文章目录

    • 摘要
    • 1 引言
    • 2 问题描述
    • 3 拟议框架
    • 4 所提出方法的细节
      • A.数据预处理
      • B.变量相关分析
      • C.MAG模型
      • D.异常分数
    • 5 实验
      • A.数据集和性能指标
      • B.实验设置与平台
      • C.结果和比较
    • 6 结论

在这里插入图片描述

摘要

异常检测是保证航天器稳定性的关键。在航天器运行过程中,传感器和控制器产生大量周期较长的多维时间序列遥测数据,以及及时准确地检测航天器内部异常的一个关键点是从大量遥测数据中提取基本特征。然而,由于遥测数据内的耦合关系和时间特征复杂,存在巨大的挑战。为了解决这个问题,我们提出了一种称为最大信息系数注意力图网络 (MAG) 的新方法。基本框架是一个图神经网络,它利用嵌入向量来描述每个维度的内在属性,相关性分析来研究长期依赖关系,这是一种用于确定维度之间短期交互的注意力机制,以及长短期记忆 (LSTM) 来提取时间特征。这些模块通过图神经网络的融合导致 MAG 模型的构建,允许对复杂的变量关系和时间特征进行全面分析,从而成功检测各种类型的异常。由于遥测数据具有异构的特点,我们采用了损失函数,设计了一种适用于MAG的无监督异常评分方法。为了验证该算法的有效性,我们使用两个公开的和两个新的可用航天器遥测数据集进行了实验,结果表明我们的算法在检测航天器数据异常方面比其他几种先进的方法更有效、更准确。
关键词:异常检测,异常评分,图神经网络(GNN),多变量时间序列,航天器遥测数据。

1 引言

由于航天器系统的复杂性和大小,其性能非常重要[1]。特别是,即使是微小的故障也会导致航天器发生灾难性破坏。因此,在开发故障时,航天器系统中异常行为的早期检测对于防止它加剧灾难性故障至关重要。

由于航天器遥测数据的维数相互关系和高维性质的复杂性,传统的建模技术在异常检测方面遇到了挑战。因此,依赖遥测数据的数据驱动方法受到了极大的关注[2]。鉴于异常通常很少见且数量少,仅使用正常遥测数据进行无监督学习以发现固有模式具有更大的价值。仅使用正常遥测数据的异常检测的关键是从多维时间序列数据中提取航天器正常运行状态的基本特征。然而,由于遥测数据之间的相互关系和时间特征复杂,这带来了重大挑战。

针对这一挑战,许多学者提出了各种经典的无监督异常检测模型,该模型在各个领域都表现出了优异的性能。这些包括局部离群因子(LOF)[3]、单类支持向量机(OC-SVM)[4]和支持向量数据描述(SVDD)[5]等[6]。此外,传统的机器学习方法不足以解决处理高维和大规模数据的挑战。随着人工智能的发展,深度学习越来越多地解决了这个问题[7]。例如,Su等人[8]和Song等人[9]分别提出了基于GRU-VAE和ST-GAN的异常检测方法。这些方法在公共可用数据集上表现出可靠的性能。

然而,前面提到的那些主要是为具有平移不变性的欧氏域数据设计的,而遥测数据更好地映射到非欧氏域数据,如图结构[10]。出于这个原因,图神经网络非常适合遥测数据,其中图节点代表检测窗口内变量的特征,图边描述维度之间的相关性。事实上,Deng等人[11]提出了一种基于偏差得分的异常检测算法,Xie等人[12]提出了一种结合小波变换和图神经网络的异常检测方法,两者在工业数据集上都表现出了令人称道的性能。

尽管如此,上述方法并不完全适合我们的问题。在复杂、多维和时间敏感的遥测数据的情况下,准确捕获每个检测窗口内每个变量的内在和时间特征至关重要,同时广泛检查它们复杂的非线性相互依赖性。此外,遥测数据表征了长周期属性,使得仅依靠短期窗口来提取相关能力的方法是不够的。此外,从航天器系统获得的遥测数据包含两个异构数据类型:模拟变量和状态变量(模拟变量是连续的,状态变量是二进制的),这使得单个损失函数不充分。

基于上述分析,本文提出了一种新的图神经网络框架。每个变量的内在和时间特征被表示为节点,而短期窗口内的长期关联分析和注意力被描述为边。最终,整个图结构都经过更新,最终实现异常检测过程。我们工作的主要贡献和优点如下。

1)本文旨在从三个方面表示遥测数据检测窗口中的有效特征:利用嵌入向量来描述每个维度的属性,使用图结构展示维度之间的关系,使用 LSTM 提取时间特征,并通过图神经网络融合各种组件。
2)为了考虑遥测数据的长周期,本文采用最大信息系数(MIC)来研究变量的长期关系,一种注意力机制来捕获窗口的短期关联,并最终结合这两种方法来构建图中表示关联的边。
3)本文解决了遥测数据的异质性以及边缘融合构造的特点,提出了一种新的损失函数。此外,还设计了一个适合网络结构的阈值分数。

本文的其余部分安排如下。第 II 节描述了航天器系统遥测数据异常检测的问题。第 III 节介绍了我们异常检测方法的总体框架。第四节详细描述了所提出的最大信息系数注意图网络(MAG)算法。实验结果报告在第 V 节中。最后,第六节对文章进行了总结。

