1 SPI的基本介绍

1.1 SPI的简介

        SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口,是Motorola首先在其MC68HCXX系列处理器上定义的。
        SPI主要用于MCU和一些外设进行通信的场合,例如:EEPROM、Flash、AD转换器等一些应用中,还有数字信号处理器和数字信号解码器之间。SPI是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,这里全双工指的是可以在同一时刻设备进行接收和发送同时进行,它有别于CAN总线或者RS585总线,因为这些总线在同一时刻只能进行数据的单向传输。换句话说,对于一个设备在同一时刻只能接收或者发送数据。同步通信指的是一种比特同步通信技术,要求发收双方具有同频同相的同步时钟信号,SPI是通过CLK和相位实现这一点的。SPI节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议。
        SPI分为主、从两种模式,一个SPI通讯系统需要包含一个(且只能是一个)主设备,一个或多个从设备。SPI接口的读写操作,都是由主设备发起。当存在多个从设备时,通过各自的片选信号进行管理。
        优点:支持全双工通信、通信简单、数据传输速率快;
        缺点:没有指定的流控制,没有应答机制确认是否接收到数据,所以跟IIC总线协议比较在数据的可靠性上有一定的缺陷。
        STM32中SPI接口的特征:
                1)3线全双工同步传输;
                2)8或16位传输帧格式选择;
                3)主或从操作,支持多主模式;

                4)主模式和从模式下均可以由软件或硬件进行NSS管理:主/从操作模式的动态改变;
                5)可编程的时钟极性和相位;
                6)可编程的数据顺序,MSB在前或LSB在前;
                7)可触发中断的专用发送和接收标志;
                8)SPI总线忙状态标志;
                9)支持可靠通信的硬件CRC;
                10)可触发中断的主模式故障、过载以及CRC错误标志;
                11)支持DMA功能的1字节发送和接收缓冲器:产生发送和接受请求。

2 SPI协议

2.1 SPI引脚说明

        SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。这四根线分别是MISO、MOSI、SCLK、CS,具体的描述见下表:

SPI各根线的描述
名称描述
MISO主机输入从机输出,主机通过该线接收数据,从机通过该线发送数据
MOSI主机输出从机输入,主机通过该线发送数据,从机通过该线接收数据
SCLK串行时钟同步输出,同步数据传输,使用主机输出
CS片选,主机输出,用来选中具体的从机

        CS:控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(一般默认为低电位),对此芯片的操作才有效,这就允许在同一总线上连接多个SPI设备成为可能。
        
也就是说:当有多个从设备的时候,因为每个从设备上都有一个片选引脚接入到主设备机中,当我们的主设备和某个从设备通信时将需要将从设备对应的片选引脚电平拉低。

        MISO/MOSI/SCLK:通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCLK时钟线存在的原因,由SCLK提供时钟脉冲,MISO,MOSI则基于此脉冲完成数据传输。数据输出通过MOSI线,数据在时钟上升沿或下降沿时采样,同时也会有返回数据用于接受。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。
        要注意的是:
                ①SCLK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备;
                ②在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单高效。在多个从设备的系统中,每个从设备需要独立的使能信号,硬件上比I2C系统要稍微复杂一些。
        4线SPI接线:SPI主从设备之间接线如下图所示。

在这里插入图片描述

        3线SPI接线:将从设备的SS引脚接地,实现3线SPI这样就可以节省芯片资源,减少布线。

在这里插入图片描述

        一主多从SPI接线(1):通过将每个从设备的SS引脚分别接到主模式设备,可以达到一个主设备控制多个从设备的目的。

在这里插入图片描述

        一主多从SPI接线(2):此方法中加入译码器,可以有效减少片选信号的数量,节省主模式设备的芯片引脚。

在这里插入图片描述

2.2 SPI协议时序

        SPI协议时序也被称为工作模式。 SPI一共有四种工作模式,通常情况下,从机的工作模式是固定的,主机需要根据从机的工作模式进行调整自身工作模式,来完成相互之间的通信。我们的通信双方必须是工作在同一模式下,所以我们可以对我们的主设备的SPI模式进行配置,通过CPOL(时钟极性)和CPHA(时钟相位)来控制我们主设备的通信模式,具体如下:

SPI模式CPOLCPHA空闲状态时钟极性采样跳变沿
000低电平奇数沿采样,偶数沿输出
100低电平奇数沿输出,偶数沿采样
211高电平偶数沿采样,奇数沿输出
311高电平奇数沿输出,偶数沿采样

