文章目录

  • 1、什么是事务?
    • 1.1 为什么需要数据库事务
    • 1.2 什么是数据库事务
    • 1.3 事务如何解决问题
    • 1.4 事务的ACID特性以及实现原理概述
  • 2、并发异常与并发控制技术
    • 2.1 常见的并发异常
    • 2.2 事务的隔离级别
    • 2.3 事务隔离性的实现——常见的并发控制技术
      • 2.3.1 基于封锁的并发控制
      • 2.3.2 基于时间戳的并发控制
      • 2.3.3 基于有效性检查的并发控制
      • 2.3.4 基于快照隔离的并发控制
      • 2.3.5 关于并发控制技术的总结
  • 3. 故障与故障恢复技术
    • 3.1 为什么需要故障恢复技术
    • 3.2 事务的执行过程以及可能产生的问题
    • 3.3 日志的种类和格式
    • 3.4 日志恢复的核心思想
    • 3.5 事务故障中止/正常回滚的恢复流程
    • 3.6 系统崩溃时的恢复过程(带检查点)
      • 3.6.1 一个系统崩溃恢复的例子
  • 4. 总结
  • 5. 参考资料
  • 6.原文链接:

1、什么是事务?

1.1 为什么需要数据库事务

转账是生活中常见的操作,比如从A账户转账100元到B账号。站在用户角度而言,这是一个逻辑上的单一操作,然而在数据库系统中,至少会分成两个步骤来完成:

1.将A账户的金额减少100元
2.将B账户的金额增加100元。
在这里插入图片描述
在这个过程中可能会出现以下问题:

1.转账操作的第一步执行成功,A账户上的钱减少了100元,但是第二步执行失败或者未执行便发生系统崩溃,导致B账户并没有相应增加100元。
2.转账操作刚完成就发生系统崩溃,系统重启恢复时丢失了崩溃前的转账记录。
3.同时又另一个用户转账给B账户,由于同时对B账户进行操作,导致B账户金额出现异常。
为了便于解决这些问题,需要引入数据库事务的概念。

1.2 什么是数据库事务

定义:数据库事务是构成单一逻辑工作单元的操作集合
一个典型的数据库事务如下所示

BEGIN TRANSACTION  //事务开始
SQL1
SQL2
COMMIT/ROLLBACK   //事务提交或回滚

关于事务的定义有几点需要解释下:
1.数据库事务可以包含一个或多个数据库操作,但这些操作构成一个逻辑上的整体。
2.构成逻辑整体的这些数据库操作,要么全部执行成功,要么全部不执行。
3.构成事务的所有操作,要么全都对数据库产生影响,要么全都不产生影响,即不管事务是否执行成功,数据库总能保持一致性状态。
4.以上即使在数据库出现故障以及并发事务存在的情况下依然成立。

1.3 事务如何解决问题

对于上面的转账例子,可以将转账相关的所有操作包含在一个事务中

BEGIN TRANSACTION 
A账户减少100元
B账户增加100元
COMMIT

1.当数据库操作失败或者系统出现崩溃,系统能够以事务为边界进行恢复,不会出现A账户金额减少而B账户未增加的情况。
2.当有多个用户同时操作数据库时,数据库能够以事务为单位进行并发控制,使多个用户对B账户的转账操作相互隔离。
事务使系统能够更方便的进行故障恢复以及并发控制,从而保证数据库状态的一致性。

1.4 事务的ACID特性以及实现原理概述

原子性(Atomicity):事务中的所有操作作为一个整体像原子一样不可分割,要么全部成功,要么全部失败。

一致性(Consistency):事务的执行结果必须使数据库从一个一致性状态到另一个一致性状态。一致性状态是指:1.系统的状态满足数据的完整性约束(主码,参照完整性,check约束等) 2.系统的状态反应数据库本应描述的现实世界的真实状态,比如转账前后两个账户的金额总和应该保持不变。

隔离性(Isolation):并发执行的事务不会相互影响,其对数据库的影响和它们串行执行时一样。比如多个用户同时往一个账户转账,最后账户的结果应该和他们按先后次序转账的结果一样。

持久性(Durability):事务一旦提交,其对数据库的更新就是持久的。任何事务或系统故障都不会导致数据丢失。

在事务的ACID特性中,C即一致性是事务的根本追求,而对数据一致性的破坏主要来自两个方面

1.事务的并发执行
2.事务故障或系统故障
数据库系统是通过并发控制技术和日志恢复技术来避免这种情况发生的。

并发控制技术保证了事务的隔离性,使数据库的一致性状态不会因为并发执行的操作被破坏。
日志恢复技术保证了事务的原子性,使一致性状态不会因事务或系统故障被破坏。同时使已提交的对数据库的修改不会因系统崩溃而丢失,保证了事务的持久性。
在这里插入图片描述