2 问题描述

航天器遥测数据的类型可分为模拟变量(例如压电电压、加速度量)和状态变量(例如模块控制命令)。异常通常被指示为遥测数据中多个遥测变量的离群值或子序列,包括点异常、形状异常、趋势异常、上下文异常和多重集合异常。在图1(a)中,变量之间的期间存在不一致。特别是变量1的期间较长,可能超过用于检测的窗口长度。这个特性也突显了仅在检测时间窗口长度内分析相关性的不足。因此,必须对整个序列进行关联分析。由模拟变量和状态变量组成的异常如图1(b)所示。状态1到状态4是由控制台发送或接收的命令。在异常期间,由地面测试人员主动输入错误的模块命令得到的模拟变量观察到趋势异常和点异常。

在这里插入图片描述
实现实时异常检测的方法包括利用滑动窗口数据对多元时间序列进行实时预测,然后确定预测结果是否与观测值有较大的偏差。如果偏差太大,则预测被认为是异常的。将X={x(1),x(2),…,x(T)}定义为原始时间序列,该时间序列的时间跨度为T,将x^(T+1)定义为该时间序列在模型之后的时刻T+1的预测值,并将x(T+1)定义为在时刻T+1的真实遥测值,则其是否为异常可以用以下表达式表示:
在这里插入图片描述
其中‖·‖表示计算ˆx(T+1)和x(T+1)偏差的规则,τ是预定义的异常阈值。^x(T +1) 和 x(T +1) 之间的偏差越大,x(T +1) 的异常概率越高。如图1中的数据异常所示,问题的关键是找到数据的时间和变量相关性。我们提出了模型 MAG 来解决这个问题并预测 ^x(T +1),并提出了一种新的公式来找到阈值 τ。
在这里插入图片描述

3 拟议框架

所提出的 MAG 框架旨在捕获遥测数据变量之间的相关性和时间特征,将它们集成到图中。随后,该框架利用来自图的聚合更新来预测未来的变量结果,并通过将它们与观测值进行比较来检测异常。
所提出框架的整体结构如图2所示。它由以下四个主要部分组成。
1)变量相关分析:利用MIC算法对航天器系统得到的遥测数据进行分析,得到相关系数矩阵,反映正常工况下变量之间的相关性。
2)时间分析和注意机制:数据经过滑动窗口分割。LSTM用于从窗口时间序列中提取时间特征,同时使用嵌入向量来捕获每个维度的固有属性。利用注意机制得到注意系数矩阵。
3)图聚合:将相关系数矩阵和注意系数矩阵整合为边,将时间特征节点和嵌入向量作为节点特征构建图。随后,整个网络通过迭代过程聚合和更新。
4) 异常评估:最终,MAG 网络预测下一个变量值并将其与观察值进行比较,生成错误分数。然后使用该分数来确定异常的存在。

4 所提出方法的细节

A.数据预处理

对多变量遥测数据进行分区对于实时计算是必不可少的,这需要建立实时计算检测窗口。首先,拆分多变量遥测数据 Φ ⊂ RT ×N。数据的总长度为 T,由 N 个变量组成,一组训练数据表示为 Φtrain ⊆ RT1×N ,一组测试数据表示为 Φtest ⊆ RT2 ×N。请注意,训练数据集中的所有数据点都必须正常。

接下来,训练数据集 Φtrain ⊆ RT1×N 被分割成一系列子序列 Xtrain = {Xi train, i = 1, 2,。, m} ⊆RSw ×N 通过滑动窗口,其中 Xitrain 表示当窗口大小设置为 sw 时 Xt−sw :t。给定步长 st,子序列的数量可以通过 m = (T1−sw)/st + 1 计算。类似地,测试数据集 Φtest ⊆ RT2 ×N 被划分为子序列 Xtest = {Xjtest, j = 1, 2,。, n} 通过滑动窗口,其中 n = (T2−sw)/st + 1。为了验证目的,测试数据集中的每个点都标有二进制数(0 表示正常,1 表示异常)。

B.变量相关分析

由于遥测变量的周期性质不一致,数据检测窗口不能覆盖整个周期。在滑动数据窗口之前,需要对原始训练数据进行相关性分析。MIC [13] 是一种测量两个变量之间相关性的有效方法。

对于给定的训练数据集 Φtrain ⊆ RT1×N ,对于任意两个具有 T1 元素的离散变量,A = {ai | i = 1, 之间的 MIC 值。, T1} 和 B = {bi | i = 1,., T1} 可以通过以下等式获得:
在这里插入图片描述
其中 p(a, b) 是变量 a 和 b 的联合概率密度,p(a) 和 p(b) 分别是由直方图估计方法计算的变量 a 和 b 的边际概率密度。

对于有限集 D = {(ai, bi),i = 1,。, n},给定一个网格 G,我们可以将 D 的 ai 值划分为 bin,将 D 的 bi 值划分为 b bin。MIC 由下式给出
在这里插入图片描述
最大信息系数是特征矩阵中获得的最高归一化 MI 值。其中ω(1) < B(T1) < O(T 1−ε1)和0 < ε < 1。一般来说,当B(T1) = T 0.6 1时,MIC在实践中效果很好。计算后,可以得到N个遥测变量与相关矩阵M之间的MIC值。mij 表示遥测变量 i 和遥测变量 j 之间的相关性,其值在 0 到 1 之间。