        1)CPOL时钟极性选择,=0表示总线空闲为低电平(SCLK时钟空闲状态为低电平,此时MOSI和MISO上的数据可以变化);=1表示总线空闲位高电平(SCLK时钟空闲状态为低电平,此时MOSI和MISO上的数据可以变化)。
        2)CPHA时钟相位选择,=0会在SCLK的第一个跳变沿采样,第二个跳变沿输出;=1会在SCLK的第二个跳变沿采样,第一个跳变沿输出。以上说法不好理解,可以这样描述,=0时,在奇数跳变沿采样,偶数跳变沿输出;=1时,则正好相反。
        下面具体看一下各模式的时序图:
        模式0:
        从图中可以看出,空闲电平是低电平,采样边沿为奇数跳变沿,输出在偶数跳变沿。

在这里插入图片描述

        模式1:
        图中可以看出,空闲电平是低电平;奇数跳变沿输出,偶数跳变沿采样。

在这里插入图片描述

        模式2:
        图中看出,空闲电平是高电平;在奇数跳变沿进行采样,偶数跳变沿进行输出。

在这里插入图片描述

        模式3:
        从图中可以看出,空闲电平是高电平,;在奇数跳变沿进行输出,在偶数跳变沿进行采样。

在这里插入图片描述

2.3 SPI内部工作机制

        下面对照一个SPI单主机与单从机连接图,理解其内部工作机制:

       硬件上为4根线;
        ②主机和从机都有一个串行移位寄存器,主机通过向它的SPI串行寄存器写入一个字节来发起一次传输;
        ③串行移位寄存器通过MOSI信号线将字节传送给从机,同时从机也将自己的串行移位寄存器中的内容通过MISO信号线返回给主机。这样,两个移位寄存器中的内容就被交换;
        ④外设的写操作和读操作是同步完成的。如果只进行写操作,主机只需忽略接收到的字节;反之,若主机要读取从机的一个字节,就必须发送一个空字节来引发从机的传输。
        上面的过程转为动画:初始状态

        主机读取一个bit过程:

        交换后:

        也就是说:SPI是一个环形总线结构,由CS、SCLK、MISO、MOSI构成,其时序其实很简单,主要是在SCLK的控制下,数据按照从高位到低位的方式依次移出主机寄存器和从机寄存器,并且依次移入从机寄存器和主机寄存器。当寄存器中的内容全部移出时,相当于完成了两个寄存器内容的交换。
        假设主机的8位寄存器装的是待发送的数据10101010,上升沿发送、下降沿接收、高位先发送。那么第一个上升沿来的时候,主机将会通过MOSI信号线传输给从机最高位1,自身寄存器变成0101010x。同时,MISO信号线会从从机处返回一个数据给主机,那么这时寄存器为0101010MISO,这样在 8个时钟脉冲以后,两个寄存器的内容互相交换一次。这样就完成里一个SPI时序。 
        这个时候就会有一个疑问,或者说产生一个必然了:
        为什么主机发送一个数据给从机,从机就同时通过MISO返回的一个数据给主机呢?
        解释:主机和从机的发送数据是同时完成的,两者的接收数据也是同时完成的。也就是说,当上升沿主机发送数据的时候,从机也发送了数据。
        所以为了保证主从机正确通信,应使得它们的SPI具有相同的时钟极性和时钟相位。

3 STM32的SPI接口

        SPI可分为主、从两种模式,并且支持全双工模式,所以这也就导致STM32的SPI接口比较复杂。比如:配置SPI为主模式、配置SPI为从模式、配置SPI为单工通信、配置SPI为双工通信等等。这里的内容就非常庞大,涉及到的寄存器的位也比较多,所以就不介绍太多,想要了解更多可以去查看STM32F1xx官方资料的第23章节。

3.1 SPI接口的框图

3.2 SPI引脚

        STM32的SPI接口通过4个引脚与外部器件相连,与标准的SPI协议是一致的:
               ①MISO:主设备输入/从设备输出引脚。该引脚在从模式下发送数据,在主模式下接收数据;
               ②MOSI:主设备输出/从设备输入引脚。该引脚在主模式下发送数据,在从模式下接收数据;
               ③SCK:串口时钟,作为主设备的输入,从设备的输入;
               ④NSS:从设备选择。这是一个可选的引脚,用来选择主/从设备。它的功能是用来作为“片选引脚”,让主设备可以单独地与特定从设备通讯,避免数据线上的冲突。

