1.1. 一些相关的名词的解释

1.1.1. Non-Volatile Memory非易失性存储器

NVM,即NV (RAM)Memory,断电数据也不会丢失的存储器,比如Nand Flash,Nor Flash,硬盘等等。于此相对的是,断电了数据会丢失的存储器,比如DRAM等。

1.1.2. OTP一次性可编程存储器

OTP,一种非易失性存储器,但是只允许一次性写入数据,写入(或称烧写)数据之后,就不能修改了。

OTP的好处或者说用途是,常用于写入一些和芯片相关的一些特定数据,用于加密的一些数据等。

与一次性写入数据的OTP相对应的是,像Nand Flash,硬盘等存储器,可以被多次写入数据。只要硬盘这类的存储器没坏,你高兴写入几次就写入几次,而OTP就只能写入一次,就没法再修改里面的数据了。

1.1.3. NDA 保密协议

NDA,中文可以翻译为,非公开协议,保密协议。

说白了,还是一种协议,常用于这种情况:

某家厂商的某种技术或资料,是保密的,不希望公开的。

但是呢,如果你要用他家的芯片啊之类的东西,在开发过程中,又必须得到对应的技术和资料,才能开发产品,所以,他就会要求和你签订这样的NDA协议,意思就是,你可以用我的技术和资料,但是你不能公开给(我未授权的)其他人。如果非法泄露我的机密技术,那我肯定要走法律程序控告你,之类的。

1.1.4. Datasheet数据手册和Specification规范

英文datasheet,中文一般翻译为数据手册。

指的是对应某个硬件,多为芯片,的功能说明,定义了如何操作该硬件,达到你要的功能,这其中主要包括芯片中的相关寄存器的定义,如何发送命令,发送什么命令,以此来操作此硬件等等。

而英文Specification,引文常缩写为Spec.,中文一般翻译为规范。

多指某个组织(盈利的或非盈利的),定义了一些规矩,如果你要用某种东西,在计算机领域,常常指的是某硬件和相关的软件协议,就要按照此规矩来操作,人家这个组织呢,保证你只要实现了此规范,设备就能按照你所期望的运行,能够实现对应的功能,而你的芯片实现了此规范,就叫做,是和此规范兼容(compatible)的。

1.1.5. Nand Flash相关的一些名词解释

1.1.5.1. (Bad) Block Management(坏)块管理

Nand Flash由于其物理特性,只有有限的擦写次数,超过那个次数,基本上就是坏了。在使用过程中,有些Nand Flash的block会出现被用坏了,当发现了,要及时将此block标注为坏块,不再使用。

于此相关的管理工作,属于Nand Flash的坏块管理的一部分工作。

1.1.5.2. Wear-Leveling负载平衡

Nand Flash的block的管理,还包括负载平衡。

正是由于Nand Flash的block,都是有一定寿命限制的,所以如果你每次都往同一个block擦除然后写入数据,那么那个block就很容易被用坏了,所以我们要去管理一下,将这么多次的对同一个block的操作,平均分布到其他一些block上面,使得在block的使用上,相对较平均,这样相对来说,可以更能充分利用Nand Flash。

关于wear-leveling这个词,再简单解释一下,wear就是穿(衣服)等,用(东西)导致磨损,而leveling就是使得均衡,所以放在一起就是,使得对于Nand Flash的那么多的block的使用磨损,相对均衡一些,以此延长Nand Flash的使用寿命或者说更加充分利用Nand Flash。

1.1.5.3. ECC错误校验码

Nand Flash物理特性上使得其数据读写过程中会发生一定几率的错误,所以要有个对应的错误检测和纠正的机制,于是才有此ECC,用于数据错误的检测与纠正。Nand Flash的ECC,常见的算法有海明码和BCH,这类算法的实现,可以是软件也可以是硬件。不同系统,根据自己的需求,采用对应的软件或者是硬件。

相对来说,硬件实现这类ECC算法,肯定要比软件速度要快,但是多加了对应的硬件部分,所以成本相对要高些。如果系统对于性能要求不是很高,那么可以采用软件实现这类ECC算法,但是由于增加了数据读取和写入前后要做的数据错误检测和纠错,所以性能相对要降低一些,即Nand Flash的读取和写入速度相对会有所影响。

其中,Linux中的软件实现ECC算法,即NAND_ECC_SOFT模式,就是用的对应的海明码。

而对于目前常见的MLC的Nand Flash来说,由于容量比较大,动辄2GB,4GB,8GB等,常用BCH算法。BCH算法,相对来说,算法比较复杂。

笔者由于水平有限,目前仍未完全搞懂BCH算法的原理。

BCH算法,通常是由对应的Nand Flash的Controller中,包含对应的硬件BCH ECC模块,实现了BCH算法,而作为软件方面,需要在读取数据后,写入数据之前,分别操作对应BCH相关的寄存器,设置成BCH模式,然后读取对应的BCH状态寄存器,得知是否有错误,和生成的BCH校验码,用于写入。

其具体代码是如何操作这些寄存器的,由于是和具体的硬件,具体的nand flash的controller不同而不同,无法用同一的代码。如果你是nand flash驱动开发者,自然会得到对应的起nand flash的controller部分的datasheet,按照手册说明,去操作即可。

不过,额外说明一下的是,关于BCH算法,往往是要从专门的做软件算法的厂家购买的,但是Micron之前在网上放出一个免费版本的BCH算法。

想要此免费的BCH算法,可以在[18]找到下载地址

1.2. 硬件特性

1.2.1. 什么是Flash

Flash全名叫做Flash Memory,从名字就能看出,是种数据存储设备,存储设备有很多类,Flash属于非易失性存储设备(Non-volatile Memory Device),与此相对应的是易失性存储设备(Volatile Memory Device)。关于什么是非易失性/易失性,从名字中就可以看出,非易失性就是不容易丢失,数据存储在这类设备中,即使断电了,也不会丢失,这类设备,除了Flash,还有其他比较常见的入硬盘,ROM等,与此相对的,易失性就是断电了,数据就丢失了,比如大家常用的内存,不论是以前的SDRAM,DDR SDRAM,还是现在的DDR2,DDR3等,都是断电后,数据就没了。

1.2.1.1. Flash的硬件实现机制

Flash的内部存储是MOSFET,里面有个悬浮门(Floating Gate),是真正存储数据的单元。

在Flash之前,紫外线可擦除(uv-erasable)的EPROM,就已经采用了Floating Gate存储数据这一技术了。

图 1.1. 典型的Flash内存单元的物理结构

典型的Flash内存单元的物理结构

 

数据在Flash内存单元中是以电荷(electrical charge) 形式存储的。存储电荷的多少,取决于图中的外部门(external gate)所被施加的电压,其控制了是向存储单元中冲入电荷还是使其释放电荷。而数据的表示,以所存储的电荷的电压是否超过一个特定的阈值Vth来表示,因此,Flash的存储单元的默认值,不是0(其他常见的存储设备,比如硬盘灯,默认值为0),而是1,而如果将电荷释放掉,电压降低到一定程度,表述数字0。

1.2.2. 什么是Nand Flash

Flash主要分两种,Nand Flash和nor flash。

关于Nand Flash和Nor Flash的区别,参见[6]