2、并发异常与并发控制技术

2.1 常见的并发异常

在讲解并发控制技术前,先简单介绍下数据库常见的并发异常。

1.脏写
脏写是指事务回滚了其他事务对数据项的已提交修改,比如下面这种情况
在这里插入图片描述
在事务1对数据A的回滚,导致事务2对A的已提交修改也被回滚了。

2.丢失更新
丢失更新是指事务覆盖了其他事务对数据的已提交修改,导致这些修改好像丢失了一样。
在这里插入图片描述
事务1和事务2读取A的值都为10,事务2先将A加上10并提交修改,之后事务2将A减少10并提交修改,A的值最后为,导致事务2对A的修改好像丢失了一样

  1. 脏读
    脏读是指一个事务读取了另一个事务未提交的数据
    在这里插入图片描述
    在事务1对A的处理过程中,事务2读取了A的值,但之后事务1回滚,导致事务2读取的A是未提交的脏数据。

4.不可重复读
不可重复读是指一个事务对同一数据的读取结果前后不一致。脏读和不可重复读的区别在于:前者读取的是事务未提交的脏数据,后者读取的是事务已经提交的数据,只不过因为数据被其他事务修改过导致前后两次读取的结果不一样,比如下面这种情况
在这里插入图片描述
由于事务2对A的已提交修改,事务1前后两次读取的结果不一致。
5.幻读
幻读是指事务读取某个范围的数据时,因为其他事务的操作导致前后两次读取的结果不一致。幻读和不可重复读的区别在于,不可重复读是针对确定的某一行数据而言,而幻读是针对不确定的多行数据。因而幻读通常出现在带有查询条件的范围查询中,比如下面这种情况:
在这里插入图片描述
事务1查询A<5的数据,由于事务2插入了一条A=4的数据,导致事务1两次查询得到的结果不一样

2.2 事务的隔离级别

事务具有隔离性,理论上来说事务之间的执行不应该相互产生影响,其对数据库的影响应该和它们串行执行时一样。

然而完全的隔离性会导致系统并发性能很低,降低对资源的利用率,因而实际上对隔离性的要求会有所放宽,这也会一定程度造成对数据库一致性要求降低

SQL标准为事务定义了不同的隔离级别,从低到高依次是

读未提交(READ UNCOMMITTED)
读已提交(READ COMMITTED)
可重复读(REPEATABLE READ)
串行化(SERIALIZABLE)
事务的隔离级别越低,可能出现的并发异常越多,但是通常而言系统能提供的并发能力越强。

不同的隔离级别与可能的并发异常的对应情况如下表所示,有一点需要强调,这种对应关系只是理论上的,对于特定的数据库实现不一定准确,比如mysql
的Innodb存储引擎通过Next-Key Locking技术在可重复读级别就消除了幻读的可能。
在这里插入图片描述
所有事务隔离级别都不允许出现脏写,而串行化可以避免所有可能出现的并发异常,但是会极大的降低系统的并发处理能力。

2.3 事务隔离性的实现——常见的并发控制技术

并发控制技术是实现事务隔离性以及不同隔离级别的关键,实现方式有很多,按照其对可能冲突的操作采取的不同策略可以分为乐观并发控制和悲观并发控制两大类。

乐观并发控制:对于并发执行可能冲突的操作,假定其不会真的冲突,允许并发执行,直到真正发生冲突时才去解决冲突,比如让事务回滚。

悲观并发控制:对于并发执行可能冲突的操作,假定其必定发生冲突,通过让事务等待(锁)或者中止(时间戳排序)的方式使并行的操作串行执行。

2.3.1 基于封锁的并发控制

核心思想:对于并发可能冲突的操作,比如读-写,写-读,写-写,通过锁使它们互斥执行。
锁通常分为共享锁和排他锁两种类型

1.共享锁(S):事务T对数据A加共享锁,其他事务只能对A加共享锁但不能加排他锁。
2.排他锁(X):事务T对数据A加排他锁,其他事务对A既不能加共享锁也不能加排他锁
基于锁的并发控制流程:

事务根据自己对数据项进行的操作类型申请相应的锁(读申请共享锁,写申请排他锁)

申请锁的请求被发送给锁管理器。锁管理器根据当前数据项是否已经有锁以及申请的和持有的锁是否冲突决定是否为该请求授予锁。

若锁被授予,则申请锁的事务可以继续执行;若被拒绝,则申请锁的事务将进行等待,直到锁被其他事务释放。

可能出现的问题:

死锁:多个事务持有锁并互相循环等待其他事务的锁导致所有事务都无法继续执行。

饥饿:数据项A一直被加共享锁,导致事务一直无法获取A的排他锁。

对于可能发生冲突的并发操作,锁使它们由并行变为串行执行,是一种悲观的并发控制。

2.3.2 基于时间戳的并发控制

核心思想:对于并发可能冲突的操作,基于时间戳排序规则选定某事务继续执行,其他事务回滚。

系统会在每个事务开始时赋予其一个时间戳,这个时间戳可以是系统时钟也可以是一个不断累加的计数器值,当事务回滚时会为其赋予一个新的时间戳,先开始的事务时间戳小于后开始事务的时间戳。

每一个数据项Q有两个时间戳相关的字段:
W-timestamp(Q):成功执行write(Q)的所有事务的最大时间戳
R-timestamp(Q):成功执行read(Q)的所有事务的最大时间戳

时间戳排序规则如下:

假设事务T发出read(Q),T的时间戳为TS
a.若TS(T)<W-timestamp(Q),则T需要读入的Q已被覆盖。此
read操作将被拒绝,T回滚。
b.若TS(T)>=W-timestamp(Q),则执行read操作,同时把
R-timestamp(Q)设置为TS(T)与R-timestamp(Q)中的最大值

假设事务T发出write(Q)
a.若TS(T)<R-timestamp(Q),write操作被拒绝,T回滚。
b.若TS(T)<W-timestamp(Q),则write操作被拒绝,T回滚。
c.其他情况:系统执行write操作,将W-timestamp(Q)设置
为TS(T)。

基于时间戳排序和基于锁实现的本质一样:对于可能冲突的并发操作,以串行的方式取代并发执行,因而它也是一种悲观并发控制。它们的区别主要有两点:

基于锁是让冲突的事务进行等待,而基于时间戳排序是让冲突的事务回滚。
基于锁冲突事务的执行次序是根据它们申请锁的顺序,先申请的先执行;而基于时间戳排序是根据特定的时间戳排序规则。

2.3.3 基于有效性检查的并发控制

核心思想:事务对数据的更新首先在自己的工作空间进行,等到要写回数据库时才进行有效性检查,对不符合要求的事务进行回滚。

基于有效性检查的事务执行过程会被分为三个阶段:

读阶段:数据项被读入并保存在事务的局部变量中。所有write操作都是对局部变量进行,并不对数据库进行真正的更新。

有效性检查阶段:对事务进行有效性检查,判断是否可以执行write操作而不违反可串行性。如果失败,则回滚该事务。

写阶段:事务已通过有效性检查,则将临时变量中的结果更新到数据库中。

有效性检查通常也是通过对事务的时间戳进行比较完成的,不过和基于时间戳排序的规则不一样。

该方法允许可能冲突的操作并发执行,因为每个事务操作的都是自己工作空间的局部变量,直到有效性检查阶段发现了冲突才回滚。因而这是一种乐观的并发策略。

2.3.4 基于快照隔离的并发控制

快照隔离是多版本并发控制(mvcc)的一种实现方式。

其核心思想是:数据库为每个数据项维护多个版本(快照),每个事务只对属于自己的私有快照进行更新,在事务真正提交前进行有效性检查,使得事务正常提交更新或者失败回滚。

由于快照隔离导致事务看不到其他事务对数据项的更新,为了避免出现丢失更新问题,可以采用以下两种方案避免:

先提交者获胜:对于执行该检查的事务T,判断是否有其他事务已经将更新写入数据库,是则T回滚否则T正常提交。

先更新者获胜:通过锁机制保证第一个获得锁的事务提交其更新,之后试图更新的事务中止。

事务间可能冲突的操作通过数据项的不同版本的快照相互隔离,到真正要写入数据库时才进行冲突检测。因而这也是一种乐观并发控制。

2.3.5 关于并发控制技术的总结

以上只是对常见的几种并发控制技术进行了介绍,不涉及特别复杂的原理的讲解。之所以这么做一是要真的把原理和实现细节讲清楚需要涉及的东西太多,篇幅太长,从作者和读者角度而言都不是一件轻松的事,所以只对其实现的核心思想和实现要点进行了简单的介绍,其他部分就一笔带过了。二是并发控制的实现的方式太过多样,基于封锁的实现就有很多变体,mvcc多版本并发控制的实现方式就更是多样,而且很多时候会和其他并发控制方式比如封锁的方式结合起来使用。

3. 故障与故障恢复技术

3.1 为什么需要故障恢复技术

数据库运行过程中可能会出现故障,这些故障包括事务故障和系统故障两大类

事务故障:比如非法输入,系统出现死锁,导致事务无法继续执行。
系统故障:比如由于软件漏洞或硬件错误导致系统崩溃或中止。
这些故障可能会对事务和数据库状态造成破坏,因而必须提供一种技术来对各种故障进行恢复,保证数据库一致性,事务的原子性以及持久性。数据库通常以日志的方式记录数据库的操作从而在故障时进行恢复,因而可以称之为日志恢复技术。

3.2 事务的执行过程以及可能产生的问题

在这里插入图片描述
事务的执行过程可以简化如下:

系统会为每个事务开辟一个私有工作区

事务读操作将从磁盘中拷贝数据项到工作区中,在执行写操作前所有的更新都作用于工作区中的拷贝.