        从选择(NSS)脚管理
        有2种NSS模式:
                1)软件NSS模式:可以通过设置SPI_CR1寄存器的SSM位来使能这种模式。在这种模式下NSS引脚可以用作它用,而内部NSS信号电平可以通过写SPI_CR1的SSI位来驱动;
                2)硬件NSS模式,分两种情况:
                        ①NSS输出被使能:当STM32F10xxx工作为主SPI,并且NSS输出已经通过SPI_CR2寄存器的SSOE位使能,这时NSS引脚被拉低,所有NSS引脚与这个主SPI的NSS引脚相连并配置为硬件NSS的SPI设备,将自动变成从SPI设备。 当一个SPI设备需要发送广播数据,它必须拉低NSS信号,以通知所有其它的设备它是主设备;如果它不能拉低NSS,这意味着总线上有另外一个主设备在通信,这时将产生一个硬件失败错误;
                        ②NSS输出被关闭:允许操作于多主环境。

3.3 数据帧格式

        1)根据SPI_CR1寄存器中的LSBFIRST位,输出数据位时可以左对齐(MSB对齐标准)也可以右对齐(LSB对齐标准)。
        2)根据SPI_CR1寄存器的DFF位,每个数据帧可以是8位或是16位。所选择的数据帧格式对发送和/或接收都有效。

3.4 状态标志

        应用程序通过3个状态标志可以完全监控SPI总线的状态:
                1)发送缓冲器空闲标志(TXE)
                此标志为1时表明发送缓冲器为空,可以写下一个待发送的数据进入缓冲器中。当写入SPI_DR时,TXE标志被清除。
                2)接收缓冲器非空(RXNE)
                此标志为1时表明在接收缓冲器中包含有效的接收数据。读SPI数据寄存器可以清除此标志。
                2)忙(Busy)标志
                BSY标志由硬件设置与清除(写入此位无效果),此标志表明SPI通信层的状态。
                当它被设置为1时,表明SPI正忙于通信,但有一个例外:在主模式的双向接收模式下(MSTR=1、BDM=1并且BDOE=0),在接收期间BSY标志保持为低。
                在软件要关闭SPI模块并进入停机模式(或关闭设备时钟)之前,可以使用BSY标志检测传输是否结束,这样可以避免破坏最后一次传输,因此需要严格按照下述过程执行。

3.5 SPI中断

4 STM32的SPI引脚

4.1 SPI引脚位置

4.2 外设的GPIO配置

5 SPI相关配置库函数

5.1 1个初始化函数

void SPI_Init(SPI_TypeDef* SPIx, SPI_InitTypeDef* SPI_InitStruct);

         作用:初始化SPI的相关参数,比如方向(全双工)、主从模式、数据大小、CPOL、CPHA、片选软件模式、预分频系数等。

5.2 3个使能函数

void SPI_Cmd(SPI_TypeDef* SPIx, FunctionalState NewState);
void SPI_I2S_ITConfig(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT, FunctionalState NewState);
void SPI_I2S_DMACmd(SPI_TypeDef* SPIx, uint16_t SPI_I2S_DMAReq, FunctionalState NewState);

         作用:使能SPI接口;使能SPI中断;使能SPI的DMA功能。

5.3 2个数据传输函数

void SPI_I2S_SendData(SPI_TypeDef* SPIx, uint16_t Data);
uint16_t SPI_I2S_ReceiveData(SPI_TypeDef* SPIx);

        作用:分别用于SPI传输数据、接收数据。

5.4 4个状态位函数

FlagStatus SPI_I2S_GetFlagStatus(SPI_TypeDef* SPIx, uint16_t SPI_I2S_FLAG);
void SPI_I2S_ClearFlag(SPI_TypeDef* SPIx, uint16_t SPI_I2S_FLAG);
ITStatus SPI_I2S_GetITStatus(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT);
void SPI_I2S_ClearITPendingBit(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT);

        作用:前两者用于获得和清除SPI的各种状态位;后两者则针对SPI的中断标志位。

6 SPI一般步骤

        实验目标:利用SPI2进行初始化等操作。
        1)配置相关引脚的复用功能,使能SPIx时钟。调用函数:void GPIO_Init();
        2)初始化SPIx,设置SPIx工作模式。调用函数:void SPI_Init();
        3)使能SPIx。调用函数:void SPI_Cmd();
        4)SPI传输数据。调用函数:void SPI_I2S_SendData();uint16_t SPI_I2S_ReceiveData();
        5)查看SPI传输状态。调用函数:SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_RXNE)。

