排序算法

排序算法是最经典的算法知识。因为其实现代码短,应该广,在平时的工作和学习中经常被用到。所以熟练掌握排序算法思想及其特点并能够熟练地手写代码至关重要。

下面介绍几种常见的排序算法:冒泡排序、选择排序、插入排序、归并排序、快速排序、希尔排序、堆排序、计数排序、桶排序、基数排序的思想,其代码均采用Java实现。

冒泡排序
冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
算法描述
比较相邻的元素。如果第一个比第二个大,就交换它们两个;
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
针对所有的元素重复以上的步骤,除了最后一个;
重复步骤1~3,直到排序完成。
动图演示

算法实现
public static void bubbleSort(int[] arr) {
int temp = 0;
for (int i = arr.length - 1; i > 0; i–) { // 每次需要排序的长度
for (int j = 0; j < i; j++) { // 从第一个元素到第i个元素
if (arr[j] > arr[j + 1]) {
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}//loop j
}//loop i
}// method bubbleSort
稳定性
在相邻元素相等时,它们并不会交换位置,所以,冒泡排序是稳定排序。

适用场景
冒泡排序思路简单,代码也简单,特别适合小数据的排序。但是,由于算法复杂度较高,在数据量大的时候不适合使用。

代码优化
在数据完全有序的时候展现出最优时间复杂度,为O(n)。其他情况下,几乎总是O( n2 )。因此,算法在数据基本有序的情况下,性能最好。
要使算法在最佳情况下有O(n)复杂度,需要做一些改进,增加一个swap的标志,当前一轮没有进行交换时,说明数组已经有序,没有必要再进行下一轮的循环了,直接退出。

public static void bubbleSort(int[] arr) {
int temp = 0;
boolean swap;
for (int i = arr.length - 1; i > 0; i–) { // 每次需要排序的长度
swap=false;
for (int j = 0; j < i; j++) { // 从第一个元素到第i个元素
if (arr[j] > arr[j + 1]) {
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
swap=true;
}
}//loop j
if (swap==false){
break;
}
}//loop i
}// method bubbleSort
2. 选择排序
选择排序是一种简单直观的排序算法,它也是一种交换排序算法,和冒泡排序有一定的相似度,可以认为选择排序是冒泡排序的一种改进。

算法描述
在未排序序列中找到最小(大)元素,存放到排序序列的起始位置
从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
重复第二步,直到所有元素均排序完毕。
动图演示

算法实现
public static void selectionSort(int[] arr) {
int temp, min = 0;
for (int i = 0; i < arr.length - 1; i++) {
min = i;
// 循环查找最小值
for (int j = i + 1; j < arr.length; j++) {
if (arr[min] > arr[j]) {
min = j;
}
}
if (min != i) {
temp = arr[i];
arr[i] = arr[min];
arr[min] = temp;
}
}
}
稳定性
用数组实现的选择排序是不稳定的,用链表实现的选择排序是稳定的。
不过,一般提到排序算法时,大家往往会默认是数组实现,所以选择排序是不稳定的。

适用场景
选择排序实现也比较简单,并且由于在各种情况下复杂度波动小,因此一般是优于冒泡排序的。在所有的完全交换排序中,选择排序也是比较不错的一种算法。但是,由于固有的O(n2)复杂度,选择排序在海量数据面前显得力不从心。因此,它适用于简单数据排序。

插入排序
插入排序是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
算法描述
把待排序的数组分成已排序和未排序两部分,初始的时候把第一个元素认为是已排好序的。
从第二个元素开始,在已排好序的子数组中寻找到该元素合适的位置并插入该位置。
重复上述过程直到最后一个元素被插入有序子数组中。
动图演示

算法实现
public static void insertionSort(int[] arr){
for (int i=1; i<arr.length; ++i){
int value = arr[i];
int position=i;
while (position>0 && arr[position-1]>value){
arr[position] = arr[position-1];
position–;
}
arr[position] = value;
}//loop i
}
稳定性
由于只需要找到不大于当前数的位置而并不需要交换,因此,直接插入排序是稳定的排序方法。

适用场景
插入排序由于O( n2 )的复杂度,在数组较大的时候不适用。但是,在数据比较少的时候,是一个不错的选择,一般做为快速排序的扩充。例如,在STL的sort算法和stdlib的qsort算法中,都将插入排序作为快速排序的补充,用于少量元素的排序。又如,在JDK 7 java.util.Arrays所用的sort方法的实现中,当待排数组长度小于47时,会使用插入排序。

归并排序
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
算法描述
两种方法

递归法(Top-down)
申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
设定两个指针,最初位置分别为两个已经排序序列的起始位置
比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
重复步骤3直到某一指针到达序列尾
将另一序列剩下的所有元素直接复制到合并序列尾
迭代法(Bottom-up)
原理如下(假设序列共有n个元素):

将序列每相邻两个数字进行归并操作,形成ceil(n/2)个序列,排序后每个序列包含两/一个元素
若此时序列数不是1个则将上述序列再次归并,形成ceil(n/4)个序列,每个序列包含四/三个元素
重复步骤2,直到所有元素排序完毕,即序列数为1
动图演示

