目录

  • 一、什么是频域
  • 二、傅里叶级数(Fourier Series)的频谱
  • 三、傅里叶级数(Fourier Series)的相位谱
  • 四、傅里叶变换(Fourier Transformation)
  • 五、宇宙耍帅第一公式:欧拉公式
  • 六、指数形式的傅里叶变换
  • 七、学累了,吃点瓜
  • 八、小结

在这里插入图片描述

写在前面
傅里叶无论在信号与系统还是数字信号处理等主干课程,都是绕不过的坎!
教学效果大家都懂,(曾经)已经放弃傅里叶,不巧看到这篇博文,虽然谈不上醍醐灌顶,但也是清楚了不少,尤其配图精美,分享大家,一起学习!

转载自:

链接:原作者知乎专栏
作 者:韩 昊
知 乎:Heinrich
微 博:@花生油工人
知乎专栏:与时间无关的故事

谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。(感动,有这样的老师让学生铭记,果断保留!)
转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了。

这篇文章的核心思想就是

要让读者在不看任何数学公式的情况下理解傅里叶分析。
傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。

————以上是定场诗————

下面进入正题:

抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多……

p.s.本文无论是cos还是sin,都统一用“正弦波”(Sine Wave)一词来代表简谐波。

一、什么是频域

从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。

先举一个公式上并非很恰当,但意义上再贴切不过的例子:

在你的理解中,一段音乐是什么呢?
在这里插入图片描述

这是我们对音乐最普遍的理解,一个随着时间变化的震动。但我相信对于乐器小能手们来说,音乐更直观的理解是这样的:

在这里插入图片描述

好的!下课,同学们再见。
是的,其实这一段写到这里已经可以结束了。上图是音乐在时域的样子,而下图则是音乐在频域的样子。所以频域这一概念对大家都从不陌生,只是从来没意识到而已。

现在我们可以回过头来重新看看一开始那句痴人说梦般的话:世界是永恒的。

将以上两图简化:

时域:
在这里插入图片描述
频域:
在这里插入图片描述

在时域,我们观察到钢琴的琴弦一会上一会下的摆动,就如同一支股票的走势;而在频域,只有那一个永恒的音符。

所以

你眼中看似落叶纷飞变化无常的世界,实际只是躺在上帝怀中一份早已谱好的乐章。

抱歉,这不是一句鸡汤文,而是黑板上确凿的公式:傅里叶同学告诉我们,任何周期函数,都可以看作是不同振幅,不同相位正弦波的叠加。在第一个例子里我们可以理解为,利用对不同琴键不同力度,不同时间点的敲击,可以组合出任何一首乐曲。

而贯穿时域与频域的方法之一,就是传中说的傅里叶分析。傅里叶分析可分为傅里叶级数(Fourier Serie)傅里叶变换(Fourier Transformation),我们从简单的开始谈起。

二、傅里叶级数(Fourier Series)的频谱

还是举个栗子并且有图有真相才好理解。
在这里插入图片描述

如果我说我能用前面说的正弦曲线波叠加出一个带90度角的矩形波来,你会相信吗?你不会,就像当年的我一样。但是看看下图:

在这里插入图片描述

第一幅图是一个郁闷的正弦波cos(x)

第二幅图是2个卖萌的正弦波的叠加cos(x)+a.cos(3x)

第三幅图是4个发春的正弦波的叠加

第四幅图是10个便秘的正弦波的叠加

随着正弦波数量逐渐的增长,他们最终会叠加成一个标准的矩形,大家从中体会到了什么道理?

只要努力,弯的都能掰直!

随着叠加的递增,所有正弦波中上升的部分逐渐让原本缓慢增加的曲线不断变陡,而所有正弦波中下降的部分又抵消了上升到最高处时继续上升的部分使其变为水平线。一个矩形就这么叠加而成了。但是要多少个正弦波叠加起来才能形成一个标准90度角的矩形波呢?不幸的告诉大家,答案是无穷多个。(上帝:我能让你们猜着我?)

不仅仅是矩形,你能想到的任何波形都是可以如此方法用正弦波叠加起来的。这是没
有接触过傅里叶分析的人在直觉上的第一个难点,但是一旦接受了这样的设定,游戏就开始有意思起来了。

还是上图的正弦波累加成矩形波,我们换一个角度来看看:
在这里插入图片描述

在这几幅图中,最前面黑色的线就是所有正弦波叠加而成的总和,也就是越来越接近矩形波的那个图形。而后面依不同颜色排列而成的正弦波就是组合为矩形波的各个分量。这些正弦波按照频率从低到高从前向后排列开来,而每一个波的振幅都是不同的。一定有细心的读者发现了,每两个正弦波之间都还有一条直线,那并不是分割线,而是振幅为0的正弦波!也就是说,为了组成特殊的曲线,有些正弦波成分是不需要的。

这里,不同频率的正弦波我们成为频率分量。

好了,关键的地方来了!!