        下面按照这个一般步骤来进行一个简单的SPI程序:

void SPI2_Init(void)
{GPIO_InitTypeDef GPIO_InitStructure;SPI_InitTypeDef  SPI_InitStructure;RCC_APB2PeriphClockCmd(	RCC_APB2Periph_GPIOB, ENABLE );//PORTB时钟使能 RCC_APB1PeriphClockCmd(	RCC_APB1Periph_SPI2,  ENABLE );//SPI2时钟使能 	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  //PB13/14/15复用推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化GPIOBGPIO_SetBits(GPIOB,GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15);  //PB13/14/15上拉SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;  //设置SPI单向或者双向的数据模式:SPI设置为双线双向全双工SPI_InitStructure.SPI_Mode = SPI_Mode_Master;		//设置SPI工作模式:设置为主SPISPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;		//设置SPI的数据大小:SPI发送接收8位帧结构SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;		//串行同步时钟的空闲状态为高电平SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;	//串行同步时钟的第二个跳变沿(上升或下降)数据被采样SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;		//NSS信号由硬件(NSS管脚)还是软件(使用SSI位)管理:内部NSS信号有SSI位控制SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256;		//定义波特率预分频的值:波特率预分频值为256SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;	//指定数据传输从MSB位还是LSB位开始:数据传输从MSB位开始SPI_InitStructure.SPI_CRCPolynomial = 7;	//CRC值计算的多项式SPI_Init(SPI2, &SPI_InitStructure);  //根据SPI_InitStruct中指定的参数初始化外设SPIx寄存器SPI_Cmd(SPI2, ENABLE); //使能SPI外设SPI2_ReadWriteByte(0xff);//启动传输		 }   
//SPI 速度设置函数
//SpeedSet:
//SPI_BaudRatePrescaler_2   2分频   
//SPI_BaudRatePrescaler_8   8分频   
//SPI_BaudRatePrescaler_16  16分频  
//SPI_BaudRatePrescaler_256 256分频 void SPI2_SetSpeed(u8 SPI_BaudRatePrescaler)
{assert_param(IS_SPI_BAUDRATE_PRESCALER(SPI_BaudRatePrescaler));SPI2->CR1&=0XFFC7;SPI2->CR1|=SPI_BaudRatePrescaler;	//设置SPI2速度 SPI_Cmd(SPI2,ENABLE); } //SPIx 读写一个字节
//TxData:要写入的字节
//返回值:读取到的字节
u8 SPI2_ReadWriteByte(u8 TxData)
{		u8 retry=0;				 	while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_TXE) == RESET) //检查指定的SPI标志位设置与否:发送缓存空标志位{retry++;if(retry>200)return 0;}			  SPI_I2S_SendData(SPI2, TxData); //通过外设SPIx发送一个数据retry=0;while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_RXNE) == RESET) //检查指定的SPI标志位设置与否:接受缓存非空标志位{retry++;if(retry>200)return 0;}	  						    return SPI_I2S_ReceiveData(SPI2); //返回通过SPIx最近接收的数据					    
}

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. Go基础:下划线“_”、变量和常量、数组、slice

    目录前言:Go语言的设计初衷Go语言很特别Go语言的主要特征GO概览Go基础Go语言声明下划线(很特殊)变量声明常量声明数组切片Slice前言:Go语言的设计初衷针对其他语言的痛点进行设计并加入并发编程为大数据、微服务、并发而生的通用编程语言Go语言很特别没有“对象”,没有继承…...

    2024/4/27 16:29:30
  2. 2021年12月大学英语B统考题库网考试题(完整版)

    全国网络教育、远程教育、奥鹏教育大学英语b统考、计算机应用基础统考 2021年12月远程网络教育大学英语b、计算机应用基础整套原题库,覆盖90%以上,精心整理归类,全中文翻译,重点题必抽80分,视频教程讲解,复…...

    2024/4/27 14:47:28
  3. JAVA的入门学习

    目录 了解java语言 1.了解JDK,JVM,JRE 2.修饰符 3.固定写法 4.编译过程 5.注释 6.打印方法 数据类型和运算符 整形变量int 长整型 long 双精度浮点型变量double 单精度浮点型变量 float 字符类型变量 字节类型变量 短整型变量 了解java…...

    2024/4/27 16:53:50
  4. Gillespie算法简介

    最近在模拟化学体系随时间变化的过程中,要用到Gillespie算法。 因此,特别去学习了一下,在这里做一下记录。 常规MC和KMC 首先,Gillespie算法是一种非常常用的随机方法,也被称为动态蒙特卡洛方法(KMC,Kinetic Monte C…...

    2024/4/24 14:57:37
  5. CSS餐厅小游戏练习1~32关(附答案和链接)

    前言:CSS3众多基础常见的选择器都可以小游戏中学习,每天刷一遍,辅助记忆,做好熟练运用CSS3的第一步。 小游戏链接:CSS3餐厅练习 玩法:利用各种选择器和选择器之间的关系选中抖动的物体即可通关 文章目录 第…...

    2024/4/27 14:32:17
  6. HTML基础知识

    前端 前端主要使用HTML、CSS、JavaScript这三剑客来进行开发。前端主要负责页面内容的呈现,页面效果的制作,以及各种交互效果的实现。 前端能做的不止是网页 随着现在前端技术的发展,各种跨平台方案的涌现,大前端的潮流已经是不…...