算法实现
public static void mergeSort(int[] arr){
int[] temp =new int[arr.length];
internalMergeSort(arr, temp, 0, arr.length-1);
}
private static void internalMergeSort(int[] arr, int[] temp, int left, int right){
//当left==right的时,已经不需要再划分了
if (left<right){
int middle = (left+right)/2;
internalMergeSort(arr, temp, left, middle); //左子数组
internalMergeSort(arr, temp, middle+1, right); //右子数组
mergeSortedArray(arr, temp, left, middle, right); //合并两个子数组
}
}
// 合并两个有序子序列
private static void mergeSortedArray(int arr[], int temp[], int left, int middle, int right){
int i=left;
int j=middle+1;
int k=0;
while (i<=middle && j<=right){
temp[k++] = arr[i] <= arr[j] ? arr[i++] : arr[j++];
}
while (i <=middle){
temp[k++] = arr[i++];
}
while ( j<=right){
temp[k++] = arr[j++];
}
//把数据复制回原数组
for (i=0; i<k; ++i){
arr[left+i] = temp[i];
}
}
稳定性
因为我们在遇到相等的数据的时候必然是按顺序“抄写”到辅助数组上的,所以,归并排序同样是稳定算法。

适用场景
归并排序在数据量比较大的时候也有较为出色的表现(效率上),但是,其空间复杂度O(n)使得在数据量特别大的时候(例如,1千万数据)几乎不可接受。而且,考虑到有的机器内存本身就比较小,因此,采用归并排序一定要注意。

快速排序
快速排序是一个知名度极高的排序算法,其对于大数据的优秀排序性能和相同复杂度算法中相对简单的实现使它注定得到比其他算法更多的宠爱。
算法描述
从数列中挑出一个元素,称为"基准"(pivot),
重新排序数列,所有比基准值小的元素摆放在基准前面,所有比基准值大的元素摆在基准后面(相同的数可以到任何一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
递归地(recursively)把小于基准值元素的子数列和大于基准值元素的子数列排序。
动图演示

算法实现
public static void quickSort(int[] arr){
qsort(arr, 0, arr.length-1);
}
private static void qsort(int[] arr, int low, int high){
if (low >= high)
return;
int pivot = partition(arr, low, high); //将数组分为两部分
qsort(arr, low, pivot-1); //递归排序左子数组
qsort(arr, pivot+1, high); //递归排序右子数组
}
private static int partition(int[] arr, int low, int high){
int pivot = arr[low]; //基准
while (low < high){
while (low < high && arr[high] >= pivot) --high;
arr[low]=arr[high]; //交换比基准大的记录到左端
while (low < high && arr[low] <= pivot) ++low;
arr[high] = arr[low]; //交换比基准小的记录到右端
}
//扫描完成,基准到位
arr[low] = pivot;
//返回的是基准的位置
return low;
}
稳定性
快速排序并不是稳定的。这是因为我们无法保证相等的数据按顺序被扫描到和按顺序存放。

适用场景
快速排序在大多数情况下都是适用的,尤其在数据量大的时候性能优越性更加明显。但是在必要的时候,需要考虑下优化以提高其在最坏情况下的性能。

堆排序
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆排序就是把最大堆堆顶的最大数取出,将剩余的堆继续调整为最大堆,再次将堆顶的最大数取出,这个过程持续到剩余数只有一个时结束。
树的概念
关于树的概念请参考:[算法总结] 二叉树

堆的概念
堆是一种特殊的完全二叉树(complete binary tree)。完全二叉树的一个“优秀”的性质是,除了最底层之外,每一层都是满的,这使得堆可以利用数组来表示(普通的一般的二叉树通常用链表作为基本容器表示),每一个结点对应数组中的一个元素。
如下图,是一个堆和数组的相互关系:

对于给定的某个结点的下标 i,可以很容易的计算出这个结点的父结点、孩子结点的下标:

Parent(i) = floor(i/2),i 的父节点下标
Left(i) = 2i,i 的左子节点下标
Right(i) = 2i + 1,i 的右子节点下标
二叉堆一般分为两种:最大堆和最小堆。
最大堆:
最大堆中的最大元素值出现在根结点(堆顶)
堆中每个父节点的元素值都大于等于其孩子结点(如果存在)

最小堆:
最小堆中的最小元素值出现在根结点(堆顶)
堆中每个父节点的元素值都小于等于其孩子结点(如果存在)

堆排序原理
堆排序就是把最大堆堆顶的最大数取出,将剩余的堆继续调整为最大堆,再次将堆顶的最大数取出,这个过程持续到剩余数只有一个时结束。在堆中定义以下几种操作:

最大堆调整(Max-Heapify):将堆的末端子节点作调整,使得子节点永远小于父节点
创建最大堆(Build-Max-Heap):将堆所有数据重新排序,使其成为最大堆
堆排序(Heap-Sort):移除位在第一个数据的根节点,并做最大堆调整的递归运算 继续进行下面的讨论前,需要注意的一个问题是:数组都是 Zero-Based,这就意味着我们的堆数据结构模型要发生改变

相应的,几个计算公式也要作出相应调整:

Parent(i) = floor((i-1)/2),i 的父节点下标
Left(i) = 2i + 1,i 的左子节点下标
Right(i) = 2(i + 1),i 的右子节点下标
堆的建立和维护
堆可以支持多种操作,但现在我们关心的只有两个问题:

给定一个无序数组,如何建立为堆?
删除堆顶元素后,如何调整数组成为新堆?
先看第二个问题。假定我们已经有一个现成的大根堆。现在我们删除了根元素,但并没有移动别的元素。想想发生了什么:根元素空了,但其它元素还保持着堆的性质。我们可以把最后一个元素(代号A)移动到根元素的位置。如果不是特殊情况,则堆的性质被破坏。但这仅仅是由于A小于其某个子元素。于是,我们可以把A和这个子元素调换位置。如果A大于其所有子元素,则堆调整好了;否则,重复上述过程,A元素在树形结构中不断“下沉”,直到合适的位置,数组重新恢复堆的性质。上述过程一般称为“筛选”,方向显然是自上而下。

删除后的调整,是把最后一个元素放到堆顶,自上而下比较
删除一个元素是如此,插入一个新元素也是如此。不同的是,我们把新元素放在末尾,然后和其父节点做比较,即自下而上筛选。

插入是把新元素放在末尾,自下而上比较
那么,第一个问题怎么解决呢?