事务的写操作将把数据输出到内存的缓冲区中,等到合适的时间再由缓冲区管理器将数据写入到磁盘。

由于数据库存在立即修改和延迟修改,所以在事务执行过程中可能存在以下情况:

在事务提交前出现故障,但是事务对数据库的部分修改已经写入磁盘数据库中。这导致了事务的原子性被破坏。
在系统崩溃前事务已经提交,但数据还在内存缓冲区中,没有写入磁盘。系统恢复时将丢失此次已提交的修改。这是对事务持久性的破坏

3.3 日志的种类和格式

<T,X,V1,V2>:描述一次数据库写操作,T是执行写操作的事务的唯一标识,X是要写的数据项,V1是数据项的旧值,V2是数据项的新值。

<T,X,V1>:对数据库写操作的撤销操作,将事务T的X数据项恢复为旧值V1。在事务恢复阶段插入。

: 事务T开始

: 事务T提交

: 事务T中止

关于日志,有以下两条规则

1.系统在对数据库进行修改前会在日志文件末尾追加相应的日志记录。
2.当一个事务的commit日志记录写入到磁盘成功后,称这个事务已提交,但事务所做的修改可能并未写入磁盘

3.4 日志恢复的核心思想

撤销事务undo:将事务更新的所有数据项恢复为日志中的旧值,事务撤销完毕时将插入一条记录。

重做事务redo:将事务更新的所有数据项恢复为日志中的新值。

事务正常回滚/因事务故障中止将进行redo
系统从崩溃中恢复时将先进行redo再进行undo。

以下事务将进行undo:日志中只包括记录,但既不包括记录也不包括记录.

以下事务将进行redo:日志中包括记录,也包括记录或记录。

假设系统从崩溃中恢复时日志记录如下

<T0 start>
<T0,A,1000,950>
<T0,B,2000,2050>
<T0 commit>
<T1 start>
<T1,C,700,600>

由于T0既有start记录又有commit记录,将会对事务T0进行重做,执行相应的redo操作。
由于T1只有start记录,将会对T1进行撤销,执行相应的undo操作,撤销完毕将写入一条abort记录。

3.5 事务故障中止/正常回滚的恢复流程

从后往前扫描日志,对于事务T的每个形如<T,X,V1,V2>的记录,将旧值V1写入数据项X中。

往日志中写一个特殊的只读记录<T,X,V1>,表示将数据项恢复成旧值V1,
这是一个只读的补偿记录,不需要根据它进行undo。

一旦发现了日志记录,就停止继续扫描,并往日志中写一个
日志记录。
在这里插入图片描述

3.6 系统崩溃时的恢复过程(带检查点)

检查点是形如的特殊的日志记录,L是写入检查点记录时还未提交的事务的集合,系统保证在检查点之前已经提交的事务对数据库的修改已经写入磁盘,不需要进行redo。检查点可以加快恢复的过程。

系统奔溃时的恢复过程分为两个阶段:重做阶段和撤销阶段。

重做阶段:

系统从最后一个检查点开始正向的扫描日志,将要重做的事务的列表undo-list设置为检查点日志记录中的L列表。

发现<T,X,V1,V2>的更新记录或<T,X,V>的补偿撤销记录,就重做该操作。

发现记录,就把T加入到undo-list中。

发现或记录,就把T从undo-list中去除。

撤销阶段:

系统从尾部开始反向扫描日志

发现属于undo-list中的事务的日志记录,就执行undo操作

发现undo-list中事务的T的记录,就写入一条记录,
并把T从undo-list中去除。

4.undo-list为空,则撤销阶段结束

总结:先将日志记录中所有事务的更新按顺序重做一遍,在针对需要撤销的事务按相反的顺序执行其更新操作的撤销操作。

3.6.1 一个系统崩溃恢复的例子

恢复前的日志如下,写入最后一条日志记录后系统崩溃

<T0 start>
<T0,B,2000,2050>
<T2 commit>
<T1 start>
<checkpoint {T0,T1}>   //之前T2已经commit,故不用重做
<T1,C,700,600>
<T1 commit>
<T2 start>
<T2,A,500,400>
<T0,B,2000>
<T0 abort>   //T0回滚完成,插入该记录后系统崩溃

在这里插入图片描述

4. 总结

事务是数据库系统进行并发控制的基本单位,是数据库系统进行故障恢复的基本单位,从而也是保持数据库状态一致性的基本单位。ACID是事务的基本特性,数据库系统是通过并发控制技术和日志恢复技术来对事务的ACID进行保证的,从而可以得到如下的关于数据库事务的概念体系结构。
在这里插入图片描述

