算法面试必备-----数据库与SQL面试题

  • 算法面试必备-----数据库与SQL面试题
    • 1、数据库理论问题
      • 问题:什么是数据库,数据库管理系统,数据库系统,数据库管理员?
      • 问题:什么是元组,码,候选码,主码,外码,主属性,非主属性?
      • 问题:主键和外键有什么区别?
      • 问题:数据库范式了解吗?
      • 问题:什么是存储过程?
      • 问题:drop、delete与truncate区别?
      • 问题:DML 语句和 DDL 语句区别:
      • 问题:数据库设计通常分为哪几步?
      • 问题:事务的ACID特性是什么?
      • 问题:并发事务带来哪些问题?
      • 延伸问题:不可重复度和幻读有什么区别?
      • 问题:事务隔离级别有哪些? MySQL的默认隔离级别是?
      • 问题:乐观锁与悲观锁的区别
      • 问题:乐观锁常见的两种实现方式
      • 问题:乐观锁的缺点
      • 问题:数据库的索引
        • 1、什么是数据库的索引
        • 2、数据库的索引的优缺点
        • 3、应该在这些列上创建索引
        • 4、不应该创建索引的的这些列具有下列特点
        • 5、数据库设计器中创建三种索引:唯一索引、主键索引和聚集索引
        • 6、MyISAM 和 InnoDB 两个存储引擎的索引
          • **MyISAM 索引实现**
          • InnoDB 索引实现
      • 问题:B树和B+树有什么区别?
      • 延伸问题:与哈希索引的区别?
      • 问题:MyISAM 和 InnoDB 的区别有哪些?
      • 问题:延伸问题:如何选择存储引擎?
      • 问题:MySQL主从复制是怎么做的?
      • 问题:大表优化
      • 问题:如何保证缓存与数据库双写时的数据一致性?
      • 问题:红黑树和AVL树有什么区别?
      • 问题:mysql和redis的区别
        • 1、mysql和redis的数据库类型
        • 2、mysql的运行机制
        • 3、什么是缓存
        • 4、redis和mysql的区别总结
      • 问题:Redis 和 Memcached 的区别
      • 问题:什么是AOF重写?
      • 问题:数据库与数据仓库的区别
      • 问题:SQL的数据类型
      • 问题:left join,right join,inner join,full join之间的区别?
      • 问题:having和where的区别?
      • 问题:not in和not exists区别
      • 问题:mysql中设置row number
      • 问题:sql中null与‘ ’的区别。
      • 问题:mysql 中视图和表的区别以及联系是什么?
      • 问题:行存储和列存储的区别。
      • 问题:如何写SQL求出中位数平均数和众数(除了用count之外的方法)
    • 2、手写SQL
      • 问题:有一张用户签到表【t_user_attendence】,标记每天用户是否签到(说明:该表包含所有用户所有工作日的出勤记录) ,包含三个字段:日期【fdate】,用户id【fuser_id】,用户当天是否签到【fis_sign_in:0否1是】;
        • 问题1:请计算截至当前每个用户已经连续签到的天数(输出表仅包含当天签到的所有用户,计算其连续签到天数)
        • 问题2:请计算每个用户历史以来最大的连续签到天数(输出表为用户签到表中所有出现过的用户,计算其历史最大连续签到天数)
    • 3、手写Python
      • 题目:针对股票的最大回撤率指标定义,给出代码实现思路。给定的是产品所有交易日的净值序列,且其净值序列已按照日期排序。

算法面试必备-----数据库与SQL面试题

1、数据库理论问题

问题:什么是数据库,数据库管理系统,数据库系统,数据库管理员?

数据库 :数据库(DataBase简称DB)就是信息的集合或者说数据库是由数据库管理系统管理的数据的集合。

数据库管理系统 : 数据库管理系统(Database Management System 简称DBMS)是一种操纵和管理数据库的大型软件,通常用语用于建立、使用和维护数据库。

数据库系统 : 数据库系统(Data Base System,简称DBS)通常由软件、数据库和数据管理员(DBA)组成。

数据库管理员 : 数据库管理员(Database Administrator,简称DBA)负责全面管理和控制数据库系统。

问题:什么是元组,码,候选码,主码,外码,主属性,非主属性?