常规方法是从第一个非叶子结点向下筛选,直到根元素筛选完毕。这个方法叫“筛选法”,需要循环筛选n/2个元素。

但我们还可以借鉴“插入排序”的思路。我们可以视第一个元素为一个堆,然后不断向其中添加新元素。这个方法叫做“插入法”,需要循环插入(n-1)个元素。

由于筛选法和插入法的方式不同,所以,相同的数据,它们建立的堆一般不同。大致了解堆之后,堆排序就是水到渠成的事情了。

动图演示

算法描述
我们需要一个升序的序列,怎么办呢?我们可以建立一个最小堆,然后每次输出根元素。但是,这个方法需要额外的空间(否则将造成大量的元素移动,其复杂度会飙升到O(n2) )。如果我们需要就地排序(即不允许有O(n)空间复杂度),怎么办?

有办法。我们可以建立最大堆,然后我们倒着输出,在最后一个位置输出最大值,次末位置输出次大值……由于每次输出的最大元素会腾出第一个空间,因此,我们恰好可以放置这样的元素而不需要额外空间。很漂亮的想法,是不是?

算法实现
public class ArrayHeap {
private int[] arr;
public ArrayHeap(int[] arr) {
this.arr = arr;
}
private int getParentIndex(int child) {
return (child - 1) / 2;
}
private int getLeftChildIndex(int parent) {
return 2 * parent + 1;
}
private void swap(int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
/**

  • 调整堆。
    /
    private void adjustHeap(int i, int len) {
    int left, right, j;
    left = getLeftChildIndex(i);
    while (left <= len) {
    right = left + 1;
    j = left;
    if (j < len && arr[left] < arr[right]) {
    j++;
    }
    if (arr[i] < arr[j]) {
    swap(array, i, j);
    i = j;
    left = getLeftChildIndex(i);
    } else {
    break; // 停止筛选
    }
    }
    }
    /*
  • 堆排序。
  • */
    public void sort() {
    int last = arr.length - 1;
    // 初始化最大堆
    for (int i = getParentIndex(last); i >= 0; --i) {
    adjustHeap(i, last);
    }
    // 堆调整
    while (last >= 0) {
    swap(0, last–);
    adjustHeap(0, last);
    }
    }

}
稳定性
堆排序存在大量的筛选和移动过程,属于不稳定的排序算法。

适用场景
堆排序在建立堆和调整堆的过程中会产生比较大的开销,在元素少的时候并不适用。但是,在元素比较多的情况下,还是不错的一个选择。尤其是在解决诸如“前n大的数”一类问题时,几乎是首选算法。

希尔排序(插入排序的改良版)
在希尔排序出现之前,计算机界普遍存在“排序算法不可能突破O(n2)”的观点。希尔排序是第一个突破O(n2)的排序算法,它是简单插入排序的改进版。希尔排序的提出,主要基于以下两点:
插入排序算法在数组基本有序的情况下,可以近似达到O(n)复杂度,效率极高。
但插入排序每次只能将数据移动一位,在数组较大且基本无序的情况下性能会迅速恶化。
算法描述
先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:

选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
按增量序列个数k,对序列进行 k 趟排序;
每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
动图演示

算法实现
Donald Shell增量

public static void shellSort(int[] arr){
int temp;
for (int delta = arr.length/2; delta>=1; delta/=2){ //对每个增量进行一次排序
for (int i=delta; i<arr.length; i++){
for (int j=i; j>=delta && arr[j]<arr[j-delta]; j-=delta){ //注意每个地方增量和差值都是delta
temp = arr[j-delta];
arr[j-delta] = arr[j];
arr[j] = temp;
}
}//loop i
}//loop delta
}
O(n3/2) by Knuth

public static void shellSort2(int[] arr){
int delta = 1;
while (delta < arr.length/3){//generate delta
delta=delta*3+1; // <O(n^(3/2)) by Knuth,1973>: 1, 4, 13, 40, 121, …
}
int temp;
for (; delta>=1; delta/=3){
for (int i=delta; i<arr.length; i++){
for (int j=i; j>=delta && arr[j]<arr[j-delta]; j-=delta){
temp = arr[j-delta];
arr[j-delta] = arr[j];
arr[j] = temp;
}
}//loop i
}//loop delta
}
希尔排序的增量
希尔排序的增量数列可以任取,需要的唯一条件是最后一个一定为1(因为要保证按1有序)。但是,不同的数列选取会对算法的性能造成极大的影响。上面的代码演示了两种增量。
切记:增量序列中每两个元素最好不要出现1以外的公因子!(很显然,按4有序的数列再去按2排序意义并不大)。
下面是一些常见的增量序列。

第一种增量是最初Donald Shell提出的增量,即折半降低直到1。据研究,使用希尔增量,其时间复杂度还是O(n2)。
第二种增量Hibbard:{1, 3, …, 2k-1}。该增量序列的时间复杂度大约是O(n1.5)。