C.MAG模型

在训练阶段,时间窗口内的每个遥测变量都表现出时间和内在属性特征。使用嵌入向量表示每个遥测变量的内在属性,从而实现后续反馈、性能差异和更新。此外,注意力机制可用于更有效地表达窗口内变量之间的关系。因此,我们为每个遥测变量引入一个嵌入向量来表示其特征vi∈Rd,对于i∈{1,2,。, N }。这些嵌入是随机初始化的,然后与模型的其余部分一起训练。这些嵌入 vi 之间的相似性代表了遥测变量的内在属性。

在 MAG 模型中,对于 Xtrain 或 Xtest 的子序列组合,将模型输入定义为历史子序列数据 x(t) := [x(t−w), x(t−w+1)。, x(t−1)] 对于在时间 t 的大小为 w 的滑动窗口。注意系数αi,ji的计算如下:
在这里插入图片描述
在计算注意系数αi,j后,结合相关系数mij形成每条边eij,构造邻接矩阵E

在这里插入图片描述
在边的构建之后,我们使用 LSTM 技术来提取时间关联特征。x(t) 受到 LSTM 网络以提取时间特征。时间特征可以通过 LSTM 网络提取,表示为
在这里插入图片描述
最后,利用图神经网络来整合子序列内的时间和空间关联。构建的图模型利用前面提到的 ei,j 来形成邻接矩阵。时间特征 y(t) 用作图神经网络的输入,能够从每个节点及其邻居聚合和更新信息,最终生成节点 i 的输出表示为 z(t)i,如下所示:
在这里插入图片描述
其中 y(t)i ∈ Rw 是节点 i 的时间输入特征,N (i) ={j | eij > 0} 是节点 i 的邻居集,W ∈ Rd×wi 是每个节点的共享线性变换的可训练权重矩阵。

从上面的特征提取器中,我们得到所有 N 个节点的表示为 {z(t)1 ,。, z(t)N }。对于每个 z(t)i ,我们将其乘以嵌入 vi 的相应时间序列的继续元素(表示为 ◦)。然后,我们使用所有节点的结果作为输出维度为 N 的堆叠全连接层的输入来预测时间步 t 的遥测值向量
在这里插入图片描述
模型的预测输出表示为 ^x(t)。我们将第二节中描述的模拟变量和状态变量分别表示为 x(t)a 和 x(t)s。考虑到这两种类型的异质性,采用了不同的损失函数。模拟变量利用均方误差,最小化预测输出ˆx(T)a与观测数据x(T)a之间的差异。另一方面,对于状态变量,使用了二元交叉熵损失。为了减轻过度拟合并确保滑动窗口内最终边缘的适当大小,我们引入了一个约束项。该术语考虑了相应图 [14] 的非循环性,并结合了相关分析的结果。最终的损失函数如下:
在这里插入图片描述
其中 λ 和 c 表示拉格朗日乘数和惩罚参数,并通过增广拉格朗日方法 [15] 求解。Ns表示状态变量的维数,Na表示模拟变量的维数。MAG的网络结构如图3所示。
在这里插入图片描述

D.异常分数

在通过网络获得图形结构之后,检测偏离正常模式的异常是下一步。该模型通过为每个遥测计算单独的异常值,然后将它们合并为每个时间戳的单个异常值来实现这一点。由于我们的检测算法选择了基于MAG的模型,因此还需要根据该模型的特征专门设计异常值确定规则。异常分数比较时刻t的预期行为与观察到的行为,并计算时刻t与真实遥测值之间的误差值Err(t)
在这里插入图片描述
为了防止任何一个遥测值产生比其他遥测值过高的偏差,我们对每个遥测值的误差值Err(t)进行归一化,得到a(t)。

在阈值选择部分,为了避免引入额外的超参数,我们在实验中提出了一种计算方便的方法。通过计算训练集上每个时间戳的偏差atrain(t),我们可以通过以下等式计算阈值以获得:
在这里插入图片描述
其中 cv 是变异系数,它是遥测数据中变化程度的统计度量。̃μ 和 ̃σ 分别是值 atrain(t) 的中值和四分位数范围 (IQR)。我们使用中位数和 IQR 而不是变异系数所需的均值和标准差,因为它们不假设数据分布,并且对模型的异常分数更稳健。最后,如果测试集的Err(t)超过任何固定阈值τ,则标记为异常的时间tis。

许多已发表的异常检测算法[16]使用3σ算法和峰阈值(POT)算法来挖掘阈值τ。POT是一种使用极值理论的阈值挖掘方法,假设时间序列中的峰值满足广义帕累托分布(GPD)。然而,当数据的分布特性与GPD不一致时,POT方法的适用性可能会受到限制。对于航天器系统的遥测数据,下一部分的实验表明我们的方法更具适应性。
基于MAG的模型算法的过程如算法1所示。
在这里插入图片描述