如果我们把第一个频率最低的频率分量看作“1”,我们就有了构建频域的最基本单元。

对于我们最常见的有理数轴,数字“1”就是有理数轴的基本单元。

时域的基本单元就是“1秒”,如果我们将一个角频率为w0的正弦波cos(w0t)看作基础,那么频域的基本单元就是w0

有了“1”,还要有“0”才能构成世界,那么频域的“0”是什么呢?cos(0t)就是一个周期无限长的正弦波,也就是一条直线!所以在频域,0频率也被称为直流分量,在傅里叶级数的叠加中,它仅仅影响全部波形相对于数轴整体向上或是向下而不改变波的形状。

接下来,让我们回到初中,回忆一下已经死去的八戒,啊不,已经死去的老师是怎么定义正弦波的吧。

在这里插入图片描述

正弦波就是一个圆周运动在一条直线上的投影。所以频域的基本单元也可以理解为一个始终在旋转的圆
在这里插入图片描述

想看动图的同学请戳这里:

科学上网:
File:Fourier series square wave circles animation.gif
File:Fourier series sawtooth wave circles animation.gif

在这里插入图片描述
在这里插入图片描述

点出去的朋友不要被wiki拐跑了,wiki写的哪有这里的文章这么没节操是不是。

介绍完了频域的基本组成单元,我们就可以看一看一个矩形波,在频域里的另一个模样了:

在这里插入图片描述

这是什么奇怪的东西?
这就是矩形波在频域的样子,是不是完全认不出来了?教科书一般就给到这里然后留给了读者无穷的遐想,以及无穷的吐槽,其实教科书只要补一张图就足够了:频域图像,也就是俗称的频谱,就是——

在这里插入图片描述

再清楚一点:

在这里插入图片描述

可以发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线。振幅为0的正弦波。

动图请戳:
File:Fourier series and transform.gif

在这里插入图片描述

老实说,在我学傅里叶变换时,维基的这个图还没有出现,那时我就想到了这种表达方法,而且,后面还会加入维基没有表示出来的另一个谱——相位谱。(原作者好强!这句话不能删,哈哈

但是在讲相位谱之前,我们先回顾一下刚刚的这个例子究竟意味着什么。记得前面说过的那句“世界是静止的”吗?估计好多人对这句话都已经吐槽半天了。想象一下,世界上每一个看似混乱的表象,实际都是一条时间轴上不规则的曲线,但实际这些曲线都是由这些无穷无尽的正弦波组成。我们看似不规律的事情反而是规律的正弦波在时域上的投影,而正弦波又是一个旋转的圆在直线上的投影。那么你的脑海中会产生一个什么画面呢?(假的假的都是假的,原作者在哲学?)

我们眼中的世界就像皮影戏的大幕布,幕布的后面有无数的齿轮,大齿轮带动小齿轮,小齿轮再带动更小的。在最外面的小齿轮上有一个小人——那就是我们自己。我们只看到这个小人毫无规律的在幕布前表演,却无法预测他下一步会去哪。而幕布后面的齿轮却永远一直那样不停的旋转,永不停歇。这样说来有些宿命论的感觉。说实话,这种对人生的描绘是我一个朋友在我们都是高中生的时候感叹的,当时想想似懂非懂,直到有一天我学到了傅里叶级数……

三、傅里叶级数(Fourier Series)的相位谱

上一章的关键词是:从侧面看。这一章的关键词是:从下面看

在这一章最开始,我想先回答很多人的一个问题:傅里叶分析究竟是干什么用的?这段相对比较枯燥,已经知道了的同学可以直接跳到下一个分割线。

先说一个最直接的用途。无论听广播还是看电视,我们一定对一个词不陌生——频道。频道频道,就是频率的通道,不同的频道就是将不同的频率作为一个通道来进行信息传输。下面大家尝试一件事:

先在纸上画一个sin(x),不一定标准,意思差不多就行。不是很难吧。

好,接下去画一个sin(3x)+sin(5x)的图形。

别说标准不标准了,曲线什么时候上升什么时候下降你都不一定画的对吧?

好,画不出来不要紧,我把sin(3x)+sin(5x)的曲线给你,但是前提是你不知道这个曲线的方程式,现在需要你把sin(5x)给我从图里拿出去,看看剩下的是什么。这基本是不可能做到的。

但是在频域呢?则简单的很,无非就是几条竖线而已。(时域复杂,频域简洁)

所以很多在时域看似不可能做到的数学操作,在频域相反很容易。这就是需要傅里叶变换的地方。尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为滤波,是信号处理最重要的概念之一,只有在频域才能轻松的做到。

再说一个更重要,但是稍微复杂一点的用途——求解微分方程。(这段有点难度,看不懂的可以直接跳过这段)微分方程的重要性不用我过多介绍了。各行各业都用的到。但是求解微分方程却是一件相当麻烦的事情。因为除了要计算加减乘除,还要计算微分积分。而傅里叶变换则可以让微分和积分在频域中变为乘法和除法,大学数学瞬间变小学算术有没有。

傅里叶分析当然还有其他更重要的用途,我们随着讲随着提。

————————————————————————————————

下面我们继续说相位谱:

通过时域到频域的变换,我们得到了一个从侧面看的频谱,但是这个频谱并没有包含时域中全部的信息。因为频谱只代表每一个对应的正弦波的振幅是多少,而没有提到相位。基础的正弦波A.sin(wt+θ)中,振幅,频率,相位缺一不可,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。那么这个相位谱在哪呢?我们看下图,这次为了避免图片太混论,我们用7个波叠加的图。