第三种增量Sedgewick增量:(1, 5, 19, 41, 109,…),其生成序列或者是94i - 92i + 1或者是4i - 3*2i + 1。

稳定性
我们都知道插入排序是稳定算法。但是,Shell排序是一个多次插入的过程。在一次插入中我们能确保不移动相同元素的顺序,但在多次的插入中,相同元素完全有可能在不同的插入轮次被移动,最后稳定性被破坏,因此,Shell排序不是一个稳定的算法。

适用场景
Shell排序虽然快,但是毕竟是插入排序,其数量级并没有后起之秀–快速排序O(n㏒n)快。在大量数据面前,Shell排序不是一个好的算法。但是,中小型规模的数据完全可以使用它。

计数排序
计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

算法描述
找出待排序的数组中最大和最小的元素;
统计数组中每个值为i的元素出现的次数,存入数组C的第i项;
对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);
反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。
动图演示

算法实现
public static void countSort(int[] a, int max, int min) {
int[] b = new int[a.length];//存储数组
int[] count = new int[max - min + 1];//计数数组

for (int num = min; num <= max; num++) {
//初始化各元素值为0,数组下标从0开始因此减min
count[num - min] = 0;
}

for (int i = 0; i < a.length; i++) {
int num = a[i];
count[num - min]++;//每出现一个值,计数数组对应元素的值+1
}

for (int num = min + 1; num <= max; num++) {
//加总数组元素的值为计数数组对应元素及左边所有元素的值的总和
count[num - min] += sum[num - min - 1]
}

for (int i = 0; i < a.length; i++) {
int num = a[i];//源数组第i位的值
int index = count[num - min] - 1;//加总数组中对应元素的下标
b[index] = num;//将该值存入存储数组对应下标中
count[num - min]–;//加总数组中,该值的总和减少1。
}

//将存储数组的值一一替换给源数组
for(int i=0;i<a.length;i++){
a[i] = b[i];
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
}
稳定性
最后给 b 数组赋值是倒着遍历的,而且放进去一个就将C数组对应的值(表示前面有多少元素小于或等于A[i])减去一。如果有相同的数x1,x2,那么相对位置后面那个元素x2放在(比如下标为4的位置),相对位置前面那个元素x1下次进循环就会被放在x2前面的位置3。从而保证了稳定性。

适用场景
排序目标要能够映射到整数域,其最大值最小值应当容易辨别。例如高中生考试的总分数,显然用0-750就OK啦;又比如一群人的年龄,用个0-150应该就可以了,再不济就用0-200喽。另外,计数排序需要占用大量空间,它比较适用于数据比较集中的情况。

桶排序
桶排序又叫箱排序,是计数排序的升级版,它的工作原理是将数组分到有限数量的桶子里,然后对每个桶子再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排序),最后将各个桶中的数据有序的合并起来。

计数排序是桶排序的一种特殊情况,可以把计数排序当成每个桶里只有一个元素的情况。网络中很多博文写的桶排序实际上都是计数排序,并非标准的桶排序,要注意辨别。
算法描述
找出待排序数组中的最大值max、最小值min
我们使用 动态数组ArrayList 作为桶,桶里放的元素也用 ArrayList 存储。桶的数量为(max-min)/arr.length+1
遍历数组 arr,计算每个元素 arr[i] 放的桶
每个桶各自排序
遍历桶数组,把排序好的元素放进输出数组
图片演示

算法实现
public static void bucketSort(int[] arr){
int max = Integer.MIN_VALUE;
int min = Integer.MAX_VALUE;
for(int i = 0; i < arr.length; i++){
max = Math.max(max, arr[i]);
min = Math.min(min, arr[i]);
}
//桶数
int bucketNum = (max - min) / arr.length + 1;
ArrayList bucketArr = new ArrayList<>(bucketNum);
for(int i = 0; i < bucketNum; i++){
bucketArr.add(new ArrayList());
}
//将每个元素放入桶
for(int i = 0; i < arr.length; i++){
int num = (arr[i] - min) / (arr.length);
bucketArr.get(num).add(arr[i]);
}
//对每个桶进行排序
for(int i = 0; i < bucketArr.size(); i++){
Collections.sort(bucketArr.get(i));
}
System.out.println(bucketArr.toString());
}
稳定性
可以看出,在分桶和从桶依次输出的过程是稳定的。但是,由于我们在对每个桶进行排序时使用了其他算法,所以,桶排序的稳定性依赖于这一步。如果我们使用了快排,显然,算法是不稳定的。

适用场景
桶排序可用于最大最小值相差较大的数据情况,但桶排序要求数据的分布必须均匀,否则可能导致数据都集中到一个桶中。比如[104,150,123,132,20000], 这种数据会导致前4个数都集中到同一个桶中。导致桶排序失效。

基数排序
基数排序(Radix Sort)是桶排序的扩展,它的基本思想是:将整数按位数切割成不同的数字,然后按每个位数分别比较。
排序过程:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。

算法描述
取得数组中的最大数,并取得位数;
arr为原始数组,从最低位开始取每个位组成radix数组;
对radix进行计数排序(利用计数排序适用于小范围数的特点);
动图