    2024/4/27 18:16:25
  7. GooglePlay上架流程

    上传准备阶段 1.需要生成aab包 使用上传签名文件签名后可以上传到googleplay管理台 2.如果是第一次新建项目 签名文件会成为googlePlay的上传签名 3.googleplay分发安装包时会自动进行签名 默认新项目会自动生成一个签名可以在应用完整性选项下查看 4.有些依赖第三方的需要…...

    2024/4/27 13:29:01
  8. XDOJ 交换最值

    问题描述: 定义一个一维整形数组num[20],输入整数n(n≤20)和一个整形数列 (n个数), 编写change()函数,查找出数列中的最大值和最小值,并把它们交换位置, 主函数完成输入和输出,主函数输出处理后…...

    2024/4/27 13:37:11
  9. 还在傻乎乎得背MyISAM与InnoDB 的区别?一篇文章让你理解的明明白白

    ❤序言 相信不少的小伙伴在准备面试题的时候,必定会遇到这个面试题,MyISAM与InnoDB 的区别是什么?我们当时可谓是背一次忘一次,以至于很多的同学去找实习工作的时候,经常被这个问题卡脖子,那么今天我就系统…...

    2024/4/27 18:14:17
  10. ‘=‘引发的血案,张三的失败人生罢了

    因为最近可能有比较多的面试,在看面试题的时候看到了一道题,我自认为很简单,于是我上手了,结果就是这篇文章,题目如下: let n [10,20] let m n; let x m; m[0] 100; x [30,40]; m x; x[0] 200; m[1…...

    2024/4/26 17:23:55
  11. XDOJ 考勤系统

    问题描述: 实验室使用考勤系统对学生进行考勤。考勤系统会记录下每个学生一天内每次进出实验室的时间。 每位学生有一个唯一编号,每条考勤记录包括学生的编号,进入时间、离开时间。 给出所有学生一天的考勤记录,请统计每个学生在…...

    2024/4/27 14:46:05
  12. vue+video.js实现视频播放列表

    本文实例为大家分享了vue element ui实现锚点定位的具体代码,供大家参考,具体内容如下 1.引入Video.js npm install --save-dev video.js 然后在main.js中引用 import Video from video.js import video.js/dist/video-js.css Vue.prototype.$videos…...

    2024/4/27 17:53:47
  13. 2021-10-28IP_eclipse

    一、IP 知识产权 这些可以引用: including – BSD-2-Clause, BSD-3-Clause, BSD-4-Clause, MIT, ISC, NTP, Zlib, Apache-2.0, Artistic; 这些不可以引用: including GPL-2.0, GPL-3.0, LGPL-2.x, LGPL-3.0, AGPL 2.x and AGPL 3.x, CPL-1.0, EPL-1.0, …...

    2024/4/24 15:50:51
  14. Java-数组详解

    目录 一.数组的基本用法 1.什么是数组 2.创建数组 动态初始化 静态初始化 3.数组的基本使用 获取数组长度 访问数组元素 遍历数组元素 以字符串打印数组 二.数组作为方法的参数 1.基本用法 2.理解引用类型 传内置类型 传引用类型 3. 认识null 4.初识 JVM 内存…...

    2024/4/27 16:45:19
  15. 2021年12月奥鹏远程网络教育计算机应用基础统考题库试题

    全国网络教育、远程教育、奥鹏教育大学英语b统考、计算机应用基础统考 2021年12月远程网络教育大学英语b、计算机应用基础整套原题库,覆盖90%以上,精心整理归类,全中文翻译,重点题必抽70分,视频教程讲解,复…...

    2024/4/27 18:23:29
  16. 伪协议的几种类型

    allow_url_fopen 在php.ini中开启后,允许使用file,fopen,file_get_contents打开远程url文件 allow_url_include 开启后,允许 include,REQUEST函数可以包含远程url文件 file:// 用于访问本地文件系统,并…...

    2024/4/27 16:11:27
  17. Mybatis入门从新手村到打低级野怪

    课程目标 搭建MyBatis开发环境完成基于注解,单表增删改查操作完成基于注解,多表增删改查操作完成基于通用Mapper,单表增删改查操作完成分页操作完成基于XML,单表增删改查操作完成基于XML,完成动态SQL操作完成基于XML&…...

    2024/4/27 17:02:07
  18. 【ActiveMQ】控制台访问

    一、环境 ActiveMQ安装在虚拟机的CentOS系统中。 注意:linux与windows要互相ping通。 二、配置 activeMQ默认前台端口为8161,提供管理控制台服务。 如果使用window10访问activeMQ控制台,需要linux开放8161端口号。 步骤1:设…...