元组 : 元组(tuple)是关系数据库中的基本概念,关系是一张表,表中的每行(即数据库中的每条记录)就是一个元组,每列就是一个属性。 在二维表里,元组也称为行。

:码就是能唯一标识实体的属性,对应表中的列。

候选码 : 若关系中的某一属性或属性组的值能唯一的标识一个元组,而其任何、子集都不能再标识,则称该属性组为候选码。例如:在学生实体中,“学号”是能唯一的区分学生实体的,同时又假设“姓名”、“班级”的属性组合足以区分学生实体,那么{学号}和{姓名,班级}都是候选码。

主码 : 主码也叫主键。主码是从候选码中选出来的。 一个实体集中只能有一个主码,但可以有多个候选码。
外码 : 外码也叫外键。如果一个关系中的一个属性是另外一个关系中的主码则这个属性为外码。

主属性 : 候选码中出现过的属性称为主属性。比如关系 工人(工号,身份证号,姓名,性别,部门).显然工号和身份证号都能够唯一标示这个关系,所以都是候选码。工号、身份证号这两个属性就是主属性。如果主码是一个属性组,那么属性组中的属性都是主属性。

非主属性: 不包含在任何一个候选码中的属性称为非主属性。比如在关系——学生(学号,姓名,年龄,性别,班级)中,主码是“学号”,那么其他的“姓名”、“年龄”、“性别”、“班级”就都可以称为非主属性。

问题:主键和外键有什么区别?

主键(主码) :主键用于唯一标识一个元组,不能有重复,不允许为空。一个表只能有一个主键。
外键(外码) :外键用来和其他表建立联系用,外键是另一表的主键,外键是可以有重复的,可以是空值。一个表可以有多个外键。

问题:数据库范式了解吗?

1NF(第一范式)
属性(对应于表中的字段)不能再被分割,也就是这个字段只能是一个值,不能再分为多个其他的字段了。1NF是所有关系型数据库的最基本要求 ,也就是说关系型数据库中创建的表一定满足第一范式。

2NF(第二范式)
2NF在1NF的基础之上,消除了非主属性对于码的部分函数依赖。如下图所示,展示了第一范式到第二范式的过渡。第二范式在第一范式的基础上增加了一个列,这个列称为主键,非主属性都依赖于主键。

3NF(第三范式)
3NF在2NF的基础之上,消除了非主属性对于码的传递函数依赖 。符合3NF要求的数据库设计,基本上解决了数据冗余过大,插入异常,修改异常,删除异常的问题。比如在关系R(学号 ,姓名, 系名,系主任)中,学号 → 系名,系名 → 系主任,所以存在非主属性系主任对于学号的传递函数依赖,所以该表的设计,不符合3NF的要求。

总结

1NF:属性不可再分。
2NF:1NF的基础之上,消除了非主属性对于码的部分函数依赖。
3NF:3NF在2NF的基础之上,消除了非主属性对于码的传递函数依赖 。

一些重要的概念:

函数依赖(functional dependency) :若在一张表中,在属性(或属性组)X的值确定的情况下,必定能确定属性Y的值,那么就可以说Y函数依赖于X,写作 X → Y。

部分函数依赖(partial functional dependency) :如果X→Y,并且存在X的一个真子集X0,使得X0→Y,则称Y对X部分函数依赖。比如学生基本信息表R中(学号,身份证号,姓名)当然学号属性取值是唯一的,在R关系中,(学号,身份证号)->(姓名),(学号)->(姓名),(身份证号)->(姓名);所以姓名部分函数依赖与(学号,身份证号);

完全函数依赖(Full functional dependency) :在一个关系中,若某个非主属性数据项依赖于全部关键字称之为完全函数依赖。比如学生基本信息表R(学号,班级,姓名)假设不同的班级学号有相同的,班级内学号不能相同,在R关系中,(学号,班级)->(姓名),但是(学号)->(姓名)不成立,(班级)->(姓名)不成立,所以姓名完全函数依赖与(学号,班级);

传递函数依赖 : 在关系模式R(U)中,设X,Y,Z是U的不同的属性子集,如果X确定Y、Y确定Z,且有X不包含Y,Y不确定X,(X∪Y)∩Z=空集合,则称Z传递函数依赖(transitive functional dependency) 于X。传递函数依赖会导致数据冗余和异常。传递函数依赖的Y和Z子集往往同属于某一个事物,因此可将其合并放到一个表中。比如在关系R(学号 ,姓名, 系名,系主任)中,学号 → 系名,系名 → 系主任,所以存在非主属性系主任对于学号的传递函数依赖。。

问题:什么是存储过程?