算法实现
public abstract class Sorter {
public abstract void sort(int[] array);
}

public class RadixSorter extends Sorter {
private int radix;

public RadixSorter() {
radix = 10;
}

@Override
public void sort(int[] array) {
// 数组的第一维表示可能的余数0-radix,第二维表示array中的等于该余数的元素
// 如:十进制123的个位为3,则bucket[3][] = {123}
int[][] bucket = new int[radix][array.length];
int distance = getDistance(array); // 表示最大的数有多少位
int temp = 1;
int round = 1; // 控制键值排序依据在哪一位
while (round <= distance) {
// 用来计数:数组counter[i]用来表示该位是i的数的个数
int[] counter = new int[radix];
// 将array中元素分布填充到bucket中,并进行计数
for (int i = 0; i < array.length; i++) {
int which = (array[i] / temp) % radix;
bucket[which][counter[which]] = array[i];
counter[which]++;
}
int index = 0;
// 根据bucket中收集到的array中的元素,根据统计计数,在array中重新排列
for (int i = 0; i < radix; i++) {
if (counter[i] != 0)
for (int j = 0; j < counter[i]; j++) {
array[index] = bucket[i][j];
index++;
}
counter[i] = 0;
}
temp *= radix;
round++;
}
}

private int getDistance(int[] array) {
int max = computeMax(array);
int digits = 0;
int temp = max / radix;
while(temp != 0) {
digits++;
temp = temp / radix;
}
return digits + 1;
}

private int computeMax(int[] array) {
int max = array[0];
for(int i=1; i<array.length; i++) {
if(array[i]>max) {
max = array[i];
}
}
return max;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
}
稳定性
通过上面的排序过程,我们可以看到,每一轮映射和收集操作,都保持从左到右的顺序进行,如果出现相同的元素,则保持他们在原始数组中的顺序。可见,基数排序是一种稳定的排序。

适用场景
基数排序要求较高,元素必须是整数,整数时长度10W以上,最大值100W以下效率较好,但是基数排序比其他排序好在可以适用字符串,或者其他需要根据多个条件进行排序的场景,例如日期,先排序日,再排序月,最后排序年 ,其它排序算法可是做不了的。
————————————————
版权声明:本文为CSDN博主「天峰博客」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/m0_38126667/article/details/121064273

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. python的变量名的命名规则以及输出所有的保留字

    命名:为程序元素关联一个名称,要保证唯一性规则:(1)大小写字母、数字、下划线都可以出现在变量的名字当中(2)不能以数字开头(3)大小写敏感(4)不能和保留字相同下面的代码可以将python中的所有的保留字输出来>>> import keyword >>> print keyword…...

    2024/4/20 4:08:48
  2. 设计模式-Proxy代理模式

    设计模式-Proxy代理模式什么是代理模式为什么要用代理模式角色优缺点优点缺点适用场景注意事项静态代理实现公用接口真实类的请求创建代理类测试静态代理总结动态代理编写动态处理器测试动态代理总结CGLIB动态代理创建CGLIB代理类CGLIB代理总结什么是代理模式 在软件开发中&…...

    2024/4/15 14:56:55
  3. Educational Codeforces Round 116 (Rated for Div. 2) E. Arena(组合数,DP )

    Link 考虑第一批人在第kkk轮死掉,那么这些死掉的人血量在[(k−1)∗(n−1)1,k∗(n−1)][(k-1)*(n-1)1,k*(n-1)][(k−1)∗(n−1)1,k∗(n−1)]范围内 定义f[i][j]f[i][j]f[i][j]表示已经死了iii个人,且剩下的n−in-in−i个人可以是[j1,x][j1,x][j1,x]的任何血量 转移的时候枚举…...

    2024/4/5 7:14:15
  4. Shiro漏洞复现

    Shiro漏洞复现前言一、Apache Shiro 1.2.4反序列化漏洞&#xff08;CVE-2016-4437&#xff09;0x01 漏洞描述0x02 影响范围0x03 漏洞利用0x04 漏洞修复总结前言 一、Apache Shiro 1.2.4反序列化漏洞&#xff08;CVE-2016-4437&#xff09; 0x01 漏洞描述 Apache Shiro是一款…...

    2024/4/15 14:57:46
  5. IAR使用方法建立工程文件超详细操作步骤

    第一步&#xff1a; 第二步&#xff1a; 第三步&#xff1a; 第四步&#xff1a;点击OK后选择文件夹保存&#xff0c;名字随意 第五步&#xff1a;点击保存 第六步&#xff1a; 第七步&#xff1a; 第八步&#xff1a;右键箭头位置按图示添加 第九步&#xff1a;右键箭头位置按…...

    2024/4/10 21:38:10
  6. 对引用数据类型,赋值是把原对象的引用传递给另一个引用,两个引 用指向同一块内存空间

    public class Test02 {public static void main(String[] args) {int[]infoZhang new int[]{170,60};int[]infoLiinfoZhang;infoLi[0]180;infoLi[1]70;System.out.println(infoZhang[0]" "infoZhang[1]);} }...

    2024/4/15 14:57:56
  7. Mybatis基础学习之日志工厂的简单使用

    前言&#xff1a; 小伙伴们&#xff0c;大家好&#xff0c;我是狂奔の蜗牛rz&#xff0c;当然你们可以叫我蜗牛君&#xff0c;我是一个学习Java半年多时间的小菜鸟&#xff0c;同时还有一个伟大的梦想&#xff0c;那就是有朝一日&#xff0c;成为一个优秀的Java架构师。 这个My…...

    2024/4/19 2:52:16
  8. 17兄弟(层级)选择器 三角形的实现 盒子模型里面的两种模式

    17兄弟(层级)选择器 三角形的实现 盒子模型里面的两种模式 一、兄弟选择器&#xff0c;层级选择器 ef{} 选中e的后面相邻的兄弟f e~f{} 选中e的后面所有兄弟f e,f{} 选中e和f二、三角形的实现 设置盒子宽高为0width:0;height:0; 设置边框为粗度且为透明度border:粗度 solid …...