不过,关于两者区别,除了那个解释之外,这里再多解释解释:

  1. Nor的成本相对高,容量相对小,比如常见的只有128KB,256KB,1MB,2MB等等,优点是读写数据时候,不容易出错。所以在应用领域方面,Nor Flash比较适合应用于存储少量的代码。

  2. Nand flash成本相对低,说白了就是便宜,缺点是使用中数据读写容易出错,所以一般都需要有对应的软件或者硬件的数据校验算法,统称为ECC。但优点是,相对来说容量比较大,现在常见的Nand Flash都是1GB,2GB,更大的8GB的都有了,相对来说,价格便宜,因此适合用来存储大量的数据。其在嵌入式系统中的作用,相当于PC上的硬盘,用于存储大量数据。

所以,一个常见的应用组合就是,用小容量的Nor Flash存储启动代码,比如uboot,用大容量的Nand Flash做整个系统和用户数据的存储。

而一般的嵌入式平台的启动流程也就是,系统从装有启动代码的Nor Flash启动后,初始化对应的硬件,包括SDRAM等,然后将Nand Flash上的Linux 内核读取到内存中,做好该做的事情后,就跳转到SDRAM中去执行内核了,然后内核解压(如果是压缩内核的话,否则就直接运行了)后,开始运行,在Linux内核启动最后,去Nand Flash上,挂载根文件,比如jffs2,yaffs2等,挂载完成,运行初始化脚本,启动consle交互,才允许你通过console和内核交互。至此完成整个系统启动过程。

而Nor Flash就分别存放的是Uboot,Nand Flash存放的是Linux的内核镜像和根文件系统,以及余下的空间分成一个数据区。

1.2.2.1. Nand Flash的详细分类

Nand Flash,按照硬件类型,可以分为

  1. Bare NAND chips

    裸片。单独的Nand Flash芯片。

  2. SmartMediaCards

    裸片+一层薄塑料。常用于数码相机和MP3播放器中。之所以称smart,是由于其软件smart,而不是硬件本身有啥smart之处。

  3. DiskOnChip

    裸片+glue logic。glue logic=硬件ECC产生器+用于静态的nand 芯片控制的寄存器+直接访问一小片地址窗口,那块地址中包含了引导代码的stub桩,其可以从Nand Flash中拷贝真正的引导代码。

1.2.3. SLC和MLC的实现机制

Nand Flash按照内部存储数据单元的电压的不同层次,也就是单个内存单元中,是存储1位数据,还是多位数据,可以分为SLC和MLC。

1.2.3.1. SLC(Single Level Cell)

单个存储单元,只存储一位数据,表示1或0。

就是上面介绍的,对于数据的表示,单个存储单元中内部所存储电荷的电压,和某个特定的阈值电压Vth,相比,如果大于此Vth值,就是表示1,反之,小于Vth,就表示0。

对于Nand Flash的数据的写入1,就是控制External Gate去充电,使得存储的电荷够多,超过阈值Vth,就表示1了。而对于写入0,就是将其放电,电荷减少到小于Vth,就表示0了。

关于为何Nand Flash不能从0变成1,我的理解是,物理上来说,是可以实现每一位的,从0变成1的,但是实际上,对于实际的物理实现,出于效率的考虑,如果对于,每一个存储单元都能单独控制,即,0变成1就是,对每一个存储单元单独去充电,所需要的硬件实现就很复杂和昂贵,同时,所进行对块擦除的操作,也就无法实现之前所说的的,Flash的速度,即一闪而过的速度了,也就失去了Flash的众多特性了。

1.2.3.2. MLC(Multi Level Cell)

与SLC相对应的,就是单个存储单元,可以存储多个位,比如2位,4位等。其实现机制,说起来比较简单,就是通过控制内部电荷的多少,分成多个阈值,通过控制里面的电荷多少,而达到我们所需要的存储成不同的数据。比如,假设输入电压是Vin=4V(实际没有这样的电压,此处只是为了举例方便),那么,可以设计出2的2次方=4个阈值, 1/4 的Vin=1V,2/4的Vin=2V,3/4的Vin=3V,Vin=4V,分别表示2位数据00,01,10,11,对于写入数据,就是充电,通过控制内部的电荷的多少,对应表示不同的数据。

对于读取,则是通过对应的内部的电流(与Vth成反比),然后通过一系列解码电路完成读取,解析出所存储的数据。这些具体的物理实现,都是有足够精确的设备和技术,才能实现精确的数据写入和读出的。

单个存储单元可以存储2位数据的,称作2的2次方=4 Level Cell,而不是2 Level Cell,关于这点,之前看Nand flash的数据手册(datasheet)的时候,差点搞晕了。

同理,对于新出的单个存储单元可以存储4位数据的,称作 2的4次方=16 Level Cell。

1.2.3.3. 关于如何识别SLC还是MLC

Nand Flash设计中,有个命令叫做Read ID,读取ID,意思是读取芯片的ID,就像大家的身份证一样,这里读取的ID中,是读取好几个字节,一般最少是4个,新的芯片,支持5个甚至更多,从这些字节中,可以解析出很多相关的信息,比如此Nand Flash内部是几个芯片(chip)所组成的,每个chip包含了几片(Plane),每一片中的页大小,块大小,等等。在这些信息中,其中有一个,就是识别此flash是SLC还是MLC。下面这个就是最常见的Nand Flash的datasheet中所规定的,第3个字节,3rd byte,所表示的信息,其中就有SLC/MLC的识别信息:

表 1.1. Nand Flash第3个ID的含义

 DescriptionI/O7I/O6I/O5 I/O4I/O3 I/O2I/O1 I/O0
Internal Chip Number

1
2
4
8

    

0      0
0      1
1      0
1      1

Cell Type

2 Level Cell
4 Level Cell
4 Level Cell
8 Level Cell

   

0      0
0      1
1      0
1      1

 
Number of Simultaneously Programmed Pages

1
2
4
8

  

0      0
0      1
1      0
1      1

  
Interleave Program Between multiple chips

Not Support
Support

 

0
1

   
Cache Program

Not Support
Support

0
1

   

 

 

1.2.4. Nand Flash数据存储单元的整体架构

简单说就是,常见的Nand Flash,内部只有一个chip,每个chip只有一个plane。

而有些复杂的,容量更大的Nand Flash,内部有多个chip,每个chip有多个plane。这类的Nand Flash,往往也有更加高级的功能,比如下面要介绍的Multi Plane Program和Interleave Page Program等。

概念上,由大到小来说,就是:

Nand Flash ⇒ Chip ⇒ Plane ⇒ Block ⇒ Page ⇒ oob

用图表来表示,更加易懂:

图 1.2. Nand Flash的结构图

Nand Flash的结构图

 

比如,型号为K9K8G08U0A这块Nand Flash(有时候也被称为此块chip芯片),其内部有两个K9F4G08U0A的chip,chip#1和chip#2,每个K9F4G08U0A的chip包含了2个Plane,每个Plane是2Gbbit,所以K9F4G08U0A的大小是2Gb×2 = 4Gb = 512MB,因此,K9K8G08U0A内部有2个K9F4G08U0A,或者说4个Plane,总大小是×256MB=1GB。

用公式表示如下:

公式 1.1. K9K8G08U0A的物理结构所组成的总容量

K9K8G08U0A(这块Nand Flash)

= 2 × K9F4G08U0A(K9F4G08U0A是chip,1 K9F4G08U0A = 2 Plane)

= 2 × 2个Plane

= 4 Plane(1 Plane = 2048 Block)

= 4 × 2048个Block(1 Block = 64 Page)

= 4 × 2048 × 64Page(1 Page = 2KB)

= 4 × 2048 × 64Page × 2KB

= 4 × 2048 × 128KB(1 Block = 128KB)

= 4 × 256MB(1 Plane = 2Gb = 256MB)

= 2 × 512MB(1 K9F4G08U0A = 4Gb = 512MB)

= 1GB(1 K9K8G08U0A = 1GB)

 

而型号是K9WAG08U1A的Nand Flash,内部包含了2个K9K8G08U0A,所以,总容量是K9K8G08U0A的两倍=1GB×2=2GB,类似地K9NBG08U5A,内部包含了4个K9K8G08U0A,总大小就是4×1GB=4GB。

[注意]通常只关心Nand的总大小

上面所说的block,page等Nand Flash的物理上的组织结构,是在chip的基础上来说的,但是软件编程的时候,除非你要用到Multi Plane Program和Interleave Page Program等,一般很少区分内部有几个chip以及每个chip有几个plane,而最关心的只是Nand Flash的总体容量size有多大,比如是1GB还是2GB等等。

下面详细介绍一下,Nand Flash的一个chip内部的硬件逻辑组织结构。

1.2.5. Nand Flash的物理存储单元的阵列组织结构

Nand Flash的内部组织结构,此处还是用图来解释,比较容易理解:

图 1.3. Nand Flash物理存储单元的阵列组织结构

Nand Flash物理存储单元的阵列组织结构

 

上图是K9K8G08U0A的datasheet中的描述。

简单解释就是:

1.2.5.1. Block块

一个Nand Flash(的chip,芯片)由很多个块(Block)组成,块的大小一般是128KB,256KB,512KB,此处是128KB。其他的小于128KB的,比如64KB,一般都是下面将要介绍到的small block的Nand Flash。

块Block,是Nand Flash的擦除操作的基本/最小单位。

1.2.5.2. Page页

每个块里面又包含了很多页(page)。每个页的大小,对于现在常见的Nand Flash多数是2KB,最新的Nand Flash的是4KB、8KB等,这类的页大小大于2KB的Nand Flash,被称作big block的Nand Flash,对应的发读写命令地址,一共5个周期(cycle),而老的Nand Flash,页大小是256B,512B,这类的Nand Flash被称作small block,地址周期只有4个。

页Page,是读写操作的基本单位。

不过,也有例外的是,有些Nand Flash支持subpage(1/2页或1/4页)子页的读写操作,不过一般很少见。

1.2.5.3. oob / Redundant Area / Spare Area

每一个页,对应还有一块区域,叫做空闲区域(spare area)/冗余区域(redundant area),而Linux系统中,一般叫做OOB(Out Of Band),这个区域,是最初基于Nand Flash的硬件特性:数据在读写时候相对容易错误,所以为了保证数据的正确性,必须要有对应的检测和纠错机制,此机制被叫做EDC(Error Detection Code)/ECC(Error Code Correction, 或者 Error Checking and Correcting),所以设计了多余的区域,用于放置数据的校验值。

Oob的读写操作,一般是随着页的操作一起完成的,即读写页的时候,对应地就读写了oob。

关于oob具体用途,总结起来有:

  1. 标记是否是坏快
  2. 存储ECC数据
  3. 存储一些和文件系统相关的数据。如jffs2就会用到这些空间存储一些特定信息,而yaffs2文件系统,会在oob中,存放很多和自己文件系统相关的信息。

1.2.6. Flash名称的由来

Flash的擦除操作是以block块为单位的,与此相对应的是其他很多存储设备,是以bit位为最小读取/写入的单位,Flash是一次性地擦除整个块:在发送一个擦除命令后,一次性地将一个block,常见的块的大小是128KB/256KB。。,全部擦除为1,也就是里面的内容全部都是0xFF了,由于是一下子就擦除了,相对来说,擦除用的时间很短,可以用一闪而过来形容,所以,叫做Flash Memory。所以一般将Flash翻译为 (快速)闪存。

1.2.7. Flash相对于普通设备的特殊性

根据上面提到过的,Flash最小操作单位,相对于普通存储设备,就显得有些特殊。

因为一般存储设备,比如硬盘或内存,读取和写入都是以位(bit)为单位,读取一个bit的值,将某个值写入对应的地址的位,都是可以按位操作的。

但是Flash由于物理特性,使得内部存储的数据,只能从1变成0,这点,这点可以从前面的内部实现机制了解到,对于最初始值,都是1,所以是0xFFFFFFFF,而数据的写入,即是将对应的变成0,而将数据的擦出掉,就是统一地,以block为单位,全部一起充电,所有位,都变成初始的1,而不是像普通存储设备那样,每一个位去擦除为0。而数据的写入,就是电荷放电的过程,代表的数据也从1变为了0。

所以,总结一下Flash的特殊性如下:

表 1.2. Flash和普通设备相比所具有的特殊性

 普通设备(硬盘/内存等)Flash
读取/写入的叫法读取/写入读取/编程(Program)①
读取/写入的最小单位Bit/位Page/页②
擦除(Erase)操作的最小单位Bit/位Block/块②
擦除操作的含义将数据删除/全部写入0将整个块都擦除成全是1,也就是里面的数据都是0xFF③
对于写操作直接写即可在写数据之前,要先擦除,然后再写

 

[提示]提示
  1. 之所以将写操作叫做编程,是因为flash是从之前的EPROM、EEPROM等继承发展而来,而之前的EEPROM,往里面写入数据,就叫做编程Program,之所以这么称呼,是因为其对数据的写入,是需要用电去擦除/写入的,所以叫做编程。
  2. 对于目前常见的页大小是2K/4K的Nand Flash,其块的大小有128KB/256KB/512KB等。而对于Nor Flash,常见的块大小有64K/32K等。
  3. 在写数据之前,要先擦除,内部就都变成0xFF了,然后才能写入数据,也就是将对应的位由1变成0。

1.2.8. Nand Flash的位反转特性

Nand Flash的位反转,也叫做位翻转,对应的英文表达有:Bit Flip=Bit Flipping=Bit-Flip=Bit twiddling。

Nand Flash由于本身硬件的内在特性,会导致(极其)偶尔的出现位反转的现象。

所谓的位反转,bit flip,指的是原先Nand Flash中的某个位,变化了,即要么从1变成0了,要么从0变成1了。

1.2.8.1. Nand Flash位反转的原因

Nand Flash的位反转现象,主要是由以下一些原因/效应所导致:

  1. 漂移效应(Drifting Effects)

    漂移效应指的是,Nand Flash中cell的电压值,慢慢地变了,变的和原始值不一样了。

  2. 编程干扰所产生的错误(Program-Disturb Errors)

    此现象有时候也叫做,过度编程效应(over-program effect)。

    对于某个页面的编程操作,即写操作,引起非相关的其他的页面的某个位跳变了。

  3. 读操作干扰产生的错误(Read-Disturb Errors)