    2024/4/24 15:57:00
  19. 【不是问题的问题】为什么STM32的Flash地址要设置到0x08000000

    本文原贴地址:http://www.armbbs.cn/forum.php?modviewthread&tid109321 目录 一、背景知识: 二、引出问题: (1) 你怎么保证0x08000 0000首地址存的就是中断向量表,我们不可以随意设置吗&#xff1…...

    2024/4/24 15:57:01
  20. 2021SC@SDUSC Hbase(五)项目代码分析- flush

    2021SCSDUSC 在第四篇文章中我们探究了cacheFlusher怎么初始化,现在我们看一下cacheFlusher如何处理flush请求。 通过前一篇的分析我们知道,在MemStoreFlusher内部,存在了两个存储flush请求及其HRegion封装类的队列和集合:flushQu…...

    2024/4/24 15:57:05

最新文章

  1. 数组中的第K个最大元素

    215. 数组中的第K个最大元素 给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。 请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。 你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。 示例 1:…...

    2024/4/27 19:11:41
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言,在此感激不尽。 权重和梯度的更新公式如下: w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. GIS与数字孪生共舞,打造未来智慧场景

    作为一名数字孪生资深用户,近日我深刻理解到GIS(地理信息系统)在构建数字孪生体中的关键作用。 数字孪生技术旨在构建现实世界的虚拟镜像,而GIS则是这一镜像中不可或缺的空间维度框架和导航灯塔。数字孪生的核心是通过数字化方式…...

    2024/4/26 8:22:18
  4. Golang Gin框架

    1、这篇文章我们简要讨论一些Gin框架 主要是给大家一个基本概念 1、Gin主要是分为路由和中间件部分。 Gin底层使用的是net/http的逻辑,net/http主要是说,当来一个网络请求时,go func开启另一个协程去处理后续(类似epoll)。 然后主协程持续…...

    2024/4/23 6:22:17
  5. 【外汇早评】美通胀数据走低,美元调整

    原标题:【外汇早评】美通胀数据走低,美元调整昨日美国方面公布了新一期的核心PCE物价指数数据,同比增长1.6%,低于前值和预期值的1.7%,距离美联储的通胀目标2%继续走低,通胀压力较低,且此前美国一季度GDP初值中的消费部分下滑明显,因此市场对美联储后续更可能降息的政策…...

    2024/4/26 18:09:39
  6. 【原油贵金属周评】原油多头拥挤,价格调整

    原标题:【原油贵金属周评】原油多头拥挤,价格调整本周国际劳动节,我们喜迎四天假期,但是整个金融市场确实流动性充沛,大事频发,各个商品波动剧烈。美国方面,在本周四凌晨公布5月份的利率决议和新闻发布会,维持联邦基金利率在2.25%-2.50%不变,符合市场预期。同时美联储…...

    2024/4/26 20:12:18
  7. 【外汇周评】靓丽非农不及疲软通胀影响

    原标题:【外汇周评】靓丽非农不及疲软通胀影响在刚结束的周五,美国方面公布了新一期的非农就业数据,大幅好于前值和预期,新增就业重新回到20万以上。具体数据: 美国4月非农就业人口变动 26.3万人,预期 19万人,前值 19.6万人。 美国4月失业率 3.6%,预期 3.8%,前值 3…...

    2024/4/26 23:05:52
  8. 【原油贵金属早评】库存继续增加,油价收跌

    原标题:【原油贵金属早评】库存继续增加,油价收跌周三清晨公布美国当周API原油库存数据,上周原油库存增加281万桶至4.692亿桶,增幅超过预期的74.4万桶。且有消息人士称,沙特阿美据悉将于6月向亚洲炼油厂额外出售更多原油,印度炼油商预计将每日获得至多20万桶的额外原油供…...

    2024/4/27 4:00:35
  9. 【外汇早评】日本央行会议纪要不改日元强势

    原标题:【外汇早评】日本央行会议纪要不改日元强势近两日日元大幅走强与近期市场风险情绪上升,避险资金回流日元有关,也与前一段时间的美日贸易谈判给日本缓冲期,日本方面对汇率问题也避免继续贬值有关。虽然今日早间日本央行公布的利率会议纪要仍然是支持宽松政策,但这符…...

    2024/4/27 17:58:04
  10. 【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响

    原标题:【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响近日伊朗局势升温,导致市场担忧影响原油供给,油价试图反弹。此时OPEC表态稳定市场。据消息人士透露,沙特6月石油出口料将低于700万桶/日,沙特已经收到石油消费国提出的6月份扩大出口的“适度要求”,沙特将满…...