在这里插入图片描述

鉴于正弦波是周期的,我们需要设定一个用来标记正弦波位置的东西。在图中就是那些小红点。小红点是距离频率轴最近的波峰,而这个波峰所处的位置离频率轴有多远呢?为了看的更清楚,我们将红色的点投影到下平面,投影点我们用粉色点来表示。当然,这些粉色的点只标注了波峰距离频率轴的距离,并不是相位。

在这里插入图片描述

这里需要纠正一个概念:时间差并不是相位差。如果将全部周期看作2Pi或者360度的话,相位差则是时间差在一个周期中所占的比例。我们将时间差除周期再乘2Pi,就得到了相位差。
在完整的立体图中,我们将投影得到的时间差依次除以所在频率的周期,就得到了最下面的相位谱。所以,频谱是从侧面看,相位谱是从下面看。

下次偷看女生裙底被发现的话,可以告诉她:“对不起,我只是想看看你的相位谱。”

注意到,相位谱中的相位除了0,就是Pi。因为cos(t+Pi)=-cos(t),所以实际上相位为Pi的波只是上下翻转了而已。对于周期方波的傅里叶级数,这样的相位谱已经是很简单的了。另外值得注意的是,由于cos(t+2Pi)=cos(t),所以相位差是周期的,pi和3pi,5pi,7pi都是相同的相位。人为定义相位谱的值域为(-pi,pi],所以图中的相位差均为Pi。

最后来一张大集合:

在这里插入图片描述

四、傅里叶变换(Fourier Transformation)

相信通过前面三章,大家对频域以及傅里叶级数都有了一个全新的认识。但是文章在一开始关于钢琴琴谱的例子我曾说过,这个栗子是一个公式错误,但是概念典型的例子。所谓的公式错误在哪里呢?

傅里叶级数的本质是将一个周期的信号分解成无限多分开的(离散的)正弦波,但是宇宙似乎并不是周期的。曾经在学数字信号处理的时候写过一首打油诗:

往昔连续非周期,
回忆周期不连续,
任你ZT、DFT,
还原不回去。
请无视我渣一样的文学水平……,针不戳)

在这个世界上,有的事情一期一会,永不再来,并且时间始终不曾停息地将那些刻骨铭心的往昔连续的标记在时间点上。但是这些事情往往又成为了我们格外宝贵的回忆,在我们大脑里隔一段时间就会周期性的蹦出来一下,可惜这些回忆都是零散的片段,往往只有最幸福的回忆,而平淡的回忆则逐渐被我们忘却。

因为,往昔是一个连续的非周期信号,而回忆是一个周期离散信号。

是否有一种数学工具将连续非周期信号变换为周期离散信号呢?抱歉,真没有。

比如傅里叶级数,在时域是一个周期且连续的函数,而在频域是一个非周期离散的函数。这句话比较绕嘴,实在看着费事可以干脆回忆第一章的图片。

而在我们接下去要讲的傅里叶变换,则是将一个时域非周期的连续信号,转换为一个在频域非周期的连续信号。

算了,还是上一张图方便大家理解吧:

在这里插入图片描述

或者我们也可以换一个角度理解:傅里叶变换实际上是对一个周期无限大的函数进行傅里叶变换。
所以说,钢琴谱其实并非一个连续的频谱,而是很多在时间上离散的频率,但是这样的一个贴切的比喻真的是很难找出第二个来了。

因此在傅里叶变换在频域上就从离散谱变成了连续谱。那么连续谱是什么样子呢?

你见过大海么?

为了方便大家对比,我们这次从另一个角度来看频谱,还是傅里叶级数中用到最多的那幅图,我们从频率较高的方向看。

在这里插入图片描述

以上是离散谱,那么连续谱是什么样子呢?
尽情的发挥你的想象,想象这些离散的正弦波离得越来越近,逐渐变得连续……

直到变得像波涛起伏的大海:

在这里插入图片描述

通过这样两幅图去比较,大家应该可以理解如何从离散谱变成了连续谱的了吧?原来离散谱的叠加,变成了连续谱的累积。所以在计算上也从求和符号变成了积分符号。

不过,这个故事还没有讲完,接下去,我保证让你看到一幅比上图更美丽壮观的图片,但是这里需要介绍到一个数学工具才能然故事继续,这个工具就是——

五、宇宙耍帅第一公式:欧拉公式

虚数i这个概念大家在高中就接触过,但那时我们只知道它是-1的平方根,可是它真正的意义是什么呢?