    此效应是,对一个页进行数据读取操作,却使得对应的某个位的数据,产生了永久性的变化,即Nand Flash上的该位的值变了。

1.2.8.2. Nand Flash位反转的影响

位反转,说白了,就是读取数据的时候,数据出错了。

因此,如果你读取的数据正好是属于某个重要的文件中的数据,比如系统的配置文件等,那么此时错了一位,都会导致系统出现异常,问题相对会很严重。

而如果此数据属于音视频流中的数据,那么此时即使错了一位,对整个音视频的播放产生的影响也很小,所以问题也不大。

1.2.8.3. Nand Flash位反转的类型和解决办法

对应的位反转的类型,有两种:

  1. 一种是nand flash物理上的数据存储的单元上的数据,是正确的,只是在读取此数据出来的数据中的某位,发生变化,出现了位反转,即读取出来的数据中,某位错了,本来是0变成1,或者本来是1变成0了。此处可以成为软件上位反转。此数据位的错误,当然可以通过一定的校验算法检测并纠正。
  2. 另外一种,就是nand flash中的物理存储单元中,对应的某个位,物理上发生了变化,原来是1的,变成了0,或原来是0的,变成了1,发生了物理上的位的数据变化。此处可以成为硬件上的位反转。此错误,由于是物理上发生的,虽然读取出来的数据的错误,可以通过软件或硬件去检测并纠正过来,但是物理上真正发生的位的变化,则没办法改变了。不过个人理解,好像也是可以通过擦除Erase整个数据块Block的方式去擦除此错误,不过在之后的Nand Flash的使用过程中,估计此位还是很可能继续发生同样的硬件的位反转的错误。

以上两种类型的位反转,其实对于从Nand Flash读取出来的数据来说,解决其中的错误的位的方法,都是一样的,即通过一定的校验算法,常称为ECC,去检测出来,或检测并纠正错误。

如果只是单独检测错误,那么如果发现数据有误,那么再重新读取一次即可。

实际中更多的做法是,ECC校验发现有错误,会有对应的算法去找出哪位错误并且纠正过来。

其中对错误的检测和纠正,具体的实现方式,有软件算法,也有硬件实现,即硬件Nand Flash的控制器controller本身包含对应的硬件模块以实现数据的校验和纠错的。

1.2.9. Nand Flash引脚(Pin)的说明

图 1.4. Nand Flash引脚功能说明

Nand Flash引脚功能说明

 

上图是常见的Nand Flash所拥有的引脚(Pin)所对应的功能,简单翻译如下:

表 1.3. Nand Flash引脚功能的中文说明

引脚名称引脚功能
I/O0 ~ I/O7用于输入地址/数据/命令,输出数据
CLECommand Latch Enable,命令锁存使能,在输入命令之前,要先在模式寄存器中,设置CLE使能
ALEAddress Latch Enable,地址锁存使能,在输入地址之前,要先在模式寄存器中,设置ALE使能
CE#Chip Enable,芯片使能,在操作Nand Flash之前,要先选中此芯片,才能操作
RE#Read Enable,读使能,在读取数据之前,要先使CE#有效。
WE#Write Enable,写使能, 在写取数据之前,要先使WE#有效
WP#Write Protect,写保护
R/B#Ready/Busy Output,就绪/忙,主要用于在发送完编程/擦除命令后,检测这些操作是否完成,忙,表示编程/擦除操作仍在进行中,就绪表示操作完成
VccPower,电源
VssGround,接地
N.CNon-Connection,未定义,未连接

 

[提示]数据手册中的#表示低电平

在数据手册中,你常会看到,对于一个引脚定义,有些字母上面带一横杠的,那是说明此引脚/信号是低电平有效,比如你上面看到的RE头上有个横线,就是说明,此RE是低电平有效,此外,为了书写方便,在字母后面加“#”,也是表示低电平有效,比如我上面写的CE#;如果字母头上啥都没有,就是默认的高电平有效,比如上面的CLE,就是高电平有效。

1.2.9.1. 为何需要ALE和CLE

硬件上,有了电源的Vcc和接地的Vss等引脚,很好理解,但是为何还要有ALE和CLE这样的引脚,为何设计这么多的命令,把整个系统搞这么复杂,关于这点,最后终于想明白了:

设计命令锁存使能(Command Latch Enable, CLE) 和 地址锁存使能(Address Latch Enable,ALE),那是因为,Nand Flash就8个I/O,而且是复用的,也就是,可以传数据,也可以传地址,也可以传命令,为了区分你当前传入的到底是啥,所以,先要用发一个CLE(或ALE)命令,告诉Nand Flash的控制器一声,我下面要传的是命令(或地址),这样,里面才能根据传入的内容,进行对应的动作。否则,Nand Flash内部,怎么知道你传入的是数据,还是地址,还是命令,也就无法实现正确的操作了。

1.2.9.2. Nand Flash只有8个I/O引脚的好处

在Nand Flash的硬件设计中,你会发现很多个引脚。关于硬件上为何设计这样的引脚,而不是直接像其他存储设备,比如普通的RAM,直接是一对数据线引出来,多么方便和好理解啊。

关于这样设计的好处:

1.2.9.2.1. 减少外围连线

相对于并口(Parellel)的Nor Flash的48或52个引脚来说,的确是大大减小了引脚数目,这样封装后的芯片体积,就小很多。现在芯片在向体积更小,功能更强,功耗更低发展,减小芯片体积,就是很大的优势。同时,减少芯片接口,也意味着使用此芯片的相关的外围电路会更简化,避免了繁琐的硬件连线。

1.2.9.2.2. 提高系统的可扩展性

因为没有像其他设备一样用物理大小对应的完全数目的addr引脚,在芯片内部换了芯片的大小等的改动,对于用全部的地址addr的引脚,那么就会引起这些引脚数目的增加,比如容量扩大一倍,地址空间/寻址空间扩大一倍,所以,地址线数目/addr引脚数目,就要多加一个,而对于统一用8个I/O的引脚的Nand Flash,由于对外提供的都是统一的8个引脚,内部的芯片大小的变化或者其他的变化,对于外部使用者(比如编写Nand Flash驱动的人)来说,不需要关心,只是保证新的芯片,还是遵循同样的接口,同样的时序,同样的命令,就可以了。这样就提高了系统的扩展性。

说白了,对于旧的Nand Flash所实现的驱动,这些软件工作,在换新的硬件的Nand Flash的情况下,仍然可以工作,或者是通过极少的修改,就同样可以工作,使得软硬件兼容性大大提高。

1.2.10. Nand Flash的一些典型(typical)的特性

  1. 页擦除时间是200us,有些慢的有800us
  2. 块擦除时间是1.5ms
  3. 页数据读取到数据寄存器的时间一般是20us
  4. 串行访问(Serial access)读取一个数据的时间是25ns,而一些旧的Nand Flash是30ns,甚至是50ns
  5. 输入输出端口是地址和数据以及命令一起multiplex复用的
  6. Nand Flash的编程/擦除的寿命:即,最多允许的擦除的次数