我们可以把存储过程看成是一些 SQL 语句的集合,中间加了点逻辑控制语句。存储过程在业务比较复杂的时候是非常实用的,比如很多时候我们完成一个操作可能需要写一大串SQL语句,这时候我们就可以写有一个存储过程,这样也方便了我们下一次的调用。存储过程一旦调试完成通过后就能稳定运行,另外,使用存储过程比单纯SQL语句执行要快,因为存储过程是预编译过的。

存储过程在互联网公司应用不多,因为存储过程难以调试和扩展,而且没有移植性,还会消耗数据库资源。

问题:drop、delete与truncate区别?

用法不同

drop(丢弃数据): drop table 表名 ,直接将表都删除掉,在删除表的时候使用。

truncate (清空数据) : truncate table 表名 ,只删除表中的数据,再插入数据的时候自增长id又从1开始,在清空表中数据的时候使用。

delete(删除数据) : delete from 表名 where 列名=值,删除某一列的数据,如果不加 where 子句和truncate table 表名作用类似。

truncate 和不带 where 子句的 delete、以及 drop 都会删除表内的数据,但是 truncate 和 delete 只删除数据不删除表的结构(定义),执行drop语句,此表的结构也会删除,也就是执行 drop 之后对应的表不复存在。

属于不同的数据库语言
truncate和drop 属于DDL(数据定义语言)语句,操作立即生效,原数据不放到 rollback segment 中,不能回滚,操作不触发 trigger。而 delete 语句是DML (数据库操作语言)语句,这个操作会放到 rollback segement 中,事务提交之后才生效。

执行速度不同
一般来说:drop>truncate>delete。

问题:DML 语句和 DDL 语句区别:

DML 是数据库操作语言(Data Manipulation Language)的缩写,是指对数据库中表记录的操作,主要包括表记录的插入(insert)、更新(update)、删除(delete)和查询(select),是开发人员日常使用最频繁的操作。
DDL (Data Definition Language)是数据定义语言的缩写,简单来说,就是对数据库内部的对象进行创建、删除、修改的操作语言。它和 DML 语言的最大区别是 DML 只是对表内部数据的操作,而不涉及到表的定义、结构的修改,更不会涉及到其他对象。DDL 语句更多的被数据库管理员(DBA)所使用,一般的开发人员很少使用。

问题:数据库设计通常分为哪几步?

需求分析 : 分析用户的需求,包括数据、功能和性能需求。
概念结构设计 : 主要采用E-R模型进行设计,包括画E-R图。
逻辑结构设计 : 通过将E-R图转换成表,实现从E-R模型到关系模型的转换。
物理结构设计 : 主要是为所设计的数据库选择合适的存储结构和存取路径。
数据库实施 : 包括编程、测试和试运行
数据库的运行和维护 : 系统的运行与数据库的日常维护。

问题:事务的ACID特性是什么?

原子性: 事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用;
一致性: 执行事务前后,数据保持一致,多个事务对同一个数据读取的结果是相同的;
隔离性: 并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的;
持久性: 一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。

问题:并发事务带来哪些问题?

在典型的应用程序中,多个事务并发运行,经常会操作相同的数据来完成各自的任务(多个用户对统一数据进行操作)。并发虽然是必须的,但可能会导致以下的问题。

脏读(Dirty read): 当一个事务正在访问数据并且对数据进行了修改,而这种修改还没有提交到数据库中,这时另外一个事务也访问了这个数据,然后使用了这个数据。因为这个数据是还没有提交的数据,那么另外一个事务读到的这个数据是“脏数据”,依据“脏数据”所做的操作可能是不正确的。

丢失修改(Lost to modify): 指在一个事务读取一个数据时,另外一个事务也访问了该数据,那么在第一个事务中修改了这个数据后,第二个事务也修改了这个数据。这样第一个事务内的修改结果就被丢失,因此称为丢失修改。 例如:事务1读取某表中的数据A=20,事务2也读取A=20,事务1修改A=A-1,事务2也修改A=A-1,最终结果A=19,事务1的修改被丢失。

不可重复读(Unrepeatableread): 指在一个事务内多次读同一数据。在这个事务还没有结束时,另一个事务也访问该数据。那么,在第一个事务中的两次读数据之间,由于第二个事务的修改导致第一个事务两次读取的数据可能不太一样。这就发生了在一个事务内两次读到的数据是不一样的情况,因此称为不可重复读。

幻读(Phantom read): 幻读与不可重复读类似。它发生在一个事务(T1)读取了几行数据,接着另一个并发事务(T2)插入了一些数据时。在随后的查询中,第一个事务(T1)就会发现多了一些原本不存在的记录,就好像发生了幻觉一样,所以称为幻读。

延伸问题:不可重复度和幻读有什么区别?