    2024/4/18 0:12:14
  9. 浅谈volatile与计算机缓存一致性协议之间的联系

    文章目录一、缓存一致性的要求二、总线相关概念1、总线裁决概念2、总线锁定和缓存锁定3、总线窥探概念(Bus Snooping)三、一致性协议&#xff08;Coherence protocol&#xff09;1、MESI协议2、伪共享的问题3、解决方法写在前面&#xff1a;本文涉及内容计算机组成原理知识相关…...

    2024/4/15 14:57:51
  10. Collection集合

    Collection集合共性方法 Collection<String> collection new ArrayList<>();collection.add("a");//添加&#xff0c;返回Boolean,添加成功返回truecollection.remove("a");//删除&#xff0c;返回Boolean,删除成功返回truecollection.clear()…...

    2024/4/15 14:58:06
  11. 数据结构--求最大子列和问题(浙)

    #include <stdio.h>int MaxConsequnceSum(int arr[],int n); /* 给定以序列数&#xff1a;序列{ -2, 11, -4, 13, -5, -2 } &#xff0c;求其最大之列和 连续子列{ 11, -4, 13 }有最大的和20&#xff1b; 思路&#xff1a; 用一个数组存储该序列&#xff0c;用2个for循环…...

    2024/4/26 11:25:58
  12. ARM汇编指令集-GNU汇编伪指令

    伪指令的意义 伪指令不是指令&#xff0c;伪指令和指令的根本区别是经过编译后会不会生成机器码。 伪指令的意义在于指导编译过程。伪指令是和具体的编译器相关的&#xff0c;我们使用gnu工具链&#xff0c;因此学习gnu环境下的汇编伪指令。 gnu汇编中的一些符号 用来做注释。…...

    2024/4/18 8:55:56
  13. 对数正态分布

    正态分布 令Φ(y)\Phi \left( y \right)Φ(y)&#xff0c;φ(y)\varphi \left( y \right)φ(y)分别表示正态分布N(μ,σ2)N\left( \mu ,{{\sigma }^{2}} \right)N(μ,σ2)的CDF和PDF&#xff0c;其中 φ(y)12πσe−(y−μ)22σ2,−∞<y<∞\varphi \left( y \right)\fra…...

    2024/4/16 6:36:24
  14. IDA操作手册笔记1

    1.汇编转C语言后如何还原函数? 附件 以 看雪课程的libmyjni的函数 JNIOnLoad 函数为例&#xff0c;使用32位的IDA7.0打开so 1.点击 Exports(名词解析:导出函数列表) 2.双击击对应的JNI_OnLoad函数进入IDA View-A视角 3.直接按下F5快捷键转换为C语言伪代码 这时候发现没有…...

    2024/4/16 21:29:16
  15. 那些程序员都是怎么拿高绩效的?

    距离年底绩效评估不远了&#xff0c;近期正好看到一位大佬关于“怎么做才能拿高绩效”的分享&#xff0c;结合我个人的一些经验&#xff0c;给大家分享几个核心点。 首先要跟大家明确一点&#xff1a;加班多不等于高绩效。 每个岗位都有对应的核心要求&#xff0c;只达到要求还…...

    2024/4/6 11:55:32
  16. 机器学习算法(一):基于逻辑回归的分类预测

    机器学习算法&#xff08;一&#xff09;&#xff1a;基于逻辑回归的分类预测 而对于逻辑回归而且&#xff0c;最为突出的两点就是其模型简单和模型的可解释性强。 逻辑回归模型的优劣势: 优点&#xff1a;实现简单&#xff0c;易于理解和实现&#xff1b;计算代价不高&#…...

    2024/4/15 14:57:56
  17. 学习笔记:动手学深度学习 04 线性代数

    1.标量 标量由只有一个元素的张量表示。 import torchx torch.tensor([3.0]) y torch.tensor([2.0])x y, x * y, x / y, x**y 2.向量 通过一维张量处理向量。一般来说&#xff0c;张量可以具有任意长度&#xff0c;取决于机器的内存限制。 x torch.arange(4) x 在代码中…...

    2024/4/17 12:49:46
  18. C:1111多个整数的逆序输出(函数专题)

    题目描述&#xff1a;输入n和n个整数&#xff0c;以与输入顺序相反的顺序输出这n个整数。要求不使用数组&#xff0c;而使用递归函数实现。 递归函数实现过程如下&#xff1a; void inverse(int n){ if(n >1) { (1) 读入一个整数&#xff0c;存入nu…...

    2024/4/15 14:58:01
  19. python列表

    列表&#xff1a;[元素]&#xff1b;可变类型&#xff1b;有顺序&#xff0c;下标从0开始&#xff1b;元素可以是不同的数值类型&#xff0c;也可以是不同的数据结构 目录 1、正向单索引&#xff1a;取列表中的某个元素&#xff1b;从左到右 2、负向单索引&#xff1a;从右向…...

    2024/4/15 14:57:56
  20. 【好数推荐】高质量的语音合成数据集

    语音合成技术是将任意文本转换成语音的技术&#xff0c;是人与计算机语音交互必不可少的模块。如果说语音识别技术是让计算机学会“听”人的话&#xff0c;那么语音合成技术就是让计算机程序把文字“说”出来。 从地图导航、语音助手、新闻朗读、到各种大大小小的客服、呼叫中心…...