在这里插入图片描述

这里有一条数轴,在数轴上有一个红色的线段,它的长度是1。当它乘以3的时候,它的长度发生了变化,变成了蓝色的线段,而当它乘以-1的时候,就变成了绿色的线段,或者说线段在数轴上围绕原点旋转了180度。
我们知道乘-1其实就是乘了两次 i使线段旋转了180度,那么乘一次 i 呢——答案很简单——旋转了90度。

在这里插入图片描述

同时,我们获得了一个垂直的虚数轴。实数轴与虚数轴共同构成了一个复数的平面,也称复平面。这样我们就了解到,乘虚数i的一个功能——旋转。
现在,就有请宇宙第一耍帅公式欧拉公式隆重登场——

在这里插入图片描述

这个公式在数学领域的意义要远大于傅里叶分析,但是乘它为宇宙第一耍帅公式是因为它的特殊形式——当x等于Pi的时候。
在这里插入图片描述

经常有理工科的学生为了跟妹子表现自己的学术功底,用这个公式来给妹子解释数学之美:”石榴姐你看,这个公式里既有自然底数e,自然数1和0,虚数i还有圆周率pi,它是这么简洁,这么美丽啊!“但是姑娘们心里往往只有一句话:”臭屌丝……“

这个公式关键的作用,是将正弦波统一成了简单的指数形式。我们来看看图像上的涵义:

在这里插入图片描述

欧拉公式所描绘的,是一个随着时间变化,在复平面上做圆周运动的点,随着时间的改变,在时间轴上就成了一条螺旋线。如果只看它的实数部分,也就是螺旋线在左侧的投影,就是一个最基础的余弦函数。而右侧的投影则是一个正弦函数。

关于复数更深的理解,大家可以参考:
复数的物理意义

这里不需要讲的太复杂,足够让大家理解后面的内容就可以了。

六、指数形式的傅里叶变换

有了欧拉公式的帮助,我们便知道:正弦波的叠加,也可以理解为螺旋线的叠加在实数空间的投影。而螺旋线的叠加如果用一个形象的栗子来理解是什么呢?

光波

高中时我们就学过,自然光是由不同颜色的光叠加而成的,而最著名的实验就是牛顿师傅的三棱镜实验:

在这里插入图片描述

所以其实我们在很早就接触到了光的频谱,只是并没有了解频谱更重要的意义。
但不同的是,傅里叶变换出来的频谱不仅仅是可见光这样频率范围有限的叠加,而是频率从0到无穷所有频率的组合。

这里,我们可以用两种方法来理解正弦波:

第一种前面已经讲过了,就是螺旋线在实轴的投影。

另一种需要借助欧拉公式的另一种形式去理解:

在这里插入图片描述

将以上两式相加再除2,得到:

在这里插入图片描述

这个式子可以怎么理解呢?

我们刚才讲过,e(it)可以理解为一条逆时针旋转的螺旋线,那么e(-it)则可以理解为一条顺时针旋转的螺旋线。而cos(t)则是这两条旋转方向不同的螺旋线叠加的一半,因为这两条螺旋线的虚数部分相互抵消掉了!

举个例子的话,就是极化方向不同的两束光波,磁场抵消,电场加倍。

这里,逆时针旋转的我们称为正频率,而顺时针旋转的我们称为负频率(注意不是复频率)。

好了,刚才我们已经看到了大海——连续的傅里叶变换频谱,现在想一想,连续的螺旋线会是什么样子:

想象一下再往下翻:

|

|

|

|

|

|

|

|

|

在这里插入图片描述

是不是很漂亮?
你猜猜,这个图形在时域是什么样子?

在这里插入图片描述

哈哈,是不是觉得被狠狠扇了一个耳光。数学就是这么一个把简单的问题搞得很复杂的东西。
顺便说一句,那个像大海螺一样的图,为了方便观看,我仅仅展示了其中正频率的部分,负频率的部分没有显示出来。

如果你认真去看,海螺图上的每一条螺旋线都是可以清楚的看到的,每一条螺旋线都有着不同的振幅(旋转半径),频率(旋转周期)以及相位。而将所有螺旋线连成平面,就是这幅海螺图了。

好了,讲到这里,相信大家对傅里叶变换以及傅里叶级数都有了一个形象的理解了,我们最后用一张图来总结一下:

在这里插入图片描述

好了,傅里叶的故事终于讲完了。下面来讲讲原作者的故事:

七、学累了,吃点瓜

这篇文章第一次被写下来的地方你们绝对猜不到在哪,是在一张高数考试的卷子上。当时为了刷分,我重修了高数(上),但是后来时间紧压根没复习,所以我就抱着裸考的心态去了考场。但是到了考场我突然意识到,无论如何我都不会比上次考的更好了,所以干脆写一些自己对于数学的想法吧。于是用了一个小时左右的时间在试卷上洋洋洒洒写了本文的第一草稿。

你们猜我的了多少分?

6分

没错,就是这个数字。而这6分的成绩是因为最后我实在无聊,把选择题全部填上了C,应该是中了两道,得到了这宝贵的6分。说真的,我很希望那张卷子还在,但是应该不太可能了。

那么你们猜猜我第一次信号与系统考了多少分呢?