5 实验

A.数据集和性能指标

我们在两个新的遥测数据集和两个公共数据集上进行了实验。两个新的数据集 SCC-1 和 SCC-2 来自两个不同卫星系统的遥测数据。NASA为土壤水分主动被动(SMAP)卫星和火星科学实验室(MSL)漫游[17]提供了两个公共遥测数据集。四个数据集的详细信息如表 I 所示。在这里插入图片描述
对于这些数据集,正常数据点标记为0,异常值标记为1。然后,将10%的训练数据集划分为验证数据集。请注意,训练数据集仅包含正常时间序列。我们使用常用的指标来评估我们提出的 MAG 算法的性能,即 Precision、Recall 和 F1 分数
在这里插入图片描述
在这里插入图片描述
其中 TP 是预测的实际异常的数量,FP 是假阳性样本的数量,FN 是假阴性样本的数量。

B.实验设置与平台

在数据预处理阶段,我们设置窗口大小 w = 50 和步长 st = 1,然后将原始时间序列拆分为所需的子序列。在网络结构中,我们将嵌入向量维度设置为128,并将隐藏层设置为128。我们利用学习率为1 × 10−3的Adam优化器[18]来训练模型。我们使用了一种广泛使用的调整策略[19][20]:如果连续异常段中的某个时间点被检测到,那么该段中的所有异常都被认为被正确检测到。基于异常时间点会引发警报,并进一步使整个段在现实应用中被注意到的观察,这种策略是合理的。我们使用CUDA 11.6和PyTorch几何库[22],在PyTorch [21]版本1.9.1中实现了我们的方法和其变体。我们将训练模型设置为100个周期,并将早期停止设置为10。为了获得可靠的结果并减少训练阶段的随机性,样本被分别训练和测试了十次,然后计算了性能指标的标准偏差。最后,我们的算法在配备Intel® Xeon® CPU E5-2690 v4 @ 2.60 GHz和NVIDIA RTX 3090显卡的服务器上进行训练和测试。

C.结果和比较

1)窗口大小:为了确定适当的窗口大小 Sw,我们通过选择部分小数据集在三个数据集上进行了实验。窗口大小设置为 20、30、50、80、100、150 和 200。在这里插入图片描述
四个数据集的 F1 分数如图 4 所示。选择过长窗口会导致冗余信息、响应缓慢和计算复杂度增加。相反,选择太短的窗口长度将导致时间特征的捕获不足,导致稳定性不足。四个小数据集的实验结果表明,窗口大小为 50 是最优的。

2)基线比较:为了展示我们提出的算法的有效性,我们对其性能与其他基准无监督异常检测算法进行了比较分析。其中包括基于深度学习的模型,如AnomalyTransformer[19]、ST-GAN[9]、InterFusion[23]、GDN[11]和GRU-VAE[8];基于聚类的技术,如Deep-SVDD[24];以及OC-SVM[25]和IsolationForest[26]。值得注意的是,STGAN 和 AnomalyTransformer 代表最复杂的深度模型。我们在SCC-1、SCC-2、SMAP和MSL数据集上进行十轮评估,得出平均精确度、召回率和F1分数的结果。四种算法的比较结果如表II所示。在这里插入图片描述
根据表 II,我们的方法在所有四个数据集上都获得了最高的 F1 分数,证明了平衡误报率和漏报率的最佳性能。此外,我们的方法在 SCC-1 和 SMAP 数据集上的召回率方面表现出最令人满意的结果,这表明在这两个数据集上产生误报的可能性最小。
3)消融比较:为了研究我们方法的每个组件的必要性,我们逐渐排除和替换这些组件并监控模型性能如何下降。实验结果如表III所示。在这里插入图片描述
为了比较边缘机制的有效性,我们通过消除相关性分析或注意力机制进行了单独的实验。实验结果表明,这两种机制的融合产生了最有利的结果,因为相关分析后注意力机制的引入有效地提高了模型的适应性。然而,仅依靠注意力机制和窗口内的数据不足以有效捕捉长时间相关性和依赖性的程度。

此外,我们使用 Pearson 和 Spearman 方法 [27] 来比较相关性。实验结果表明,MIC 优于 Pearson 和 Spearman 相关系数。这种差异的出现是因为 Pearson 和 Spearman 相关系数假设线性相关,导致分析非线性关系时不准确。相反,MIC 不依赖于这样的假设,并且可以准确地捕获扩展周期内的线性和非线性相关性。

关于时间关系分析,我们使用消融实验比较了线性、RNN 和 GRU 层连接 [28]。研究结果表明,使用网络层或线性层会导致效率较低,这主要是由于无法提取时间特征。相比之下,结合 RNN、GRU 或 LSTM 的层连接会产生更有效的发现。具体来说,LSTM 具有比 GRU 和 RNN 更复杂和更稳健的结构,可以更好地控制信息流并实现长期依赖关系捕获。因此,LSTM 可以提取优越的时间特征,从而获得更好的结果。

关于损失函数,我们应用了均方误差(MSE)和均绝对误差(MAE)[29],并将它们与我们的方法进行了比较。实验结果表明,针对两种不同类型的数据采用两种混合损失函数可以显着提高模型的效率。

4)阈值比较:我们还评估了阈值 τ 对四个数据集的 F1 分数的影响。如图 5 所示,当阈值太小时,召回值会很低,导致 F1 分数降低。虽然如果阈值设置得太高,精度值会减小,导致 F1 分数下降。因此,适当地设置阈值以确保最佳 F1 分数至关重要。