    以前老的Nand Flash,编程/擦除时间比较短,比如K9G8G08U0M,才5K次,而后来的多数也只有10K=1万次,而现在很多新的Nand Flash,技术提高了,比如,Micron的MT29F1GxxABB,Numonyx的 NAND04G-B2D/NAND08G-BxC,都可以达到100K,也就是10万次的编程/擦除,达到和接近于之前常见的Nor Flash,几乎是同样的使用寿命了。

  7. 封装形式

    48引脚的TSOP1封装 或 52引脚的ULGA封装

1.2.11. Nand Flash控制器与Nand Flash芯片

关于Nand Flash的控制器Controller和Nand Flash芯片chip之间的关系,觉得有必要解释一下:

首先,我们要知道的是,我们写驱动,是写Nand Flash 控制器的驱动,而不是Nand Flash 芯片的驱动,因为独立的Nand Flash芯片,一般来说,是很少直接拿来用的,多数都是硬件上有对应的硬件的Nand Flash的控制器,去操作和控制Nand Flash,包括提供时钟信号,提供硬件ECC校验等等功能,我们所写的驱动软件,是去操作Nand Flash的控制器

然后由控制器去操作Nand Flash芯片,实现我们所要的功能。

1.2.12. Nand Flash中的特殊硬件结构

由于Nand Flash相对其他常见设备来说,比较特殊,所以,特殊的设备,就有特殊的设计,就对应某些特殊的硬件特性,就有必要解释解释:

页寄存器(Page Register)

由于Nand Flash读取和编程操作来说,一般最小单位是页,所以Nand Flash在硬件设计时候,就考虑到这一特性,对于每一片(Plane),都有一个对应的区域专门用于存放,将要写入到物理存储单元中去的或者刚从存储单元中读取出来的,一页的数据,这个数据缓存区,本质上就是一个缓存buffer,但是只是此处datasheet里面把其叫做页寄存器page register而已,实际将其理解为页缓存,更贴切原意。

 

而正是因为有些人不了解此内部结构,才容易产生之前遇到的某人的误解,以为内存里面的数据,通过Nand Flash的FIFO,写入到Nand Flash里面去,就以为立刻实现了实际数据写入到物理存储单元中了,而实际上只是写到了这个页缓存中,只有当你再发送了对应的编程第二阶段的确认命令,即0x10,之后,实际的编程动作才开始,才开始把页缓存中的数据,一点点写到物理存储单元中去。

 

所以,简单总结一下就是,对于数据的流向,实际是经过了如下步骤:

 

图 1.5. Nand Flash读写时的数据流向

Nand Flash读写时的数据流向

 

1.2.13. Nand Flash中的坏块(Bad Block)

Nand Flash中,一个块中含有1个或多个位是坏的,就称为其为坏块Bad Block。

坏块的稳定性是无法保证的,也就是说,不能保证你写入的数据是对的,或者写入对了,读出来也不一定对的。与此对应的正常的块,肯定是写入读出都是正常的。

1.2.13.1. 坏块的分类

坏块有两种:

  1. 出厂时就有存在的坏块

    一种是出厂的时候,也就是,你买到的新的,还没用过的Nand Flash,就可以包含了坏块。此类出厂时就有的坏块,被称作factory (masked) bad block或initial bad/invalid block,在出厂之前,就会做对应的标记,标为坏块。

  2. 使用过程中产生的坏块

    第二类叫做在使用过程中产生的,由于使用过程时间长了,在擦块除的时候,出错了,说明此块坏了,也要在程序运行过程中,发现,并且标记成坏块的。具体标记的位置,和上面一样。这类块叫做worn-out bad block。即用坏了的块。

1.2.13.2. 坏块的标记

具体标记的地方是,对于现在常见的页大小为2K的Nand Flash,是块中第一个页的oob起始位置(关于什么是页和oob,下面会有详细解释)的第1个字节(旧的小页面,pagesize是512B甚至256B的Nand Flash,坏块标记是第6个字节),如果不是0xFF,就说明是坏块。相对应的是,所有正常的块,好的块,里面所有数据都是0xFF的。

不过,对于现在新出的有些Nand Flash,很多标记方式,有些变化,有的变成该坏块的第一个页或者第二个页,也有的是,倒数最后一个或倒数第二个页,用于标记坏块的。

具体的信息,请参考对应的Nand Flash的数据手册,其中会有说明。

对于坏块的标记,本质上,也只是对应的flash上的某些字节的数据是非0xFF而已,所以,只要是数据,就是可以读取和写入的。也就意味着,可以写入其他值,也就把这个坏块标记信息破坏了。对于出厂时的坏块,一般是不建议将标记好的信息擦除掉的。

uboot中有个命令是

nand scrub

就可以将块中所有的内容都擦除了,包括坏块标记,不论是出厂时的,还是后来使用过程中出现而新标记的。一般来说,不建议用这个。

不过,在实际的驱动编程开发过程中,为了方便起见,我倒是经常用,其实也没啥大碍,呵呵。不过呢,其实最好的做法是,用

nand erase

只擦除好的块,对于已经标记坏块的块,不要轻易擦除掉,否则就很难区分哪些是出厂时就坏的,哪些是后来使用过程中用坏的了。

1.2.13.3. 坏块的管理

对于坏块的管理,在Linux系统中,叫做坏块管理(BBM,Bad Block Management),对应的会有一个表去记录好块,坏块的信息,以及坏块是出厂就有的,还是后来使用产生的,这个表叫做坏块表(BBT,Bad Block Table)。在Linux 内核MTD架构下的Nand Flash驱动,和Uboot中Nand Flash驱动中,在加载完驱动之后,如果你没有加入参数主动要求跳过坏块扫描的话,那么都会去主动扫描坏块,建立必要的BBT的,以备后面坏块管理所使用。

1.2.13.4. 坏块的比例

而关于好块和坏块,Nand Flash在出厂的时候,会做出保证:

  1. 关于好的,可以使用的块的数目达到一定的数目,比如三星的K9G8G08U0M,整个flash一共有4096个块,出厂的时候,保证好的块至少大于3996个,也就是意思是,你新买到这个型号的Nand Flash,最坏的可能, 有3096-3996=100个坏块。不过,事实上,现在出厂时的坏块,比较少,绝大多数,都是使用时间长了,在使用过程中出现的。
  2. 保证第一个块是好的,并且一般相对来说比较耐用。做此保证的主要原因是,很多Nand Flash坏块管理方法中,就是将第一个块,用来存储上面提到的BBT,否则,都是出错几率一样的块,那么也就不太好管理了,连放BBT的地方,都不好找了,^_^。

一般来说,不同型号的Nand Flash的数据手册中,也会提到,自己的这个Nand Flash,最多允许多少个坏块。就比如上面提到的,三星的K9G8G08U0M,最多有100个坏块。

1.2.14. Nand Flash中页的访问顺序

在一个块内,对每一个页进行编程的话,必须是顺序的,而不能是随机的。比如,一个块中有128个页,那么你只能先对page0编程,再对page1编程,。。。。,而不能随机的,比如先对page3,再page1,page2,page0,page4,。。。

关于此处对于只能顺序给页编程的说法,只是翻译自datasheet,但是实际情况却发现是,程序中没有按照此逻辑处理,可以任意对某Block内的Page去做Program的动作,而不必是顺序的。但是datasheet为何如此解释,原因未知,有待知情者给解释一下。