45分

没错,刚刚够参加补考的。但是我心一横没去考,决定重修。因为那个学期在忙其他事情,学习真的就抛在脑后了。但是我知道这是一门很重要的课,无论如何我要吃透它。说真的,信号与系统这门课几乎是大部分工科课程的基础,尤其是通信专业。

在重修的过程中,我仔细分析了每一个公式,试图给这个公式以一个直观的理解。虽然我知道对于研究数学的人来说,这样的学习方法完全没有前途可言,因为随着概念愈加抽象,维度越来越高,这种图像或者模型理解法将完全丧失作用。但是对于一个工科生来说,足够了。

后来来了德国,这边学校要求我重修信号与系统时,我彻底无语了。但是没办法,德国人有时对中国人就是有种藐视,觉得你的教育不靠谱。所以没办法,再来一遍吧。

这次,我考了满分,而及格率只有一半。

老实说,数学工具对于工科生和对于理科生来说,意义是完全不同的。工科生只要理解了,会用,会查,就足够了。但是很多高校却将这些重要的数学课程教给数学系的老师去教。这样就出现一个问题,数学老师讲得天花乱坠,又是推理又是证明,但是学生心里就只有一句话:学这货到底干嘛用的?

缺少了目标的教育是彻底的失败。

在开始学习一门数学工具的时候,学生完全不知道这个工具的作用,现实涵义。而教材上有只有晦涩难懂,定语就二十几个字的概念以及看了就眼晕的公式。能学出兴趣来就怪了!

好在我很幸运,遇到了大连海事大学的吴楠老师。他的课全程来看是两条线索,一条从上而下,一条从下而上。先讲本门课程的意义,然后指出这门课程中会遇到哪样的问题,让学生知道自己学习的某种知识在现实中扮演的角色。然后再从基础讲起,梳理知识树,直到延伸到另一条线索中提出的问题,完美的衔接在一起!

这样的教学模式,我想才是大学里应该出现的。

不巧,我们信号与系统正好赶上2020疫情,在家学习,加上不怎么负责的任课老师,期间蹭过几次系主任的课,针不戳,可惜前面划水太多,无力回天!
原本是放弃了信号与通信这部分内容。想着以后去搬砖,也用不到!现在做东西,好像一定要用不可,果真,没有那些知识是没有用的!
换个角度看世界,挺好的!

八、小结

本文只是介绍了一种对傅里叶分析新颖的理解方法,对于求学,还是要踏踏实实弄清楚公式和概念,学习,真的没有捷径。但至少通过本文,我希望可以让这条漫长的路变得有意思一些。

最后,祝大家都能在学习中找到乐趣。…

在这里插入图片描述

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. 【报告分享】2020年面向人工智能新基建的知识图谱行业白皮书-艾瑞咨询(附下载)

    摘要:新型基础设施建设是为加快国家规划建设推出的重大工程和基础设施建设项目,面向新产业、新业态和新模式,同时助力传统基础设施的智能化改造。新基建三大规划领域中,两大领域都直接提及人工智能。新基建背景下,人工智能将迎来新…...

    2024/5/1 13:01:31
  2. 【报告分享】2020中国Z世代购车倾向调查-OPPO+J.D.POWER(附下载)

    摘要:2020年11月19日,在今年最后的一场汽车行业的盛宴——2020广州车展即将开幕之际,OPPO在广州举办了一场营销汽车行业年度峰会。这场以“驰骋赛道 全速增长”为主题,从消费者趋势、终端媒体价值、营销方法等板块,详细解构汽车行…...

    2024/4/29 2:54:03
  3. 数值策划科普-------阈值

    数值策划科普-------阈值 文章目录数值策划科普-------阈值一、阈值的概念二、阈值的效果1. 区间体验相同(阶段)2. 防止溢出(超越上限)三、阈值的作用1. 提高用户体验感2. 固定帧率(防止掉帧出现错误)3. 游…...

    2024/5/1 11:12:04
  4. 新闻推荐-task02

    字段含义 train_click_log.csv文件数据中每个字段的含义 user_id: 用户的唯一标识 click_article_id: 用户点击的文章唯一标识 click_timestamp: 用户点击文章时的时间戳 click_environment: 用户点击文章的环境 click_deviceGroup: 用户点击文章的设备组 click_os: 用户点击…...

    2024/5/7 11:33:31
  5. 文献学习(part10)--元自步学习

    学习笔记,仅供参考,有错必究 从文献中按照本人的学习情况不完全摘录; 文章目录 元自步学习摘要课程学习与自步学习自步学习的基本执行模式自步学习简介典型的自步学习算法超参数优化元自步学习算法元自步学习 摘要 自步学习是近年来机器学习领域提出的一种启发于人和动物“…...

    2024/4/27 23:35:08
  6. Hive面试题(持续更新)

    1、Hive的架构 2、Hive的特点 数据存储位置 Hive的数据存储在hdfs上,元数据可以存储在指定的地方比如mysql,PostgreSQL等。数据更新 Hive处理数据时一般不对数据进行改写,因为它不支持行级别的增删操作,如果要进行更新数据&#…...

    2024/3/23 15:27:27
  7. DFT实训教程笔记4(bibili版本)- Automatic Test Pattern Generation

    dd...

    2024/5/1 5:34:44
  8. Python中的四舍五入

    Python编程时经常遇到四舍五入保留小数有效位数的问题 比如对数字0.9562四舍五入保留2位小数,使用经典的格式化转换 看起来一切正常, 但是换成0.9552呢 依然正常,换成0.9550呢 出现问题了,按理应该输出0.96才是,结果却…...