我们对两种阈值方法进行了比较:基于高斯分布的 3σ 阈值和极值理论阈值 (EVT)。这些阈值对四个测试数据集的 F1 分数的影响如图 5 所示。结果表明,随着阈值 (τ) 的增加,F1 分数最初达到峰值,然后下降。我们提出的阈值方法非常接近通过穷举搜索获得的最佳阈值,从而证明了我们的异常阈值确定规则的有效性。这可能是因为 3σ 阈值和 EVT 方法都假设先验分布不适用于遥测数据。相反,我们的方法使用利用中值和四分位范围的公式,更稳健,不受数据分布形状的影响。在这里插入图片描述

6 结论

本文提出了一种基于MAG结构模型的遥测数据异常检测算法。具体来说,该算法构建了一个图结构模型,使用嵌入向量描述每个维度的内在属性,进行相关性分析以研究长期依赖关系,通过注意力机制确定各维度之间的短期相互作用,并使用LSTM提取时序特征。最后,通过图神经网络融合这些模块,该模型有效地整合了这些序列的维度和时间特征之间的耦合关系,从而能够成功检测各种类型的异常。为了确定异常,引入了适应网络结构的异常分数。

为了确定我们提出的异常检测算法的有效性和优越性,我们在四个真实的遥测数据集上进行了实验,并将我们的方法与其他最先进的算法进行了比较,取得了最佳结果。此外,消融实验进一步证明了我们模型组件的有效性。与其他广泛使用的技术相比,我们提出的异常阈值表现出更高的准确性,并非常接近最佳阈值。

然而,虽然不影响实时异常检测的效率,但在相关分析计算过程中,计算成本随着数据量的增加而增加,保证了MIC计算效率的优化。此外,研究更多用于各种异常类型的基于 MAG 的异常检测算法并推进故障诊断提出了有前景的研究课题。

在这里插入图片描述
在这里插入图片描述

没代码

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. --max-old-space-size=8192报错

    vue项目运行时&#xff0c;如果经常运行慢&#xff0c;崩溃停止服务&#xff0c;报如下错误 FATAL ERROR: CALL_AND_RETRY_LAST Allocation failed - JavaScript heap out of memory 因为在 Node 中&#xff0c;通过JavaScript使用内存时只能使用部分内存&#xff08;64位系统&…...

    2024/4/27 1:03:20
  2. 基于深度学习的恶意软件检测

    恶意软件是指恶意软件犯罪者用来感染个人计算机或整个组织的网络的软件。 它利用目标系统漏洞&#xff0c;例如可以被劫持的合法软件&#xff08;例如浏览器或 Web 应用程序插件&#xff09;中的错误。 恶意软件渗透可能会造成灾难性的后果&#xff0c;包括数据被盗、勒索或网…...

    2024/4/27 3:22:12
  3. JS原型对象prototype

    让我简单的为大家介绍一下原型对象prototype吧&#xff01; 使用原型实现方法共享 1.构造函数通过原型分配的函数是所有对象所 共享的。 2.JavaScript 规定&#xff0c;每一个构造函数都有一个 prototype 属性&#xff0c;指向另一个对象&#xff0c;所以我们也称为原型对象…...

    2024/4/26 21:29:56
  4. C++中只能有一个实例的单例类

    C中只能有一个实例的单例类 前面讨论的 President 类很不错&#xff0c;但存在一个缺陷&#xff1a;无法禁止通过实例化多个对象来创建多名总统&#xff1a; President One, Two, Three; 由于复制构造函数是私有的&#xff0c;其中每个对象都是不可复制的&#xff0c;但您的目…...

    2024/4/27 3:39:00
  5. python django 小程序图书借阅源码

    开发工具&#xff1a; PyCharm&#xff0c;mysql5.7&#xff0c;微信开发者工具 技术说明&#xff1a; python django html 小程序 功能介绍&#xff1a; 用户端&#xff1a; 登录注册&#xff08;含授权登录&#xff09; 首页显示搜索图书&#xff0c;轮播图&#xff0…...

    2024/4/26 23:53:24
  6. 电子学会C/C++编程等级考试2022年03月(一级)真题解析

    C/C++等级考试(1~8级)全部真题・点这里 第1题:双精度浮点数的输入输出 输入一个双精度浮点数,保留8位小数,输出这个浮点数。 时间限制:1000 内存限制:65536输入 只有一行,一个双精度浮点数。输出 一行,保留8位小数的浮点数。样例输入 3.1415926535798932样例输出 3.1…...

    2024/4/26 9:43:45
  7. LV.12 D18 中断处理 学习笔记

    一、ARM的异常处理机制及工程代码结构 1.1异常概念 处理器在正常执行程序的过程中可能会遇到一些不正常的事件发生 这时处理器就要将当前的程序暂停下来转而去处理这个异常的事件 异常事件处理完成之后再返回到被异常打断的点继续执行程序。 1.2异常处理机制 不同的处…...

    2024/4/27 3:38:58
  8. 详细讲解什么是工厂模式

    当我们谈论工厂模式时&#xff0c;我们实际上是在讨论一种创建对象的设计模式。工厂模式的目的是封装对象的创建过程&#xff0c;并将其交给一个单独的工厂类来处理。这种方式有助于解耦对象的创建和使用&#xff0c;使得系统更加灵活、可维护。 有三种主要的工厂模式&#xf…...