5. 参考资料

《数据库系统概论》
《数据库系统概念》

6.原文链接:

注:本人只是做个笔记,若有侵权,请联系删除~
https://www.cnblogs.com/takumicx/p/9998844.html

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. MYSQL复习——第六章:锁

    6.1 锁 锁的类型&#xff08;从粒度分类&#xff09; 行锁&#xff08;都是悲观锁&#xff09; 共享锁&#xff08;S Lock&#xff09;&#xff1a;读锁排他锁&#xff08;X Lock&#xff09;&#xff1a;写锁表锁&#xff1a;Innodb意向锁 意向共享锁&#xff08;IS Lock&…...

    2024/5/2 22:40:42
  2. BASE64解密

    常规解密 package ll;import java.util.Base64;public class test {public static void main(String[] args) {String str"www.mldn.com";String mmnew String(Base64.getEncoder().encode(str.getBytes()));System.out.println(mm);String ttnew String(Base64.get…...

    2024/4/27 23:50:38
  3. IDEA连接Mysql失败,但是navicat等工具都可以启动成功

    IDEA连接Mysql失败&#xff0c;但是navicat等工具都可以启动成功 错误代码&#xff1a;[08001] Could not create connection to database server. Attempted reconnect 3 times. Giving up. com.mysql.cj.exceptions.CJException: Unknown database ‘llb’. 我当时试过数据库…...

    2024/4/11 20:19:30
  4. 如何处理C++string对象包含空格问题

    若直接使用cin>>str的方法输入&#xff0c;会以空格来分别字符串。想要在字符串中输入空格&#xff0c;&#xff1a; string str; getline(cin,str); cout<<str<<endl;...

    2024/4/8 22:52:20
  5. Java实现随机数模拟超几何分布

    记录一下最近的数学作业&#xff1a; 超几何分布定义&#xff1a; ​​​​ 代码实现&#xff1a; 因为是离散型随机变量&#xff0c;所以顺次计算出每种情况的概率&#xff0c;再随机生成10000个0-1之间的随机数&#xff08;用于模拟概率&#xff09;&#xff0c;然后用这些生…...

    2024/4/9 5:07:55
  6. 学习笔记——多态

    本篇是自己阅读加上自己对“多态”的理解&#xff0c;若有不足之处&#xff0c;感谢指出~ 多态 多态最常见的用法就是声明基类类型的指针&#xff0c;利用该指针指向任意一个子类对象&#xff0c;调用相应的虚函数&#xff0c;可以根据指向的子类的不同而实现不同的方法。如果…...

    2024/4/9 5:07:53
  7. 使用Jenkins搭建Flutter自动化打包

    安装Jenkins 首先,从官网上下载最新的pkg安装包,然后进行安装。如果要下载历史版本,可以使用下面的地址进行下载:http://mirrors.jenkins.io/osx/。下载完后,点击安装即可,如下图所示。 安装完成之后,Safari可能会自动打开,如果没有自动打开,打开浏览器,输入http:/…...

    2024/4/9 5:07:53
  8. 练手--->两个有序单向链表合并

    创建一个新的链表进行循环比较&#xff0c;将较小值赋值给新链表的新节点&#xff0c;注意&#xff1a;每次都要创建新的节点&#xff0c;开辟空间&#xff0c;将较小值赋值给该节点&#xff0c;再将该节点尾插在新建链表中 //2020_10_24 //两个有序单向链表合并 #include<i…...

    2024/4/8 7:55:24
  9. 【Windows提权】MySQL提权之UDF提权

    文章目录一、什么是UDF&#xff1f;二、什么是动态链接库&#xff1f;三、UDF提权原理四、UDF提权复现一、什么是UDF&#xff1f; UDF(user-defined function)是MySQL的一个拓展接口&#xff0c;也可称之为用户自定义函数&#xff0c;它是用来拓展MySQL的技术手段&#xff0c;…...

    2024/4/28 5:41:07
  10. MAVEN打包异常-程序包com.sun.image.codec.jpeg不存在

    mvn clean install 程序包com.sun.image.codec.jpeg不存在 原因&#xff1a;maven默认jdk路径下没有image这个包 解决方案&#xff1a;pom文件添加 <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin&…...

    2024/4/24 18:11:28
  11. # 1024

    1024...

    2024/4/29 3:10:48
  12. 软测-宝典

    软件测试技术 第一章1.什么是软件? 是计算机系统中与硬件相互依存的另一部分。包括程序、数据、文档、服务 软件=程序+数据(库)+文档+服务 文档:(需求规格、概要设计、详细设计)说明书 用户帮助手册 2.项目流程:需求分析(需求文档)–产品设计(原型图,概要设计文档,…...