    2024/4/18 3:31:02

最新文章

  1. 软件测试笔记_习题_面经

    软件测试------按测试阶段划分有几个阶段? 单元测试、集成测试、系统测试、验收测试 软件测试------按是否查看源代码划分有几种测试方法? 黑盒、白盒、灰盒 软件测试------按是否运行划分有几种测试方法? 静态测试、动态测试 软件测试------按是否自动化划分有几种测试方…...

    2024/4/28 11:56:53
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. 如何构建数据指标体系

    构建一套科学、完备且实用的数据分析指标体系是一项系统性的工程&#xff0c;其核心在于将业务理解、目标设定、度量标准选择、数据采集与整理、数据分析、指标体系构建、持续优化与改进等多个环节有机融合&#xff0c;以实现对业务状况的精准刻画、趋势预测及决策支持。以下是…...

    2024/4/25 2:13:05
  4. 小林coding图解计算机网络|基础篇01|TCP/IP网络模型有哪几层?

    小林coding网站通道&#xff1a;入口 本篇文章摘抄应付面试的重点内容&#xff0c;详细内容还请移步&#xff1a; 文章目录 应用层(Application Layer)传输层(Transport Layer)TCP段(TCP Segment) 网络层(Internet Layer)IP协议的寻址能力IP协议的路由能力 数据链路层(Link Lay…...

    2024/4/26 8:15:34
  5. 图解深度神经网络的架构

    图解深度神经网络的架构 基线模型 AlexNet 是突破性的架构&#xff0c;它使卷积网络&#xff08;CNN&#xff09;成为处理大型图像分类任务的主要机器学习算法。介绍 AlexNet 的论文呈现了一张很好的图&#xff0c;但是好像还缺点什么…… AlexNet 架构图示&#xff08;图源&…...

    2024/4/25 9:00:48
  6. 【外汇早评】美通胀数据走低,美元调整

    原标题:【外汇早评】美通胀数据走低,美元调整昨日美国方面公布了新一期的核心PCE物价指数数据,同比增长1.6%,低于前值和预期值的1.7%,距离美联储的通胀目标2%继续走低,通胀压力较低,且此前美国一季度GDP初值中的消费部分下滑明显,因此市场对美联储后续更可能降息的政策…...

    2024/4/26 18:09:39
  7. 【原油贵金属周评】原油多头拥挤,价格调整

    原标题:【原油贵金属周评】原油多头拥挤,价格调整本周国际劳动节,我们喜迎四天假期,但是整个金融市场确实流动性充沛,大事频发,各个商品波动剧烈。美国方面,在本周四凌晨公布5月份的利率决议和新闻发布会,维持联邦基金利率在2.25%-2.50%不变,符合市场预期。同时美联储…...

    2024/4/28 3:28:32
  8. 【外汇周评】靓丽非农不及疲软通胀影响

    原标题:【外汇周评】靓丽非农不及疲软通胀影响在刚结束的周五,美国方面公布了新一期的非农就业数据,大幅好于前值和预期,新增就业重新回到20万以上。具体数据: 美国4月非农就业人口变动 26.3万人,预期 19万人,前值 19.6万人。 美国4月失业率 3.6%,预期 3.8%,前值 3…...

    2024/4/26 23:05:52
  9. 【原油贵金属早评】库存继续增加,油价收跌

    原标题:【原油贵金属早评】库存继续增加,油价收跌周三清晨公布美国当周API原油库存数据,上周原油库存增加281万桶至4.692亿桶,增幅超过预期的74.4万桶。且有消息人士称,沙特阿美据悉将于6月向亚洲炼油厂额外出售更多原油,印度炼油商预计将每日获得至多20万桶的额外原油供…...

    2024/4/27 4:00:35
  10. 【外汇早评】日本央行会议纪要不改日元强势

    原标题:【外汇早评】日本央行会议纪要不改日元强势近两日日元大幅走强与近期市场风险情绪上升,避险资金回流日元有关,也与前一段时间的美日贸易谈判给日本缓冲期,日本方面对汇率问题也避免继续贬值有关。虽然今日早间日本央行公布的利率会议纪要仍然是支持宽松政策,但这符…...

    2024/4/27 17:58:04
  11. 【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响

    原标题:【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响近日伊朗局势升温,导致市场担忧影响原油供给,油价试图反弹。此时OPEC表态稳定市场。据消息人士透露,沙特6月石油出口料将低于700万桶/日,沙特已经收到石油消费国提出的6月份扩大出口的“适度要求”,沙特将满…...

    2024/4/27 14:22:49
  12. 【外汇早评】美欲与伊朗重谈协议

    原标题:【外汇早评】美欲与伊朗重谈协议美国对伊朗的制裁遭到伊朗的抗议,昨日伊朗方面提出将部分退出伊核协议。而此行为又遭到欧洲方面对伊朗的谴责和警告,伊朗外长昨日回应称,欧洲国家履行它们的义务,伊核协议就能保证存续。据传闻伊朗的导弹已经对准了以色列和美国的航…...

    2024/4/28 1:28:33
  13. 【原油贵金属早评】波动率飙升,市场情绪动荡

    原标题:【原油贵金属早评】波动率飙升,市场情绪动荡因中美贸易谈判不安情绪影响,金融市场各资产品种出现明显的波动。随着美国与中方开启第十一轮谈判之际,美国按照既定计划向中国2000亿商品征收25%的关税,市场情绪有所平复,已经开始接受这一事实。虽然波动率-恐慌指数VI…...