    2024/4/26 18:19:59
  9. 下厨房网站月度最佳栏目菜谱数据获取及分析

    目录 概要 源数据获取 写Python代码爬取数据 Scala介绍与数据处理 1.Sacla介绍...

    2024/4/27 11:21:07
  10. Spring中用了哪些设计模式

    一.简单工厂模式 又叫做静态工厂方法&#xff08;StaticFactory Method&#xff09;模式&#xff0c;但不属于23种GOF设计模式之一。 简单工厂模式的实质是由一个工厂类根据传入的参数&#xff0c;动态决定应该创建哪一个产品类。 spring中的BeanFactory就是简单工厂模式的体现…...

    2024/4/27 3:38:57
  11. React新手必懂的知识点

    react思想&#xff1a;组件化开发 React 的核心概念是组件化开发&#xff0c;将用户界面拆分成独立的可复用组件。学习如何创建和使用 React 组件&#xff0c;以及组件之间的数据传递和通信是非常重要的。 React的思想就是拆分组件与使用组件。 import React from react;// 定…...

    2024/4/27 15:17:19
  12. 力扣刷题篇之位运算

    系列文章目录 目录 系列文章目录 前言 一、位运算的基本运算 二、位运算的技巧 三、布隆过滤器 总结 前言 本系列是个人力扣刷题汇总&#xff0c;本文是数与位。刷题顺序按照[力扣刷题攻略] Re&#xff1a;从零开始的力扣刷题生活 - 力扣&#xff08;LeetCode&#xff0…...

    2024/4/27 16:06:18
  13. 《LeetCode力扣练习》代码随想录——链表(链表相交---Java)

    《LeetCode力扣练习》代码随想录——链表&#xff08;链表相交—Java&#xff09; 刷题思路来源于 代码随想录 面试题 02.07. 链表相交 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode(int x) {* …...

    2024/4/27 16:06:14
  14. windows 安装 Oracle Database 19c

    目录 什么是 Oracle 数据库 下载 Oracle 数据库 解压文件 运行安装程序 测试连接 什么是 Oracle 数据库 Oracle数据库是由美国Oracle Corporation&#xff08;甲骨文公司&#xff09;开发和提供的一种关系型数据库管理系统&#xff0c;它是一种强大的关系型数据库管理系统…...

    2024/4/27 12:30:34
  15. WSL2环境下Debian 12的Docker安装与配置

    WSL设置相关&#xff1a; wsl -l -v # 查看当前配置情况正常配置如下&#xff1a; NAME STATE VERSION * Debian Running 2如果与以上有差异&#xff0c;按如下步骤进行配置&#xff1a; wsl --set-version 2 wsl --set-default-version 2 wsl --s…...

    2024/4/27 16:06:06
  16. OpenAI暂停新的ChatGPT Plus注册 | OpenAI 的 GPT Builder 创建您的 GPTs

    OpenAI DevDay 才过去仅仅一周时间&#xff0c;伴随着开发者大会上发布的一系列重磅升级和新特性&#xff0c;无疑这样的进化速度让广大网友炸锅了&#xff0c;其火热程度可见一斑。 就在四个小时前&#xff0c;OpenAI的CEO Sam Altma突然宣布&#xff0c;ChatGPT Plus账号暂停…...

    2024/4/27 8:26:13
  17. LeetCode:689. 三个无重叠子数组的最大和(dp C++)

    目录 689. 三个无重叠子数组的最大和 题目描述&#xff1a; 实现代码与解析&#xff1a; dp 原理思路&#xff1a; 滑动窗口&#xff1a; 原理思路&#xff1a; 689. 三个无重叠子数组的最大和 题目描述&#xff1a; 给你一个整数数组 nums 和一个整数 k &#xff0c;找…...

    2024/4/27 3:40:00
  18. 系列六、Java垃圾回收器主要有哪些?

    一、Java垃圾回收器主要有哪些? UseSerialGC、UseParallelGC、UseConcMarkSweepGC、UseParallelNewGC、UseParallelOldGC、UseG1GC...

    2024/4/27 3:40:00
  19. 【ATTCK】MITRE Caldera-emu插件

    CALDERA是一个由python语言编写的红蓝对抗工具&#xff08;攻击模拟工具&#xff09;。它是MITRE公司发起的一个研究项目&#xff0c;该工具的攻击流程是建立在ATT&CK攻击行为模型和知识库之上的&#xff0c;能够较真实地APT攻击行为模式。 通过CALDERA工具&#xff0c;安全…...

    2024/4/26 19:44:12
  20. 系列四、JVM的内存结构【本地接口(Native Interface)】

    一、组成 本地接口由本地方法栈&#xff08;Native Method Stack&#xff09;、本地方法接口&#xff08;Native Interface&#xff09;、本地方法库组成。 二、本地接口的作用 本地接口的作用是融合不同的编程语言为Java所用&#xff0c;它的初衷是融合C/C程序&#xff0c;Jav…...