    2024/4/30 12:07:45
  9. FFmpeg源码分析:AVCodecContext结构体

    当你和别人相处的时候,也应该像你在读书一样,一定要集中精力。读书的时候,要将全部的精力都集中到书本的内容当中;与别人相处的时候,将注意力倾注到自己的所见所闻里,这一点是很重要的。 AVCodecContext结构…...

    2024/4/30 13:05:07
  10. 农心杯三国围棋擂台赛中轮空队的取胜概率

    今年的农心杯三国围棋擂台赛进行地如火如荼。到目前为止,中日韩三队每队都只剩下了2个人。 有人提出,三个队进行擂台赛时,首次轮空的那个队,其胜率有多高呢?假设任意2个棋手对弈,胜率均为50%. 就这个问题&a…...

    2024/5/2 4:14:19
  11. Python中Numpy库的统计相关

    cible 学习笔记 统计相关 一、次序统计 1.计算最小值 numpy.amin(a[, axisNone, outNone, keepdimsnp._NoValue, initialnp._NoValue, wherenp._NoValue]) import numpy as np x np.arange(10,19).reshape(3,3) #x np.array([[10, 11, 12],[13, 14, 15],[16, 17, 18]]) …...

    2024/4/30 23:34:07
  12. 【Java Web基础】(十五)JavaWeb前端脚本库——JQuery(Ajax)及$()函数的两种用法

    JQuery(Ajax)的理解及实践一、概念二、JQuery的特点三、JQuery的$()函数的两种用法1、jQuery(selector,context)2、jQuery(element or elementsArray)一、概念 jQuery是一套简洁、快速、灵活的JavaScript脚本库,它是由John Resig于2006年创建…...

    2024/4/24 20:47:43
  13. 【C++】课堂练习集锦(复习笔记)

    持续更新中 文章目录概述数据类型与输入输出运算符和表达式选择与循环结构数组指针与引用概述 1.在每个C程序中都必须包含有这样一个函数,该函数的函数名为() A.main B. MAIN C. name D. function 2. 以下叙述不正确的是(&#x…...

    2024/4/24 20:47:39
  14. Unity Shader学习总结(二)

    漫反射 漫反射根据就算位置不同分为逐顶点漫反射和逐像素漫反射。 (1)在顶点着色器中计算。 此方法称为 逐顶点光照 或 高洛德着色(Gouraud shading), 在每个顶点上计算光照,然后在渲染图元内部进行线性插值&#xf…...

    2024/4/30 14:38:08
  15. Lucene 和 Kibana、ElasticSeach、Spring Data ElasticSearch

    什么是全文检索 数据分类 生活中的数据总体分为两种:结构化数据和非结构化数据。 结构化数据 - 行数据,可以用二维表结构来逻辑表达实现的数据;指具有固定格式或有限长度的数据,如数据库,元数据等。 非结构化数据 …...

    2024/4/24 20:47:36
  16. Linux多线程(第三次作业)

    作业已交&#xff01; 1、解释程序中加粗句子的功能 #include<stdio.h> #include<pthread.h> static pthread_mutex_t testlock; pthread_t test_thread; void *test() { pthread_mutex_lock(&testlock); //阻塞式对互斥量testlock加锁&#xff0c;主线程…...

    2024/3/23 15:04:32
  17. 最近学习之redis

    所有的存储key 再redis底层都是以string存储&#xff1b;value类型&#xff1a;value类型&#xff1a;是根据指令进行分类的&#xff1b; 存储value的编码encoding会根据value长度变化而变被问过&#xff1a;存储对象用&#xff1f; 答hmset&#xff1b; 问 1000w个对象 怎么存…...

    2024/4/29 4:37:07
  18. IMX6ULL使用网线进行nfs挂载

    关于使用网线连接开发板使用nfs服务对开发板和虚拟机下的ubuntu进行连接 工具&#xff1a; 网线、ubuntu 16.04、PC、网线 nfs挂载成功的前提便是&#xff1a; win、ubuntu、以及开发板三者之间的网络连接正常&#xff08;即三者之间进行互相ping能够成功通信&#xff09; 且…...

    2024/5/4 3:29:17
  19. Centos7 完美解决本地Navicat连不上Linux虚拟机MySQL数据库

    linux登录到 mysql数据库: mysql -uroot -p输入密码 切换到mysql数据库 mysql>use mysql然后 mysql>grant all privileges on *.* to root"%" identified by "密码";这表示是给本地ip赋予了所有的权限&#xff0c;包括远程访问权限&#xff0c;%…...

    2024/4/30 13:30:07
  20. 面试题总结(旧)

    面试题总结&#xff08;旧&#xff09; 1、get与post的区别 GET提交的数据放在URL中&#xff0c;POST则不会。这是最显而易见的差别。这点意味着GET更不安全 &#xff08;POST也不安全&#xff0c;因为HTTP是明文传输抓包就能获取数据内容&#xff0c;要想安全还得加密&…...

    2024/5/2 2:00:44

最新文章

  1. QpushButton绘制圆角矩形并绘制背景颜色

    要在QPushButton的paintEvent中绘制按钮的颜色&#xff0c;可以创建一个自定义的QPushButton类&#xff0c;并重写它的paintEvent函数。在paintEvent函数中&#xff0c;可以使用QPainter来绘制按钮的背景颜色。 以下是一个简单的示例代码&#xff0c;演示如何在自定义的QPushB…...

