现明显的下行走势,这…...

    2024/4/25 18:39:16
  16. 【外汇早评】美伊僵持,风险情绪继续升温

    原标题:【外汇早评】美伊僵持,风险情绪继续升温昨日沙特两艘油轮再次发生爆炸事件,导致波斯湾局势进一步恶化,市场担忧美伊可能会出现摩擦生火,避险品种获得支撑,黄金和日元大幅走强。美指受中美贸易问题影响而在低位震荡。继5月12日,四艘商船在阿联酋领海附近的阿曼湾、…...

    2024/4/28 1:34:08
  17. 【原油贵金属早评】贸易冲突导致需求低迷,油价弱势

    原标题:【原油贵金属早评】贸易冲突导致需求低迷,油价弱势近日虽然伊朗局势升温,中东地区几起油船被袭击事件影响,但油价并未走高,而是出于调整结构中。由于市场预期局势失控的可能性较低,而中美贸易问题导致的全球经济衰退风险更大,需求会持续低迷,因此油价调整压力较…...

    2024/4/26 19:03:37
  18. 氧生福地 玩美北湖(上)——为时光守候两千年

    原标题:氧生福地 玩美北湖(上)——为时光守候两千年一次说走就走的旅行,只有一张高铁票的距离~ 所以,湖南郴州,我来了~ 从广州南站出发,一个半小时就到达郴州西站了。在动车上,同时改票的南风兄和我居然被分到了一个车厢,所以一路非常愉快地聊了过来。 挺好,最起…...

    2024/4/28 1:22:35
  19. 氧生福地 玩美北湖(中)——永春梯田里的美与鲜

    原标题:氧生福地 玩美北湖(中)——永春梯田里的美与鲜一觉醒来,因为大家太爱“美”照,在柳毅山庄去寻找龙女而错过了早餐时间。近十点,向导坏坏还是带着饥肠辘辘的我们去吃郴州最富有盛名的“鱼头粉”。说这是“十二分推荐”,到郴州必吃的美食之一。 哇塞!那个味美香甜…...

    2024/4/25 18:39:14
  20. 氧生福地 玩美北湖(下)——奔跑吧骚年!

    原标题:氧生福地 玩美北湖(下)——奔跑吧骚年!让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 啊……啊……啊 两…...

    2024/4/26 23:04:58
  21. 扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!

    原标题:扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!扒开伪装医用面膜,翻六倍价格宰客!当行业里的某一品项火爆了,就会有很多商家蹭热度,装逼忽悠,最近火爆朋友圈的医用面膜,被沾上了污点,到底怎么回事呢? “比普通面膜安全、效果好!痘痘、痘印、敏感肌都能用…...

    2024/4/27 23:24:42
  22. 「发现」铁皮石斛仙草之神奇功效用于医用面膜

    原标题:「发现」铁皮石斛仙草之神奇功效用于医用面膜丽彦妆铁皮石斛医用面膜|石斛多糖无菌修护补水贴19大优势: 1、铁皮石斛:自唐宋以来,一直被列为皇室贡品,铁皮石斛生于海拔1600米的悬崖峭壁之上,繁殖力差,产量极低,所以古代仅供皇室、贵族享用 2、铁皮石斛自古民间…...

    2024/4/28 5:48:52
  23. 丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者

    原标题:丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者【公司简介】 广州华彬企业隶属香港华彬集团有限公司,专注美业21年,其旗下品牌: 「圣茵美」私密荷尔蒙抗衰,产后修复 「圣仪轩」私密荷尔蒙抗衰,产后修复 「花茵莳」私密荷尔蒙抗衰,产后修复 「丽彦妆」专注医学护…...

    2024/4/26 19:46:12
  24. 广州械字号面膜生产厂家OEM/ODM4项须知!

    原标题:广州械字号面膜生产厂家OEM/ODM4项须知!广州械字号面膜生产厂家OEM/ODM流程及注意事项解读: 械字号医用面膜,其实在我国并没有严格的定义,通常我们说的医美面膜指的应该是一种「医用敷料」,也就是说,医用面膜其实算作「医疗器械」的一种,又称「医用冷敷贴」。 …...

    2024/4/27 11:43:08
  25. 械字号医用眼膜缓解用眼过度到底有无作用?

    原标题:械字号医用眼膜缓解用眼过度到底有无作用?医用眼膜/械字号眼膜/医用冷敷眼贴 凝胶层为亲水高分子材料,含70%以上的水分。体表皮肤温度传导到本产品的凝胶层,热量被凝胶内水分子吸收,通过水分的蒸发带走大量的热量,可迅速地降低体表皮肤局部温度,减轻局部皮肤的灼…...

    2024/4/27 8:32:30
  26. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下:1、长按电脑电源键直至关机,然后再按一次电源健重启电脑,按F8健进入安全模式2、安全模式下进入Windows系统桌面后,按住“winR”打开运行窗口,输入“services.msc”打开服务设置3、在服务界面,选中…...

    2022/11/19 21:17:18
  27. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像(每一幅图像的大小是564*564) f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  28. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面,在等待界面中我们需要等待操作结束才能关机,虽然这比较麻烦,但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  29. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows,请勿关闭计算机”的提示,要过很久才能进入系统,有的用户甚至几个小时也无法进入,下面就教大家这个问题的解决方法。第一种方法:我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  30. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题,电脑时发现开机屏幕显现“正在配置Windows Update,请勿关机”(如下图所示),而且还需求等大约5分钟才干进入系统。这是怎样回事呢?一切都是正常操作的,为什么开时机呈现“正…...

    2022/11/19 21:17:13
  31. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示,没过几秒后电脑自动重启,每次开机都这样无法进入系统,此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一:开机按下F8,在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  32. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况,就是电脑提示正在准备windows请勿关闭计算机,碰到这样的问题该怎么解决呢,现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法:1、2、依次…...

    2022/11/19 21:17:11
  33. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后,每次关机的时候桌面上都会显示一个“配置Windows Update的界面,提示请勿关闭计算机”,每次停留好几分钟才能正常关机,导致什么情况引起的呢?出现配置Windows Update…...

    2022/11/19 21:17:10
  34. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着,别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚,只能是考虑备份数据后重装系统了。解决来方案一:管理员运行cmd:net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  35. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题:电脑提示“配置Windows Update请勿关闭计算机”怎么办?win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢?一般的方…...

    2022/11/19 21:17:08
  36. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容,让我们赶快一起来看一下吧!关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  37. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  38. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了,具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面,长时间没反应,无法进入系统。这个问题原来帮其他同学也解决过,网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  39. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法,并在最后教给你1种保护系统安全的好方法,一起来看看!电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中,添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  40. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候,开启电脑发现电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机。。.这要怎么办呢?下面小编就带着大家一起看看吧!如果能够正常进入系统,建议您暂时移…...

    2022/11/19 21:17:02
  41. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容,让我们赶快一起来看一下吧!配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  42. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题,就是我们的win7系统在关机的时候,总是喜欢显示“准备配置windows,请勿关机”这样的一个页面,没有什么大碍,但是如果一直等着的话就要两个小时甚至更久都关不了机,非常…...

    2022/11/19 21:17:00
  43. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时,一般是您正对windows进行升级,但是这个要是长时间没有反应,我们不能再傻等下去了。可能是电脑出了别的问题了,来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  44. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况,当我们打开电脑之后,发现一直停留在一个界面:“配置Windows Update失败,还原更改请勿关闭计算机”,等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  45. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57