    2024/5/3 2:30:42
  13. Centos7.4+zookeeper3.5.8 + hadoop3.2.1+Hbase2.2.5完全分布式+高可用(HA)完全分布式集群搭建

    本文档详细描述了Centos7.4zookeeper3.5.8 hadoop3.2.1Hbase2.2.5完全分布式高可用&#xff08;HA&#xff09;集群的搭建过程&#xff0c;以及验证等操作使用方法。 hadoop高可用完全分布式集群搭建 Centos7.4zookeeper3.5.8 hadoop3.2.1Hbase2.2.5完全分布式高可用&#x…...

    2024/4/25 13:10:00
  14. 7. 中学德育

    1. 中学生品德心理与发展 1.1 品德概述↑【选】 1.1.1 品德的实质 品德&#xff08;道德品质&#xff09;&#xff0c;是社会道德在个人身上的体现&#xff0c;是个体依据一定社会道德行为规范行动时表现出来的某种稳固的特征 1.1.2 品德与道德的关系 品德与道德的联系&…...

    2024/4/10 12:30:22
  15. stringxml转换成对象(JsonObject)粘贴即用

    stringxml转换成对象(JsonObject)粘贴即用 pom <!-- https://mvnrepository.com/artifact/org.dom4j/dom4j --><dependency><groupId>dom4j</groupId><artifactId>dom4j</artifactId><version>1.6.1</version></dependenc…...

    2024/4/29 16:49:44
  16. 欢迎关注我的公众号:鱼与渔大学生服务

    欢迎关注我的公众号&#xff1a;鱼与渔大学生服务 在公众号也会同步更新软件安装教程&#xff0c;安装问题分析&#xff0c;以及解答大家的一些安装问题。...

    2024/4/19 15:53:09
  17. 数组模拟队列以及环形队列

    队列&#xff1a; 队列是一个有序列表&#xff0c;可以用数组和链表实现 遵循先入先出的原则。即&#xff1a;先存入队列的数据&#xff0c;要先取出。后存入的数据要后取出。 队列的实现方式有两种&#xff1a; 一种是数组模拟队列&#xff0c;一种是链表模拟队列 环形数组队…...

    2024/4/9 5:07:43
  18. VC++wifi连接(附源码)

    VC++开发常用功能一系列文章 (欢迎订阅,持续更新…) 第2章:VC++wifi连接增强版 源代码demo已上传到百度网盘:永久生效 代码通过 WLAN的接口,采用profile的方式,支持有密码与无密码的连接 ,关键是在于怎么设置好这个profile 参数BOOL CwifiDlg::ConnectWanByWpa(CString…...

    2024/4/9 5:07:42
  19. 关于CPU的大小端存储模式

    关于CPU的大小端存储模式 1. 决定因素 CPU是大小端存储的决定因素&#xff0c;编译器和操作系统仅仅是为了适配CPU。 2. CPU为什么会有大小端存储模式 在计算机中&#xff0c;数据存储的基本单位(也叫最小单位)是字节&#xff0c;每个存储单元(一个地址单元)上可以存储一个字…...

    2024/4/24 7:37:00
  20. @ControllerAdvice全局异常处理不起作用原因及解决办法

    ControllerAdvice全局异常处理不起作用原因及解决办法参考文章&#xff1a; &#xff08;1&#xff09;ControllerAdvice全局异常处理不起作用原因及解决办法 &#xff08;2&#xff09;https://www.cnblogs.com/baojun/p/10750549.html 备忘一下。...

    2024/4/9 3:39:54

最新文章

  1. Map实现(2)| LinkedHashMap

    文章目录 1. LinkedHashMap的特点2. 源码分析2.1 内部结构2.2 插入元素2.3 访问元素2.4 删除元素 3. 适用范围4. 工作原理5. 总结 在Java集合框架中&#xff0c; LinkedHashMap是一个有序的哈希表实现。它继承自 HashMap并保持了其所有的特性&#xff0c;同时增加了按照访问顺…...

    2024/5/3 3:11:55
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. 腾讯云轻量服务器流量不够用了会怎么样?

    腾讯云轻量应用服务器是限制月流量的&#xff0c;如果当月流量不够用了&#xff0c;流量超额了怎么办&#xff1f;流量超额后&#xff0c;需要另外支付流量费&#xff0c;如果你的腾讯云账号余额&#xff0c;就会自动扣除对应的流量费&#xff0c;如果余额不足&#xff0c;轻量…...