    2024/4/27 3:39:59

最新文章

  1. QT入门:计算圆面积的QT开始以及日历相关

    QT入门&#xff1a;计算圆面积的QT开始以及日历相关 使用的工具为Qt creator 如图所示的为Qt的一个基本目录&#xff0c;首先打开mainwindow.ui进行设计&#xff0c;首先是讲解日历的&#xff0c;可以完全不用写代码&#xff0c;只在mainwindow.ui即可实现。 这是最后的一个成…...

    2024/4/27 16:49:35
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. OpenHarmony开发-连接开发板调试应用

    在 OpenHarmony 开发过程中&#xff0c;连接开发板进行应用调试是一个关键步骤&#xff0c;只有在真实的硬件环境下&#xff0c;我们才能测试出应用更多的潜在问题&#xff0c;以便后续我们进行优化。本文详细介绍了连接开发板调试 OpenHarmony 应用的操作步骤。 首先&#xf…...

    2024/4/23 6:14:00
  4. vue想要突破全局样式限制又不影响别的页面样式怎么办

    <!-- 用scope盖不住全局&#xff0c;随意来个class匹配私定&#xff0c;搜索关键词&#xff1a;不要随便改&#xff0c;乱打class名 --> <style> .lkajsdfjkalsfhkljashkflhaskl .el-input.el-input--default.el-input--suffix { width: 160px !important; } …...

    2024/4/27 8:04:35
  5. 416. 分割等和子集问题(动态规划)

    题目 题解 class Solution:def canPartition(self, nums: List[int]) -> bool:# badcaseif not nums:return True# 不能被2整除if sum(nums) % 2 ! 0:return False# 状态定义&#xff1a;dp[i][j]表示当背包容量为j&#xff0c;用前i个物品是否正好可以将背包填满&#xff…...

    2024/4/27 1:53:53
  6. 【Java】ExcelWriter自适应宽度工具类(支持中文)

    工具类 import org.apache.poi.ss.usermodel.Cell; import org.apache.poi.ss.usermodel.CellType; import org.apache.poi.ss.usermodel.Row; import org.apache.poi.ss.usermodel.Sheet;/*** Excel工具类** author xiaoming* date 2023/11/17 10:40*/ public class ExcelUti…...

    2024/4/27 3:39:11
  7. Spring cloud负载均衡@LoadBalanced LoadBalancerClient

    LoadBalance vs Ribbon 由于Spring cloud2020之后移除了Ribbon&#xff0c;直接使用Spring Cloud LoadBalancer作为客户端负载均衡组件&#xff0c;我们讨论Spring负载均衡以Spring Cloud2020之后版本为主&#xff0c;学习Spring Cloud LoadBalance&#xff0c;暂不讨论Ribbon…...

    2024/4/27 12:24:35
  8. TSINGSEE青犀AI智能分析+视频监控工业园区周界安全防范方案

    一、背景需求分析 在工业产业园、化工园或生产制造园区中&#xff0c;周界防范意义重大&#xff0c;对园区的安全起到重要的作用。常规的安防方式是采用人员巡查&#xff0c;人力投入成本大而且效率低。周界一旦被破坏或入侵&#xff0c;会影响园区人员和资产安全&#xff0c;…...

    2024/4/27 12:24:46
  9. VB.net WebBrowser网页元素抓取分析方法

    在用WebBrowser编程实现网页操作自动化时&#xff0c;常要分析网页Html&#xff0c;例如网页在加载数据时&#xff0c;常会显示“系统处理中&#xff0c;请稍候..”&#xff0c;我们需要在数据加载完成后才能继续下一步操作&#xff0c;如何抓取这个信息的网页html元素变化&…...

    2024/4/27 3:39:08
  10. 【Objective-C】Objective-C汇总

    方法定义 参考&#xff1a;https://www.yiibai.com/objective_c/objective_c_functions.html Objective-C编程语言中方法定义的一般形式如下 - (return_type) method_name:( argumentType1 )argumentName1 joiningArgument2:( argumentType2 )argumentName2 ... joiningArgu…...

    2024/4/27 3:39:07
  11. 【洛谷算法题】P5713-洛谷团队系统【入门2分支结构】

    &#x1f468;‍&#x1f4bb;博客主页&#xff1a;花无缺 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P5713-洛谷团队系统【入门2分支结构】&#x1f30f;题目描述&#x1f30f;输入格…...

    2024/4/27 3:39:07
  12. 【ES6.0】- 扩展运算符(...)

    【ES6.0】- 扩展运算符... 文章目录 【ES6.0】- 扩展运算符...一、概述二、拷贝数组对象三、合并操作四、参数传递五、数组去重六、字符串转字符数组七、NodeList转数组八、解构变量九、打印日志十、总结 一、概述 **扩展运算符(...)**允许一个表达式在期望多个参数&#xff0…...

    2024/4/27 12:44:49
  13. 摩根看好的前智能硬件头部品牌双11交易数据极度异常!——是模式创新还是饮鸩止渴?

    文 | 螳螂观察 作者 | 李燃 双11狂欢已落下帷幕&#xff0c;各大品牌纷纷晒出优异的成绩单&#xff0c;摩根士丹利投资的智能硬件头部品牌凯迪仕也不例外。然而有爆料称&#xff0c;在自媒体平台发布霸榜各大榜单喜讯的凯迪仕智能锁&#xff0c;多个平台数据都表现出极度异常…...