    2024/5/10 5:28:30
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/5/9 21:23:04
  3. 自动化标准Makefile与lds

    makefile的自动化&#xff0c;需要使用变量&#xff0c;以及自动变量。 实行命令行与参数的分离。 命令行只与变量打交道&#xff0c;而变量则携带不同的参数&#xff0c;这样&#xff0c;通过修改变量&#xff0c;命令的执行结果不同。 可以简单理解为&#xff0c;命令行是个…...

    2024/5/10 0:21:09
  4. 技术与安全的交织

    引言 介绍数字化转型对企业出海策略的影响&#xff0c;强调在全球市场中成功的关键因素之一是有效利用网络技术&#xff0c;如SOCKS5代理、代理IP&#xff0c;以及确保网络安全。 第一部分&#xff1a;网络技术的基础 SOCKS5代理 定义和工作原理 SOCKS5代理与网络匿名性的关系…...

    2024/5/10 0:15:38
  5. 416. 分割等和子集问题(动态规划)

    题目 题解 class Solution:def canPartition(self, nums: List[int]) -> bool:# badcaseif not nums:return True# 不能被2整除if sum(nums) % 2 ! 0:return False# 状态定义&#xff1a;dp[i][j]表示当背包容量为j&#xff0c;用前i个物品是否正好可以将背包填满&#xff…...

    2024/5/10 1:36:26
  6. 【Java】ExcelWriter自适应宽度工具类(支持中文)

    工具类 import org.apache.poi.ss.usermodel.Cell; import org.apache.poi.ss.usermodel.CellType; import org.apache.poi.ss.usermodel.Row; import org.apache.poi.ss.usermodel.Sheet;/*** Excel工具类** author xiaoming* date 2023/11/17 10:40*/ public class ExcelUti…...

    2024/5/9 7:40:42
  7. Spring cloud负载均衡@LoadBalanced LoadBalancerClient

    LoadBalance vs Ribbon 由于Spring cloud2020之后移除了Ribbon&#xff0c;直接使用Spring Cloud LoadBalancer作为客户端负载均衡组件&#xff0c;我们讨论Spring负载均衡以Spring Cloud2020之后版本为主&#xff0c;学习Spring Cloud LoadBalance&#xff0c;暂不讨论Ribbon…...

    2024/5/9 2:44:26
  8. TSINGSEE青犀AI智能分析+视频监控工业园区周界安全防范方案

    一、背景需求分析 在工业产业园、化工园或生产制造园区中&#xff0c;周界防范意义重大&#xff0c;对园区的安全起到重要的作用。常规的安防方式是采用人员巡查&#xff0c;人力投入成本大而且效率低。周界一旦被破坏或入侵&#xff0c;会影响园区人员和资产安全&#xff0c;…...

    2024/5/10 2:07:45
  9. VB.net WebBrowser网页元素抓取分析方法

    在用WebBrowser编程实现网页操作自动化时&#xff0c;常要分析网页Html&#xff0c;例如网页在加载数据时&#xff0c;常会显示“系统处理中&#xff0c;请稍候..”&#xff0c;我们需要在数据加载完成后才能继续下一步操作&#xff0c;如何抓取这个信息的网页html元素变化&…...

    2024/5/9 3:15:57
  10. 【Objective-C】Objective-C汇总

    方法定义 参考&#xff1a;https://www.yiibai.com/objective_c/objective_c_functions.html Objective-C编程语言中方法定义的一般形式如下 - (return_type) method_name:( argumentType1 )argumentName1 joiningArgument2:( argumentType2 )argumentName2 ... joiningArgu…...

    2024/5/9 5:40:03
  11. 【洛谷算法题】P5713-洛谷团队系统【入门2分支结构】

    &#x1f468;‍&#x1f4bb;博客主页&#xff1a;花无缺 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P5713-洛谷团队系统【入门2分支结构】&#x1f30f;题目描述&#x1f30f;输入格…...

    2024/5/9 7:40:40
  12. 【ES6.0】- 扩展运算符(...)

    【ES6.0】- 扩展运算符... 文章目录 【ES6.0】- 扩展运算符...一、概述二、拷贝数组对象三、合并操作四、参数传递五、数组去重六、字符串转字符数组七、NodeList转数组八、解构变量九、打印日志十、总结 一、概述 **扩展运算符(...)**允许一个表达式在期望多个参数&#xff0…...

    2024/5/10 2:07:43
  13. 摩根看好的前智能硬件头部品牌双11交易数据极度异常!——是模式创新还是饮鸩止渴?

    文 | 螳螂观察 作者 | 李燃 双11狂欢已落下帷幕&#xff0c;各大品牌纷纷晒出优异的成绩单&#xff0c;摩根士丹利投资的智能硬件头部品牌凯迪仕也不例外。然而有爆料称&#xff0c;在自媒体平台发布霸榜各大榜单喜讯的凯迪仕智能锁&#xff0c;多个平台数据都表现出极度异常…...