    2024/5/1 13:01:36
  4. 【stm32】I2C通信协议

    【stm32】I2C通信协议 概念及原理 如果我们想要读写寄存器来控制硬件电路&#xff0c;就至少需要定义两个字节数据 一个字节是我们要读写哪个寄存器&#xff0c;也就是指定寄存器的地址 另一个字节就是这个地址下存储寄存器的内容 写入内容就是控制电路&#xff0c;读出内容就…...

    2024/5/2 2:37:26
  5. 416. 分割等和子集问题(动态规划)

    题目 题解 class Solution:def canPartition(self, nums: List[int]) -> bool:# badcaseif not nums:return True# 不能被2整除if sum(nums) % 2 ! 0:return False# 状态定义&#xff1a;dp[i][j]表示当背包容量为j&#xff0c;用前i个物品是否正好可以将背包填满&#xff…...

    2024/5/2 11:19:01
  6. 【Java】ExcelWriter自适应宽度工具类(支持中文)

    工具类 import org.apache.poi.ss.usermodel.Cell; import org.apache.poi.ss.usermodel.CellType; import org.apache.poi.ss.usermodel.Row; import org.apache.poi.ss.usermodel.Sheet;/*** Excel工具类** author xiaoming* date 2023/11/17 10:40*/ public class ExcelUti…...

    2024/5/2 16:04:58
  7. Spring cloud负载均衡@LoadBalanced LoadBalancerClient

    LoadBalance vs Ribbon 由于Spring cloud2020之后移除了Ribbon&#xff0c;直接使用Spring Cloud LoadBalancer作为客户端负载均衡组件&#xff0c;我们讨论Spring负载均衡以Spring Cloud2020之后版本为主&#xff0c;学习Spring Cloud LoadBalance&#xff0c;暂不讨论Ribbon…...

    2024/5/2 23:55:17
  8. TSINGSEE青犀AI智能分析+视频监控工业园区周界安全防范方案

    一、背景需求分析 在工业产业园、化工园或生产制造园区中&#xff0c;周界防范意义重大&#xff0c;对园区的安全起到重要的作用。常规的安防方式是采用人员巡查&#xff0c;人力投入成本大而且效率低。周界一旦被破坏或入侵&#xff0c;会影响园区人员和资产安全&#xff0c;…...

    2024/5/2 9:47:31
  9. VB.net WebBrowser网页元素抓取分析方法

    在用WebBrowser编程实现网页操作自动化时&#xff0c;常要分析网页Html&#xff0c;例如网页在加载数据时&#xff0c;常会显示“系统处理中&#xff0c;请稍候..”&#xff0c;我们需要在数据加载完成后才能继续下一步操作&#xff0c;如何抓取这个信息的网页html元素变化&…...

    2024/5/2 9:47:31
  10. 【Objective-C】Objective-C汇总

    方法定义 参考&#xff1a;https://www.yiibai.com/objective_c/objective_c_functions.html Objective-C编程语言中方法定义的一般形式如下 - (return_type) method_name:( argumentType1 )argumentName1 joiningArgument2:( argumentType2 )argumentName2 ... joiningArgu…...

    2024/5/2 6:03:07
  11. 【洛谷算法题】P5713-洛谷团队系统【入门2分支结构】

    &#x1f468;‍&#x1f4bb;博客主页&#xff1a;花无缺 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P5713-洛谷团队系统【入门2分支结构】&#x1f30f;题目描述&#x1f30f;输入格…...

    2024/5/2 9:47:30
  12. 【ES6.0】- 扩展运算符(...)

    【ES6.0】- 扩展运算符... 文章目录 【ES6.0】- 扩展运算符...一、概述二、拷贝数组对象三、合并操作四、参数传递五、数组去重六、字符串转字符数组七、NodeList转数组八、解构变量九、打印日志十、总结 一、概述 **扩展运算符(...)**允许一个表达式在期望多个参数&#xff0…...

    2024/5/2 23:47:43
  13. 摩根看好的前智能硬件头部品牌双11交易数据极度异常!——是模式创新还是饮鸩止渴?

    文 | 螳螂观察 作者 | 李燃 双11狂欢已落下帷幕&#xff0c;各大品牌纷纷晒出优异的成绩单&#xff0c;摩根士丹利投资的智能硬件头部品牌凯迪仕也不例外。然而有爆料称&#xff0c;在自媒体平台发布霸榜各大榜单喜讯的凯迪仕智能锁&#xff0c;多个平台数据都表现出极度异常…...

    2024/5/2 5:31:39
  14. Go语言常用命令详解(二)

    文章目录 前言常用命令go bug示例参数说明 go doc示例参数说明 go env示例 go fix示例 go fmt示例 go generate示例 总结写在最后 前言 接着上一篇继续介绍Go语言的常用命令 常用命令 以下是一些常用的Go命令&#xff0c;这些命令可以帮助您在Go开发中进行编译、测试、运行和…...