    2024/4/27 14:22:49
  11. 【外汇早评】美欲与伊朗重谈协议

    原标题:【外汇早评】美欲与伊朗重谈协议美国对伊朗的制裁遭到伊朗的抗议,昨日伊朗方面提出将部分退出伊核协议。而此行为又遭到欧洲方面对伊朗的谴责和警告,伊朗外长昨日回应称,欧洲国家履行它们的义务,伊核协议就能保证存续。据传闻伊朗的导弹已经对准了以色列和美国的航…...

    2024/4/26 21:56:58
  12. 【原油贵金属早评】波动率飙升,市场情绪动荡

    原标题:【原油贵金属早评】波动率飙升,市场情绪动荡因中美贸易谈判不安情绪影响,金融市场各资产品种出现明显的波动。随着美国与中方开启第十一轮谈判之际,美国按照既定计划向中国2000亿商品征收25%的关税,市场情绪有所平复,已经开始接受这一事实。虽然波动率-恐慌指数VI…...

    2024/4/27 9:01:45
  13. 【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试

    原标题:【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试美国和伊朗的局势继续升温,市场风险情绪上升,避险黄金有向上突破阻力的迹象。原油方面稍显平稳,近期美国和OPEC加大供给及市场需求回落的影响,伊朗局势并未推升油价走强。近期中美贸易谈判摩擦再度升级,美国对中…...

    2024/4/27 17:59:30
  14. 【原油贵金属早评】市场情绪继续恶化,黄金上破

    原标题:【原油贵金属早评】市场情绪继续恶化,黄金上破周初中国针对于美国加征关税的进行的反制措施引发市场情绪的大幅波动,人民币汇率出现大幅的贬值动能,金融市场受到非常明显的冲击。尤其是波动率起来之后,对于股市的表现尤其不安。隔夜美国股市出现明显的下行走势,这…...

    2024/4/25 18:39:16
  15. 【外汇早评】美伊僵持,风险情绪继续升温

    原标题:【外汇早评】美伊僵持,风险情绪继续升温昨日沙特两艘油轮再次发生爆炸事件,导致波斯湾局势进一步恶化,市场担忧美伊可能会出现摩擦生火,避险品种获得支撑,黄金和日元大幅走强。美指受中美贸易问题影响而在低位震荡。继5月12日,四艘商船在阿联酋领海附近的阿曼湾、…...

    2024/4/25 18:39:16
  16. 【原油贵金属早评】贸易冲突导致需求低迷,油价弱势

    原标题:【原油贵金属早评】贸易冲突导致需求低迷,油价弱势近日虽然伊朗局势升温,中东地区几起油船被袭击事件影响,但油价并未走高,而是出于调整结构中。由于市场预期局势失控的可能性较低,而中美贸易问题导致的全球经济衰退风险更大,需求会持续低迷,因此油价调整压力较…...

    2024/4/26 19:03:37
  17. 氧生福地 玩美北湖(上)——为时光守候两千年

    原标题:氧生福地 玩美北湖(上)——为时光守候两千年一次说走就走的旅行,只有一张高铁票的距离~ 所以,湖南郴州,我来了~ 从广州南站出发,一个半小时就到达郴州西站了。在动车上,同时改票的南风兄和我居然被分到了一个车厢,所以一路非常愉快地聊了过来。 挺好,最起…...

    2024/4/26 22:01:59
  18. 氧生福地 玩美北湖(中)——永春梯田里的美与鲜

    原标题:氧生福地 玩美北湖(中)——永春梯田里的美与鲜一觉醒来,因为大家太爱“美”照,在柳毅山庄去寻找龙女而错过了早餐时间。近十点,向导坏坏还是带着饥肠辘辘的我们去吃郴州最富有盛名的“鱼头粉”。说这是“十二分推荐”,到郴州必吃的美食之一。 哇塞!那个味美香甜…...

    2024/4/25 18:39:14
  19. 氧生福地 玩美北湖(下)——奔跑吧骚年!

    原标题:氧生福地 玩美北湖(下)——奔跑吧骚年!让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 啊……啊……啊 两…...

    2024/4/26 23:04:58
  20. 扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!

    原标题:扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!扒开伪装医用面膜,翻六倍价格宰客!当行业里的某一品项火爆了,就会有很多商家蹭热度,装逼忽悠,最近火爆朋友圈的医用面膜,被沾上了污点,到底怎么回事呢? “比普通面膜安全、效果好!痘痘、痘印、敏感肌都能用…...