1.2.15. 常见的Nand Flash的操作

要实现对Nand Flash的操作,比如读取一页的数据,写入一页的数据等,都要发送对应的命令,而且要符合硬件的规定,如图:

图 1.6. Nand Flash K9K8G08U0A的命令集合

Nand Flash K9K8G08U0A的命令集合

 

从上图可以看到,如果要实现读一个页的数据,就要发送Read的命令,而且是分两个周期(Cycle),即分两次发送对应的命令,第一次是0x00h,第二次是0x30h,而两次命令中间,需要发送对应的你所要读取的页的地址,关于此部分详细内容,留待后表。

对应地,其他常见的一些操作,比如写一个页的数据(Page Program),就是先发送0x80h,然后发生要写入的地址,再发送0x10h。

[注意]注意

对于不同厂家的不同型号的Nand Flash 的基本操作,即读页数据Read Page,写页数据(对页进行编程)Page Program,擦除整个块的数据Erase Block等操作,所用的命令都是一样的,但是针对一些Nand Flash的高级的一些特性,比如交错页编程(Interleave Page Program),多片同时编程(Simultaneously Program Multi Plane)等,所用的命令,未必一样,不过对于同一厂家的Nand Flash的芯片,那一般来说,都是统一的。

关于一些常见的操作,比如读一个页的Read操作和写一个页的Page Program,下面开始更深入的介绍。

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. hexo个人博客收录百度

    查看网站是否被收录 首先我们可以输入 site:域名 来查看域名是否被搜索引擎收录,如下图所示,表示没有收录:百度资源平台添加网站 访问百度搜索资源平台官网,注册或者登陆百度账号,依次选择【用户中心】-【站点管理】,添加你的网站,在添加站点时会让你选择协议头(http 或…...

    2024/5/4 14:54:08
  2. vnc viewer安卓下载,vnc viewer安卓下载软件的4大功能

    vnc viewer安卓客户端是针对安卓系统而开发的一款手机远程桌面连接电脑软件,该软件需要配合pc端的VNC服务端使用,当用户在电脑上开启了VNC服务端,再通过vnc viewer就可以在手机上随意操作电脑,就像在本地操作一样,支持用户在手机上查看pc电脑的桌面,控制鼠标和键盘,能够…...

    2024/5/1 15:31:18
  3. AST Matcher语法树实战工具之clang-query

    AST Matcher语法树实战工具之clang-query 开发过程中,写完一个matcher如何检验是否合理正确有效?如果每次都是写完之后去工程跑plugin校验,那是相当烦的。有什么快捷的办法吗?clang-query了解一下? clang-query作用:test matchers :交互式检验 explore AST:探索AST 结构…...

    2024/4/29 17:07:34
  4. 脑残式网络编程入门(九):面试必考,史上最通俗大小端字节序详解

    1、引言最近在从头重写 MobileIMSDK 的TCP版,自已组织TCP数据帧时就遇到了字节序大小端问题。所以,借这个机会单独整理了这篇文章,希望能加深大家对字节序问题的理解,加强对IM这种基于网络通信的程序在数据传输这一层的知识掌控情况。程序员在写应用层程序时,一般不需要考…...

    2024/4/29 17:07:31
  5. MySQL的基本操作CRUD综合案例

    这些操作建议SQL的初学者自己亲手敲一遍 文章目录这些操作建议SQL的初学者自己亲手敲一遍1.建表2.SQL操作语句3.分组数据操作 1.建表 创建一个学生表,插入数据 id 学号 name 姓名 chinese 语文成绩 english 英语成绩 math 数学成绩create table student( id int, name varcha…...

    2024/4/29 17:07:26
  6. Resolving Maven dependencies情况下的junit-platform-launcher-1.7.0-M1.pom或者junit-jupiter-engine等情况

    首先说明一下,Resolving Maven dependencies这种情况及其多,也有各种博客的各种方法,这里例举我出现的问题使用情况:SSM框架整合的时候,进行SPring整合junit单元测试的时候,出现了这种标题的情况。这时IDEA轻则运行失败,重则卡死,然后网上一堆方法,这里推荐两份优秀的…...

    2024/4/29 17:07:22
  7. Redis相关知识要点

    Redis Redis,key-Value类型的内存数据库,整个数据库系统在内存中操作,定期异步flush到硬盘上进行保存。常用于缓存,也可以作分布式锁。redis提供多种数据类型,支持事务,两种持久化方式,多种集群方案。 Redis为什么要作为缓存? 高性能和高并发: 高性能:用户第一次访问数…...

    2024/4/29 17:07:18
  8. SpringIOC

    Spring 1、主要内容 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GQNEy5hs-1597302145672)(G:\java\我的笔记\笔记图片\Spring主要内容.png)] 2、Spring5框架 2.1Spring基本概念 ​ Spring 是众多开源java项⽬中的⼀员,是基于分层的JavaEE应用的…...

    2024/4/29 17:07:14
  9. 爱护老韭菜,能在市场活下来的都不是普通人

    这两天各路段子和各路流传的截图都在嘲讽老韭菜,老韭菜真的是很不容易。 不仅踏空,还要不断被嘲讽,还要自己转发自嘲,顺便嘲讽别的老韭菜。 威廉:请爱护老韭菜,在这个市场能活下来多年的都不是平常人 昨天一天我是真的看到很多人在问到底怎么进入新韭菜的世界… 威廉:请…...

    2024/4/29 17:07:10
  10. 惊爆!湖北高防服务器内幕解密

    湖北武汉以光谷为中心的高新科技企业大多跟互联网相关。而随着国内互联网行业蓬勃发展,服务器租用需求越来越多,有市场的地方就有竞争。随之产生的恶意竞争,恶意性攻击者所控制的肉鸡攻击也是越来越猛,每天遭受到攻击的网站不计其数,各行各业的网站因遭受到攻击产生了或多…...

    2024/4/29 4:53:55
  11. UVA10976-Fractions Again?!【枚举】

    链接 Fractions Again?!思路 因为1k−1x=1y\frac{1}{k}-\frac{1}{x}=\frac{1}{y}k1​−x1​=y1​,又因为x≥yx\geq yx≥y,所以1k−1y≤1y\frac{1}{k}-\frac{1}{y}\leq\frac{1}{y}k1​−y1​≤y1​,即y≤2ky\leq2ky≤2k,枚举y判断x即可。代码 #include<bits/stdc++.h>…...

    2024/4/29 17:07:02
  12. [笔记]飞浆PaddlePaddle-百度架构师手把手带你零基础实践深度学习-21日学习打卡(Day 1)

    [笔记]飞浆PaddlePaddle-百度架构师手把手带你零基础实践深度学习-21日学习打卡(Day 1)(Credit: https://gitee.com/paddlepaddle/Paddle/raw/develop/doc/imgs/logo.png) 近期参加了百度飞桨推出了免费的课程,感兴趣的你可以点击这里。第一天的课程相对比较基础,让我巩固了…...