    2024/5/3 1:55:15
  15. 用欧拉路径判断图同构推出reverse合法性:1116T4

    http://cplusoj.com/d/senior/p/SS231116D 假设我们要把 a a a 变成 b b b&#xff0c;我们在 a i a_i ai​ 和 a i 1 a_{i1} ai1​ 之间连边&#xff0c; b b b 同理&#xff0c;则 a a a 能变成 b b b 的充要条件是两图 A , B A,B A,B 同构。 必要性显然&#xff0…...

    2024/5/2 9:47:28
  16. 【NGINX--1】基础知识

    1、在 Debian/Ubuntu 上安装 NGINX 在 Debian 或 Ubuntu 机器上安装 NGINX 开源版。 更新已配置源的软件包信息&#xff0c;并安装一些有助于配置官方 NGINX 软件包仓库的软件包&#xff1a; apt-get update apt install -y curl gnupg2 ca-certificates lsb-release debian-…...

    2024/5/2 9:47:27
  17. Hive默认分割符、存储格式与数据压缩

    目录 1、Hive默认分割符2、Hive存储格式3、Hive数据压缩 1、Hive默认分割符 Hive创建表时指定的行受限&#xff08;ROW FORMAT&#xff09;配置标准HQL为&#xff1a; ... ROW FORMAT DELIMITED FIELDS TERMINATED BY \u0001 COLLECTION ITEMS TERMINATED BY , MAP KEYS TERMI…...

    2024/5/3 1:55:09
  18. 【论文阅读】MAG:一种用于航天器遥测数据中有效异常检测的新方法

    文章目录 摘要1 引言2 问题描述3 拟议框架4 所提出方法的细节A.数据预处理B.变量相关分析C.MAG模型D.异常分数 5 实验A.数据集和性能指标B.实验设置与平台C.结果和比较 6 结论 摘要 异常检测是保证航天器稳定性的关键。在航天器运行过程中&#xff0c;传感器和控制器产生大量周…...

    2024/5/2 8:37:00
  19. --max-old-space-size=8192报错

    vue项目运行时&#xff0c;如果经常运行慢&#xff0c;崩溃停止服务&#xff0c;报如下错误 FATAL ERROR: CALL_AND_RETRY_LAST Allocation failed - JavaScript heap out of memory 因为在 Node 中&#xff0c;通过JavaScript使用内存时只能使用部分内存&#xff08;64位系统&…...

    2024/5/2 9:47:26
  20. 基于深度学习的恶意软件检测

    恶意软件是指恶意软件犯罪者用来感染个人计算机或整个组织的网络的软件。 它利用目标系统漏洞&#xff0c;例如可以被劫持的合法软件&#xff08;例如浏览器或 Web 应用程序插件&#xff09;中的错误。 恶意软件渗透可能会造成灾难性的后果&#xff0c;包括数据被盗、勒索或网…...

    2024/5/2 9:47:25
  21. JS原型对象prototype

    让我简单的为大家介绍一下原型对象prototype吧&#xff01; 使用原型实现方法共享 1.构造函数通过原型分配的函数是所有对象所 共享的。 2.JavaScript 规定&#xff0c;每一个构造函数都有一个 prototype 属性&#xff0c;指向另一个对象&#xff0c;所以我们也称为原型对象…...

    2024/5/2 23:47:16
  22. C++中只能有一个实例的单例类

    C中只能有一个实例的单例类 前面讨论的 President 类很不错&#xff0c;但存在一个缺陷&#xff1a;无法禁止通过实例化多个对象来创建多名总统&#xff1a; President One, Two, Three; 由于复制构造函数是私有的&#xff0c;其中每个对象都是不可复制的&#xff0c;但您的目…...

    2024/5/2 18:46:52
  23. python django 小程序图书借阅源码

    开发工具&#xff1a; PyCharm&#xff0c;mysql5.7&#xff0c;微信开发者工具 技术说明&#xff1a; python django html 小程序 功能介绍&#xff1a; 用户端&#xff1a; 登录注册&#xff08;含授权登录&#xff09; 首页显示搜索图书&#xff0c;轮播图&#xff0…...

    2024/5/2 7:30:11
  24. 电子学会C/C++编程等级考试2022年03月(一级)真题解析

    C/C++等级考试(1~8级)全部真题・点这里 第1题:双精度浮点数的输入输出 输入一个双精度浮点数,保留8位小数,输出这个浮点数。 时间限制:1000 内存限制:65536输入 只有一行,一个双精度浮点数。输出 一行,保留8位小数的浮点数。样例输入 3.1415926535798932样例输出 3.1…...

    2024/5/3 1:54:59
  25. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  26. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  27. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  28. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  29. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  30. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  31. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  32. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  33. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  34. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  35. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  36. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  37. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  38. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  39. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  40. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  41. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  42. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  43. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  44. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57