    2024/4/27 9:01:45
  14. 【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试

    原标题:【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试美国和伊朗的局势继续升温,市场风险情绪上升,避险黄金有向上突破阻力的迹象。原油方面稍显平稳,近期美国和OPEC加大供给及市场需求回落的影响,伊朗局势并未推升油价走强。近期中美贸易谈判摩擦再度升级,美国对中…...

    2024/4/27 17:59:30
  15. 【原油贵金属早评】市场情绪继续恶化,黄金上破

    原标题:【原油贵金属早评】市场情绪继续恶化,黄金上破周初中国针对于美国加征关税的进行的反制措施引发市场情绪的大幅波动,人民币汇率出现大幅的贬值动能,金融市场受到非常明显的冲击。尤其是波动率起来之后,对于股市的表现尤其不安。隔夜美国股市出现明显的下行走势,这…...

    2024/4/25 18:39:16
  16. 【外汇早评】美伊僵持,风险情绪继续升温

    原标题:【外汇早评】美伊僵持,风险情绪继续升温昨日沙特两艘油轮再次发生爆炸事件,导致波斯湾局势进一步恶化,市场担忧美伊可能会出现摩擦生火,避险品种获得支撑,黄金和日元大幅走强。美指受中美贸易问题影响而在低位震荡。继5月12日,四艘商船在阿联酋领海附近的阿曼湾、…...

    2024/4/28 1:34:08
  17. 【原油贵金属早评】贸易冲突导致需求低迷,油价弱势

    原标题:【原油贵金属早评】贸易冲突导致需求低迷,油价弱势近日虽然伊朗局势升温,中东地区几起油船被袭击事件影响,但油价并未走高,而是出于调整结构中。由于市场预期局势失控的可能性较低,而中美贸易问题导致的全球经济衰退风险更大,需求会持续低迷,因此油价调整压力较…...

    2024/4/26 19:03:37
  18. 氧生福地 玩美北湖(上)——为时光守候两千年

    原标题:氧生福地 玩美北湖(上)——为时光守候两千年一次说走就走的旅行,只有一张高铁票的距离~ 所以,湖南郴州,我来了~ 从广州南站出发,一个半小时就到达郴州西站了。在动车上,同时改票的南风兄和我居然被分到了一个车厢,所以一路非常愉快地聊了过来。 挺好,最起…...

    2024/4/28 1:22:35
  19. 氧生福地 玩美北湖(中)——永春梯田里的美与鲜

    原标题:氧生福地 玩美北湖(中)——永春梯田里的美与鲜一觉醒来,因为大家太爱“美”照,在柳毅山庄去寻找龙女而错过了早餐时间。近十点,向导坏坏还是带着饥肠辘辘的我们去吃郴州最富有盛名的“鱼头粉”。说这是“十二分推荐”,到郴州必吃的美食之一。 哇塞!那个味美香甜…...

    2024/4/25 18:39:14
  20. 氧生福地 玩美北湖(下)——奔跑吧骚年!

    原标题:氧生福地 玩美北湖(下)——奔跑吧骚年!让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 啊……啊……啊 两…...

    2024/4/26 23:04:58
  21. 扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!

    原标题:扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!扒开伪装医用面膜,翻六倍价格宰客!当行业里的某一品项火爆了,就会有很多商家蹭热度,装逼忽悠,最近火爆朋友圈的医用面膜,被沾上了污点,到底怎么回事呢? “比普通面膜安全、效果好!痘痘、痘印、敏感肌都能用…...

    2024/4/27 23:24:42
  22. 「发现」铁皮石斛仙草之神奇功效用于医用面膜

    原标题:「发现」铁皮石斛仙草之神奇功效用于医用面膜丽彦妆铁皮石斛医用面膜|石斛多糖无菌修护补水贴19大优势: 1、铁皮石斛:自唐宋以来,一直被列为皇室贡品,铁皮石斛生于海拔1600米的悬崖峭壁之上,繁殖力差,产量极低,所以古代仅供皇室、贵族享用 2、铁皮石斛自古民间…...

    2024/4/28 5:48:52
  23. 丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者

    原标题:丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者【公司简介】 广州华彬企业隶属香港华彬集团有限公司,专注美业21年,其旗下品牌: 「圣茵美」私密荷尔蒙抗衰,产后修复 「圣仪轩」私密荷尔蒙抗衰,产后修复 「花茵莳」私密荷尔蒙抗衰,产后修复 「丽彦妆」专注医学护…...

    2024/4/26 19:46:12
  24. 广州械字号面膜生产厂家OEM/ODM4项须知!

    原标题:广州械字号面膜生产厂家OEM/ODM4项须知!广州械字号面膜生产厂家OEM/ODM流程及注意事项解读: 械字号医用面膜,其实在我国并没有严格的定义,通常我们说的医美面膜指的应该是一种「医用敷料」,也就是说,医用面膜其实算作「医疗器械」的一种,又称「医用冷敷贴」。 …...

    2024/4/27 11:43:08
  25. 械字号医用眼膜缓解用眼过度到底有无作用?

    原标题:械字号医用眼膜缓解用眼过度到底有无作用?医用眼膜/械字号眼膜/医用冷敷眼贴 凝胶层为亲水高分子材料,含70%以上的水分。体表皮肤温度传导到本产品的凝胶层,热量被凝胶内水分子吸收,通过水分的蒸发带走大量的热量,可迅速地降低体表皮肤局部温度,减轻局部皮肤的灼…...

    2024/4/27 8:32:30
  26. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  27. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  28. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  29. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  30. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  31. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  32. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  33. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  34. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  35. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  36. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  37. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  38. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  39. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  40. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  41. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  42. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  43. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  44. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  45. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57