    2024/4/29 1:52:06
  13. python数据分析画图等开发环境以及工具集成离线安装

    文章目录IDEPYTHON第三方库下载地址 IDE 使用pycharm2020社区版。 PYTHON 使用python3.6.8 第三方库 主要库说明: numpy:矩阵运算库 pandas:基于numpy的数据分析库 scipy:基于numpy的科学计算库,如优化,方程求解等 matplotlib:数据绘图包 因为依赖的关系安装有顺序的。 …...

    2024/4/29 1:52:03
  14. 经典ML之Logisitic Regression

    逻辑回归(对数几率回归 Logisitic Regression) 未完待续!!! 1.模型介绍 Logistic Regression 虽然被称为回归,但其实际上是分类模型,并常用于二分类。Logistic Regression 具有简单、可并行化、可解释强等优点。 逻辑回归由于存在易于实现、解释性好以及容易扩展等优点,…...

    2024/4/29 17:06:58
  15. rancher安装完成后安装kubectl命令

    默认的rancher集群的各个node上,是没有kubectl命令的 个人习惯使用命令行,但kubectl需要自己配置一下 kubectl在k8s官网上有安装方法:https://kubernetes.io/docs/tasks/tools/install-kubectl/ 注:在国内不管使用二进制还是yum安装都会有问题,我失败了两次,经常下载一半…...

    2024/4/29 17:06:53
  16. 内网和外网

    一、内网和外网的区别 1、范du围大小 局域网(LAN)相对zhi于广域网(WAN)而言,主dao要是指在小范围内的计算机互联网络。这个“小范围”可以是一个家庭,一所学校,一家公司,或者是一个政府部门。BT中常常提到的公网、外网,即广域网(WAN);BT中常常提到私网、内网,即局…...

    2024/4/29 17:06:50
  17. 一对一直播系统开发的优势在哪里?

    一对一直播系统开发的优势在哪里? 一对一聊天平台我们可以在应用商店里看到很多,他们都属于一对一聊天系统的范畴,其大部分建立在直播系统上,它们功能各异,各有各的产品定位及运营特色。那么其核心功能是如何实现的呢?常见的一对一直播功能的实现方式有以下几种: 一、采…...

    2024/4/29 17:06:46
  18. 拳王虚拟项目公社:苹果软件账号虚拟资源共享项目,后期放大可自动化赚钱

    苹果手机App store软件商城中有许多优异的APP,不谈一些游戏下载都需要付费,对于功能强大的软件付费下载更是常态,好在一旦付费就可永久使用(当然还有些软件通过免费下载,付费开通会员的除外)。 众所周知苹果每年都有新产品发布,那么在旧手机上购买的APP换了手机怎么办?…...

    2024/4/29 17:06:43
  19. OKR最新模板推荐,生产研发团队如何使用OKR工具?

    当今商业时代处于不稳定、不确定、复杂、模糊的 VUCA 时代,尤其是今年的新冠疫情给我们带来了巨⼤的冲击。随着环境的快速变化,很多曾经的巨头诺基亚、柯达、摩托罗拉……⼀个接⼀个地倒下,很多传统KPI的管理思想和⼯具,在这些巨头倒塌后,也变得不堪⼀击了。OKR作为⼀种新…...

    2024/5/2 17:47:37
  20. Android Studio无线Wifi调试手机的两种方案

    建议直接采用第二种插件的方式。Android Studio无线Wifi调试手机的两种方案第一种方式 使用adbWireless连接第二种方式 使用插件Android Wifi ADB连接总结. 第一种方式 使用adbWireless连接使用adbWireless工具,其能够让手机用无线来取代USB连接而使用ADB工具1. 手机需要与电脑…...

    2024/5/3 6:05:45

最新文章

  1. 李沐-46 语义分割和数据集【动手学深度学习v2】

    在语义分割中&#xff0c;不是一张图片分配一个label&#xff0c;而是为图片的每一个像素点分配一个label。假设我们输入的是RGB三通道的图片&#xff0c;即每个像素点颜色可以表示为(x, y, z)&#xff0c;那么为了给像素点打上label&#xff0c;我们需要构建一个映射关系&…...

    2024/5/4 15:49:50
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. 【UE5 C++】各个头文件的含义

    #pragma once 预处理程序指令 作用&#xff1a;保护同一个文件不会被多次包含&#xff0c;使得头文件只会被编译一次&#xff0c; #include “CoreMinimal.h” 包含了一套来自UE4的核心编程环境的普遍存在类型 #include “GameFramework/GameModeBase.h” 基于GameModeBas…...

    2024/5/3 23:27:01
  4. 动态规划刷题(算法竞赛、蓝桥杯)--饥饿的奶牛(线性DP)

    1、题目链接&#xff1a;饥饿的奶牛 - 洛谷 #include <bits/stdc.h> using namespace std; const int N3000010; vector<int> a[N];//可变数组vector存区间 int n,mx,f[N]; int main(){scanf("%d",&n);for(int i1;i<n;i){int x,y;scanf("%…...

    2024/5/1 13:50:31
  5. YOLOv9架构图分享

    YOLOv9是YOLO (You Only Look Once)系列实时目标检测系统的最新迭代。它建立在以前的版本之上&#xff0c;结合了深度学习技术和架构设计的进步&#xff0c;以在目标检测任务中实现卓越的性能。通过将可编程梯度信息(PGI)概念与广义ELAN (GELAN)架构相结合&#xff0c;YOLOv9在…...

    2024/5/4 11:01:35
  6. 416. 分割等和子集问题(动态规划)

    题目 题解 class Solution:def canPartition(self, nums: List[int]) -> bool:# badcaseif not nums:return True# 不能被2整除if sum(nums) % 2 ! 0:return False# 状态定义&#xff1a;dp[i][j]表示当背包容量为j&#xff0c;用前i个物品是否正好可以将背包填满&#xff…...

    2024/5/4 12:05:22
  7. 【Java】ExcelWriter自适应宽度工具类(支持中文)

    工具类 import org.apache.poi.ss.usermodel.Cell; import org.apache.poi.ss.usermodel.CellType; import org.apache.poi.ss.usermodel.Row; import org.apache.poi.ss.usermodel.Sheet;/*** Excel工具类** author xiaoming* date 2023/11/17 10:40*/ public class ExcelUti…...

    2024/5/4 11:23:32
  8. Spring cloud负载均衡@LoadBalanced LoadBalancerClient

    LoadBalance vs Ribbon 由于Spring cloud2020之后移除了Ribbon&#xff0c;直接使用Spring Cloud LoadBalancer作为客户端负载均衡组件&#xff0c;我们讨论Spring负载均衡以Spring Cloud2020之后版本为主&#xff0c;学习Spring Cloud LoadBalance&#xff0c;暂不讨论Ribbon…...

    2024/5/4 14:46:16
  9. TSINGSEE青犀AI智能分析+视频监控工业园区周界安全防范方案

    一、背景需求分析 在工业产业园、化工园或生产制造园区中&#xff0c;周界防范意义重大&#xff0c;对园区的安全起到重要的作用。常规的安防方式是采用人员巡查&#xff0c;人力投入成本大而且效率低。周界一旦被破坏或入侵&#xff0c;会影响园区人员和资产安全&#xff0c;…...