    2024/4/26 17:59:13
  14. Go语言常用命令详解(二)

    文章目录 前言常用命令go bug示例参数说明 go doc示例参数说明 go env示例 go fix示例 go fmt示例 go generate示例 总结写在最后 前言 接着上一篇继续介绍Go语言的常用命令 常用命令 以下是一些常用的Go命令&#xff0c;这些命令可以帮助您在Go开发中进行编译、测试、运行和…...

    2024/4/26 22:35:59
  15. 用欧拉路径判断图同构推出reverse合法性:1116T4

    http://cplusoj.com/d/senior/p/SS231116D 假设我们要把 a a a 变成 b b b&#xff0c;我们在 a i a_i ai​ 和 a i 1 a_{i1} ai1​ 之间连边&#xff0c; b b b 同理&#xff0c;则 a a a 能变成 b b b 的充要条件是两图 A , B A,B A,B 同构。 必要性显然&#xff0…...

    2024/4/26 17:00:23
  16. 【NGINX--1】基础知识

    1、在 Debian/Ubuntu 上安装 NGINX 在 Debian 或 Ubuntu 机器上安装 NGINX 开源版。 更新已配置源的软件包信息&#xff0c;并安装一些有助于配置官方 NGINX 软件包仓库的软件包&#xff1a; apt-get update apt install -y curl gnupg2 ca-certificates lsb-release debian-…...

    2024/4/27 3:39:03
  17. Hive默认分割符、存储格式与数据压缩

    目录 1、Hive默认分割符2、Hive存储格式3、Hive数据压缩 1、Hive默认分割符 Hive创建表时指定的行受限&#xff08;ROW FORMAT&#xff09;配置标准HQL为&#xff1a; ... ROW FORMAT DELIMITED FIELDS TERMINATED BY \u0001 COLLECTION ITEMS TERMINATED BY , MAP KEYS TERMI…...

    2024/4/27 13:52:15
  18. 【论文阅读】MAG:一种用于航天器遥测数据中有效异常检测的新方法

    文章目录 摘要1 引言2 问题描述3 拟议框架4 所提出方法的细节A.数据预处理B.变量相关分析C.MAG模型D.异常分数 5 实验A.数据集和性能指标B.实验设置与平台C.结果和比较 6 结论 摘要 异常检测是保证航天器稳定性的关键。在航天器运行过程中&#xff0c;传感器和控制器产生大量周…...

    2024/4/27 13:38:13
  19. --max-old-space-size=8192报错

    vue项目运行时&#xff0c;如果经常运行慢&#xff0c;崩溃停止服务&#xff0c;报如下错误 FATAL ERROR: CALL_AND_RETRY_LAST Allocation failed - JavaScript heap out of memory 因为在 Node 中&#xff0c;通过JavaScript使用内存时只能使用部分内存&#xff08;64位系统&…...

    2024/4/27 1:03:20
  20. 基于深度学习的恶意软件检测

    恶意软件是指恶意软件犯罪者用来感染个人计算机或整个组织的网络的软件。 它利用目标系统漏洞&#xff0c;例如可以被劫持的合法软件&#xff08;例如浏览器或 Web 应用程序插件&#xff09;中的错误。 恶意软件渗透可能会造成灾难性的后果&#xff0c;包括数据被盗、勒索或网…...

    2024/4/27 3:22:12
  21. JS原型对象prototype

    让我简单的为大家介绍一下原型对象prototype吧&#xff01; 使用原型实现方法共享 1.构造函数通过原型分配的函数是所有对象所 共享的。 2.JavaScript 规定&#xff0c;每一个构造函数都有一个 prototype 属性&#xff0c;指向另一个对象&#xff0c;所以我们也称为原型对象…...

    2024/4/26 21:29:56
  22. C++中只能有一个实例的单例类

    C中只能有一个实例的单例类 前面讨论的 President 类很不错&#xff0c;但存在一个缺陷&#xff1a;无法禁止通过实例化多个对象来创建多名总统&#xff1a; President One, Two, Three; 由于复制构造函数是私有的&#xff0c;其中每个对象都是不可复制的&#xff0c;但您的目…...

    2024/4/27 3:39:00
  23. python django 小程序图书借阅源码

    开发工具&#xff1a; PyCharm&#xff0c;mysql5.7&#xff0c;微信开发者工具 技术说明&#xff1a; python django html 小程序 功能介绍&#xff1a; 用户端&#xff1a; 登录注册&#xff08;含授权登录&#xff09; 首页显示搜索图书&#xff0c;轮播图&#xff0…...

    2024/4/26 23:53:24
  24. 电子学会C/C++编程等级考试2022年03月(一级)真题解析

    C/C++等级考试(1~8级)全部真题・点这里 第1题:双精度浮点数的输入输出 输入一个双精度浮点数,保留8位小数,输出这个浮点数。 时间限制:1000 内存限制:65536输入 只有一行,一个双精度浮点数。输出 一行,保留8位小数的浮点数。样例输入 3.1415926535798932样例输出 3.1…...

    2024/4/26 9:43:45
  25. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  26. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  27. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  28. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  29. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  30. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  31. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  32. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  33. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  34. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  35. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  36. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  37. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  38. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  39. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  40. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  41. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  42. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  43. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  44. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57