    2024/4/25 2:10:52
  21. 「发现」铁皮石斛仙草之神奇功效用于医用面膜

    原标题:「发现」铁皮石斛仙草之神奇功效用于医用面膜丽彦妆铁皮石斛医用面膜|石斛多糖无菌修护补水贴19大优势: 1、铁皮石斛:自唐宋以来,一直被列为皇室贡品,铁皮石斛生于海拔1600米的悬崖峭壁之上,繁殖力差,产量极低,所以古代仅供皇室、贵族享用 2、铁皮石斛自古民间…...

    2024/4/25 18:39:00
  22. 丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者

    原标题:丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者【公司简介】 广州华彬企业隶属香港华彬集团有限公司,专注美业21年,其旗下品牌: 「圣茵美」私密荷尔蒙抗衰,产后修复 「圣仪轩」私密荷尔蒙抗衰,产后修复 「花茵莳」私密荷尔蒙抗衰,产后修复 「丽彦妆」专注医学护…...

    2024/4/26 19:46:12
  23. 广州械字号面膜生产厂家OEM/ODM4项须知!

    原标题:广州械字号面膜生产厂家OEM/ODM4项须知!广州械字号面膜生产厂家OEM/ODM流程及注意事项解读: 械字号医用面膜,其实在我国并没有严格的定义,通常我们说的医美面膜指的应该是一种「医用敷料」,也就是说,医用面膜其实算作「医疗器械」的一种,又称「医用冷敷贴」。 …...

    2024/4/27 11:43:08
  24. 械字号医用眼膜缓解用眼过度到底有无作用?

    原标题:械字号医用眼膜缓解用眼过度到底有无作用?医用眼膜/械字号眼膜/医用冷敷眼贴 凝胶层为亲水高分子材料,含70%以上的水分。体表皮肤温度传导到本产品的凝胶层,热量被凝胶内水分子吸收,通过水分的蒸发带走大量的热量,可迅速地降低体表皮肤局部温度,减轻局部皮肤的灼…...

    2024/4/27 8:32:30
  25. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下:1、长按电脑电源键直至关机,然后再按一次电源健重启电脑,按F8健进入安全模式2、安全模式下进入Windows系统桌面后,按住“winR”打开运行窗口,输入“services.msc”打开服务设置3、在服务界面,选中…...

    2022/11/19 21:17:18
  26. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像(每一幅图像的大小是564*564) f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  27. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面,在等待界面中我们需要等待操作结束才能关机,虽然这比较麻烦,但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  28. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows,请勿关闭计算机”的提示,要过很久才能进入系统,有的用户甚至几个小时也无法进入,下面就教大家这个问题的解决方法。第一种方法:我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  29. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题,电脑时发现开机屏幕显现“正在配置Windows Update,请勿关机”(如下图所示),而且还需求等大约5分钟才干进入系统。这是怎样回事呢?一切都是正常操作的,为什么开时机呈现“正…...

    2022/11/19 21:17:13
  30. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示,没过几秒后电脑自动重启,每次开机都这样无法进入系统,此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一:开机按下F8,在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  31. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况,就是电脑提示正在准备windows请勿关闭计算机,碰到这样的问题该怎么解决呢,现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法:1、2、依次…...

    2022/11/19 21:17:11
  32. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后,每次关机的时候桌面上都会显示一个“配置Windows Update的界面,提示请勿关闭计算机”,每次停留好几分钟才能正常关机,导致什么情况引起的呢?出现配置Windows Update…...

    2022/11/19 21:17:10
  33. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着,别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚,只能是考虑备份数据后重装系统了。解决来方案一:管理员运行cmd:net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  34. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题:电脑提示“配置Windows Update请勿关闭计算机”怎么办?win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢?一般的方…...

    2022/11/19 21:17:08
  35. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容,让我们赶快一起来看一下吧!关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  36. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  37. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了,具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面,长时间没反应,无法进入系统。这个问题原来帮其他同学也解决过,网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  38. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法,并在最后教给你1种保护系统安全的好方法,一起来看看!电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中,添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  39. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候,开启电脑发现电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机。。.这要怎么办呢?下面小编就带着大家一起看看吧!如果能够正常进入系统,建议您暂时移…...

    2022/11/19 21:17:02
  40. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容,让我们赶快一起来看一下吧!配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  41. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题,就是我们的win7系统在关机的时候,总是喜欢显示“准备配置windows,请勿关机”这样的一个页面,没有什么大碍,但是如果一直等着的话就要两个小时甚至更久都关不了机,非常…...

    2022/11/19 21:17:00
  42. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时,一般是您正对windows进行升级,但是这个要是长时间没有反应,我们不能再傻等下去了。可能是电脑出了别的问题了,来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  43. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况,当我们打开电脑之后,发现一直停留在一个界面:“配置Windows Update失败,还原更改请勿关闭计算机”,等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  44. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57