    2024/5/3 16:00:51
  10. VB.net WebBrowser网页元素抓取分析方法

    在用WebBrowser编程实现网页操作自动化时&#xff0c;常要分析网页Html&#xff0c;例如网页在加载数据时&#xff0c;常会显示“系统处理中&#xff0c;请稍候..”&#xff0c;我们需要在数据加载完成后才能继续下一步操作&#xff0c;如何抓取这个信息的网页html元素变化&…...

    2024/5/4 12:10:13
  11. 【Objective-C】Objective-C汇总

    方法定义 参考&#xff1a;https://www.yiibai.com/objective_c/objective_c_functions.html Objective-C编程语言中方法定义的一般形式如下 - (return_type) method_name:( argumentType1 )argumentName1 joiningArgument2:( argumentType2 )argumentName2 ... joiningArgu…...

    2024/5/3 21:22:01
  12. 【洛谷算法题】P5713-洛谷团队系统【入门2分支结构】

    &#x1f468;‍&#x1f4bb;博客主页&#xff1a;花无缺 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P5713-洛谷团队系统【入门2分支结构】&#x1f30f;题目描述&#x1f30f;输入格…...

    2024/5/3 23:17:01
  13. 【ES6.0】- 扩展运算符(...)

    【ES6.0】- 扩展运算符... 文章目录 【ES6.0】- 扩展运算符...一、概述二、拷贝数组对象三、合并操作四、参数传递五、数组去重六、字符串转字符数组七、NodeList转数组八、解构变量九、打印日志十、总结 一、概述 **扩展运算符(...)**允许一个表达式在期望多个参数&#xff0…...

    2024/5/4 14:46:12
  14. 摩根看好的前智能硬件头部品牌双11交易数据极度异常!——是模式创新还是饮鸩止渴?

    文 | 螳螂观察 作者 | 李燃 双11狂欢已落下帷幕&#xff0c;各大品牌纷纷晒出优异的成绩单&#xff0c;摩根士丹利投资的智能硬件头部品牌凯迪仕也不例外。然而有爆料称&#xff0c;在自媒体平台发布霸榜各大榜单喜讯的凯迪仕智能锁&#xff0c;多个平台数据都表现出极度异常…...

    2024/5/4 14:46:11
  15. Go语言常用命令详解(二)

    文章目录 前言常用命令go bug示例参数说明 go doc示例参数说明 go env示例 go fix示例 go fmt示例 go generate示例 总结写在最后 前言 接着上一篇继续介绍Go语言的常用命令 常用命令 以下是一些常用的Go命令&#xff0c;这些命令可以帮助您在Go开发中进行编译、测试、运行和…...

    2024/5/4 14:46:11
  16. 用欧拉路径判断图同构推出reverse合法性:1116T4

    http://cplusoj.com/d/senior/p/SS231116D 假设我们要把 a a a 变成 b b b&#xff0c;我们在 a i a_i ai​ 和 a i 1 a_{i1} ai1​ 之间连边&#xff0c; b b b 同理&#xff0c;则 a a a 能变成 b b b 的充要条件是两图 A , B A,B A,B 同构。 必要性显然&#xff0…...

    2024/5/4 2:14:16
  17. 【NGINX--1】基础知识

    1、在 Debian/Ubuntu 上安装 NGINX 在 Debian 或 Ubuntu 机器上安装 NGINX 开源版。 更新已配置源的软件包信息&#xff0c;并安装一些有助于配置官方 NGINX 软件包仓库的软件包&#xff1a; apt-get update apt install -y curl gnupg2 ca-certificates lsb-release debian-…...

    2024/5/3 16:23:03
  18. Hive默认分割符、存储格式与数据压缩

    目录 1、Hive默认分割符2、Hive存储格式3、Hive数据压缩 1、Hive默认分割符 Hive创建表时指定的行受限&#xff08;ROW FORMAT&#xff09;配置标准HQL为&#xff1a; ... ROW FORMAT DELIMITED FIELDS TERMINATED BY \u0001 COLLECTION ITEMS TERMINATED BY , MAP KEYS TERMI…...

    2024/5/4 12:39:12
  19. 【论文阅读】MAG:一种用于航天器遥测数据中有效异常检测的新方法

    文章目录 摘要1 引言2 问题描述3 拟议框架4 所提出方法的细节A.数据预处理B.变量相关分析C.MAG模型D.异常分数 5 实验A.数据集和性能指标B.实验设置与平台C.结果和比较 6 结论 摘要 异常检测是保证航天器稳定性的关键。在航天器运行过程中&#xff0c;传感器和控制器产生大量周…...

    2024/5/4 13:16:06
  20. --max-old-space-size=8192报错

    vue项目运行时&#xff0c;如果经常运行慢&#xff0c;崩溃停止服务&#xff0c;报如下错误 FATAL ERROR: CALL_AND_RETRY_LAST Allocation failed - JavaScript heap out of memory 因为在 Node 中&#xff0c;通过JavaScript使用内存时只能使用部分内存&#xff08;64位系统&…...

    2024/5/3 14:57:24
  21. 基于深度学习的恶意软件检测

    恶意软件是指恶意软件犯罪者用来感染个人计算机或整个组织的网络的软件。 它利用目标系统漏洞&#xff0c;例如可以被劫持的合法软件&#xff08;例如浏览器或 Web 应用程序插件&#xff09;中的错误。 恶意软件渗透可能会造成灾难性的后果&#xff0c;包括数据被盗、勒索或网…...

    2024/5/4 14:46:05
  22. JS原型对象prototype

    让我简单的为大家介绍一下原型对象prototype吧&#xff01; 使用原型实现方法共享 1.构造函数通过原型分配的函数是所有对象所 共享的。 2.JavaScript 规定&#xff0c;每一个构造函数都有一个 prototype 属性&#xff0c;指向另一个对象&#xff0c;所以我们也称为原型对象…...

    2024/5/4 2:00:16
  23. C++中只能有一个实例的单例类

    C中只能有一个实例的单例类 前面讨论的 President 类很不错&#xff0c;但存在一个缺陷&#xff1a;无法禁止通过实例化多个对象来创建多名总统&#xff1a; President One, Two, Three; 由于复制构造函数是私有的&#xff0c;其中每个对象都是不可复制的&#xff0c;但您的目…...

    2024/5/3 22:03:11
  24. python django 小程序图书借阅源码

    开发工具&#xff1a; PyCharm&#xff0c;mysql5.7&#xff0c;微信开发者工具 技术说明&#xff1a; python django html 小程序 功能介绍&#xff1a; 用户端&#xff1a; 登录注册&#xff08;含授权登录&#xff09; 首页显示搜索图书&#xff0c;轮播图&#xff0…...

    2024/5/4 9:07:39
  25. 电子学会C/C++编程等级考试2022年03月(一级)真题解析

    C/C++等级考试(1~8级)全部真题・点这里 第1题:双精度浮点数的输入输出 输入一个双精度浮点数,保留8位小数,输出这个浮点数。 时间限制:1000 内存限制:65536输入 只有一行,一个双精度浮点数。输出 一行,保留8位小数的浮点数。样例输入 3.1415926535798932样例输出 3.1…...

    2024/5/4 14:46:02
  26. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  27. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  28. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  29. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  30. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  31. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  32. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  33. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  34. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  35. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  36. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  37. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  38. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  39. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  40. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  41. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  42. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  43. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  44. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  45. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57