    2024/5/10 2:07:43
  14. Go语言常用命令详解(二)

    文章目录 前言常用命令go bug示例参数说明 go doc示例参数说明 go env示例 go fix示例 go fmt示例 go generate示例 总结写在最后 前言 接着上一篇继续介绍Go语言的常用命令 常用命令 以下是一些常用的Go命令&#xff0c;这些命令可以帮助您在Go开发中进行编译、测试、运行和…...

    2024/5/9 4:12:16
  15. 用欧拉路径判断图同构推出reverse合法性:1116T4

    http://cplusoj.com/d/senior/p/SS231116D 假设我们要把 a a a 变成 b b b&#xff0c;我们在 a i a_i ai​ 和 a i 1 a_{i1} ai1​ 之间连边&#xff0c; b b b 同理&#xff0c;则 a a a 能变成 b b b 的充要条件是两图 A , B A,B A,B 同构。 必要性显然&#xff0…...

    2024/5/9 7:40:35
  16. 【NGINX--1】基础知识

    1、在 Debian/Ubuntu 上安装 NGINX 在 Debian 或 Ubuntu 机器上安装 NGINX 开源版。 更新已配置源的软件包信息&#xff0c;并安装一些有助于配置官方 NGINX 软件包仓库的软件包&#xff1a; apt-get update apt install -y curl gnupg2 ca-certificates lsb-release debian-…...

    2024/5/9 19:47:07
  17. Hive默认分割符、存储格式与数据压缩

    目录 1、Hive默认分割符2、Hive存储格式3、Hive数据压缩 1、Hive默认分割符 Hive创建表时指定的行受限&#xff08;ROW FORMAT&#xff09;配置标准HQL为&#xff1a; ... ROW FORMAT DELIMITED FIELDS TERMINATED BY \u0001 COLLECTION ITEMS TERMINATED BY , MAP KEYS TERMI…...

    2024/5/9 7:40:34
  18. 【论文阅读】MAG:一种用于航天器遥测数据中有效异常检测的新方法

    文章目录 摘要1 引言2 问题描述3 拟议框架4 所提出方法的细节A.数据预处理B.变量相关分析C.MAG模型D.异常分数 5 实验A.数据集和性能指标B.实验设置与平台C.结果和比较 6 结论 摘要 异常检测是保证航天器稳定性的关键。在航天器运行过程中&#xff0c;传感器和控制器产生大量周…...

    2024/5/10 2:07:41
  19. --max-old-space-size=8192报错

    vue项目运行时&#xff0c;如果经常运行慢&#xff0c;崩溃停止服务&#xff0c;报如下错误 FATAL ERROR: CALL_AND_RETRY_LAST Allocation failed - JavaScript heap out of memory 因为在 Node 中&#xff0c;通过JavaScript使用内存时只能使用部分内存&#xff08;64位系统&…...

    2024/5/9 5:02:59
  20. 基于深度学习的恶意软件检测

    恶意软件是指恶意软件犯罪者用来感染个人计算机或整个组织的网络的软件。 它利用目标系统漏洞&#xff0c;例如可以被劫持的合法软件&#xff08;例如浏览器或 Web 应用程序插件&#xff09;中的错误。 恶意软件渗透可能会造成灾难性的后果&#xff0c;包括数据被盗、勒索或网…...

    2024/5/9 4:31:45
  21. JS原型对象prototype

    让我简单的为大家介绍一下原型对象prototype吧&#xff01; 使用原型实现方法共享 1.构造函数通过原型分配的函数是所有对象所 共享的。 2.JavaScript 规定&#xff0c;每一个构造函数都有一个 prototype 属性&#xff0c;指向另一个对象&#xff0c;所以我们也称为原型对象…...

    2024/5/9 16:54:42
  22. C++中只能有一个实例的单例类

    C中只能有一个实例的单例类 前面讨论的 President 类很不错&#xff0c;但存在一个缺陷&#xff1a;无法禁止通过实例化多个对象来创建多名总统&#xff1a; President One, Two, Three; 由于复制构造函数是私有的&#xff0c;其中每个对象都是不可复制的&#xff0c;但您的目…...

    2024/5/10 1:31:37
  23. python django 小程序图书借阅源码

    开发工具&#xff1a; PyCharm&#xff0c;mysql5.7&#xff0c;微信开发者工具 技术说明&#xff1a; python django html 小程序 功能介绍&#xff1a; 用户端&#xff1a; 登录注册&#xff08;含授权登录&#xff09; 首页显示搜索图书&#xff0c;轮播图&#xff0…...

    2024/5/9 6:36:49
  24. 电子学会C/C++编程等级考试2022年03月(一级)真题解析

    C/C++等级考试(1~8级)全部真题・点这里 第1题:双精度浮点数的输入输出 输入一个双精度浮点数,保留8位小数,输出这个浮点数。 时间限制:1000 内存限制:65536输入 只有一行,一个双精度浮点数。输出 一行,保留8位小数的浮点数。样例输入 3.1415926535798932样例输出 3.1…...

    2024/5/9 4:33:29
  25. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  26. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  27. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  28. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  29. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  30. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  31. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  32. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  33. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  34. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  35. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  36. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  37. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  38. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  39. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  40. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  41. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  42. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  43. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  44. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57