不可重复读的重点是修改,幻读的重点在于新增或者删除。

问题:事务隔离级别有哪些? MySQL的默认隔离级别是?

在这里插入图片描述

问题:乐观锁与悲观锁的区别

悲观锁
总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁(共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程)。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。Java中synchronized和ReentrantLock等独占锁就是悲观锁思想的实现。

乐观锁
总是假设最好的情况,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号机制和CAS算法实现。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库提供的类似于write_condition机制,其实都是提供的乐观锁。在Java中java.util.concurrent.atomic包下面的原子变量类就是使用了乐观锁的一种实现方式CAS实现的。

两种锁的使用场景
从上面对两种锁的介绍,我们知道两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下(多读场景),即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。但如果是多写的情况,一般会经常产生冲突,这就会导致上层应用会不断的进行retry,这样反倒是降低了性能,所以一般多写的场景下用悲观锁就比较合适。

问题:乐观锁常见的两种实现方式

  1. 版本号机制
    一般是在数据表中加上一个数据版本号version字段,表示数据被修改的次数,当数据被修改时,version值会加一。当线程A要更新数据值时,在读取数据的同时也会读取version值,在提交更新时,若刚才读取到的version值为当前数据库中的version值相等时才更新,否则重试更新操作,直到更新成功。

举一个简单的例子: 假设数据库中帐户信息表中有一个 version 字段,当前值为 1 ;而当前帐户余额字段( balance )为 $100 。

操作员 A 此时将其读出( version=1 ),并从其帐户余额中扣除 (50(100-$50 )。
在操作员 A 操作的过程中,操作员B 也读入此用户信息( version=1 ),并从其帐户余额中扣除 (20(100-$20 )。
操作员 A 完成了修改工作,将数据版本号加一( version=2 ),连同帐户扣除后余额( balance=$50 ),提交至数据库更新,此时由于提交数据版本大于数据库记录当前版本,数据被更新,数据库记录 version 更新为 2 。
操作员 B 完成了操作,也将版本号加一( version=2 )试图向数据库提交数据( balance=$80 ),但此时比对数据库记录版本时发现,操作员 B 提交的数据版本号为 2 ,数据库记录当前版本也为 2 ,不满足 “ 提交版本必须大于记录当前版本才能执行更新 “ 的乐观锁策略,因此,操作员 B 的提交被驳回。
这样,就避免了操作员 B 用基于 version=1 的旧数据修改的结果覆盖操作员A 的操作结果的可能。

  1. CAS算法
    即compare and swap(比较与交换),是一种有名的无锁算法。无锁编程,即不使用锁的情况下实现多线程之间的变量同步,也就是在没有线程被阻塞的情况下实现变量的同步,所以也叫非阻塞同步(Non-blocking Synchronization)。CAS算法涉及到三个操作数

需要读写的内存值 V
进行比较的值 A
拟写入的新值 B
当且仅当 V 的值等于 A时,CAS通过原子方式用新值B来更新V的值,否则不会执行任何操作(比较和替换是一个原子操作)。一般情况下是一个自旋操作,即不断的重试。

问题:乐观锁的缺点

1 ABA 问题
如果一个变量V初次读取的时候是A值,并且在准备赋值的时候检查到它仍然是A值,那我们就能说明它的值没有被其他线程修改过了吗?很明显是不能的,因为在这段时间它的值可能被改为其他值,然后又改回A,那CAS操作就会误认为它从来没有被修改过。这个问题被称为CAS操作的 "ABA"问题。

JDK 1.5 以后的 AtomicStampedReference 类就提供了此种能力,其中的 compareAndSet 方法就是首先检查当前引用是否等于预期引用,并且当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值。

2 循环时间长开销大
自旋CAS(也就是不成功就一直循环执行直到成功)如果长时间不成功,会给CPU带来非常大的执行开销。 如果JVM能支持处理器提供的pause指令那么效率会有一定的提升,pause指令有两个作用,第一它可以延迟流水线执行指令(de-pipeline),使CPU不会消耗过多的执行资源,延迟的时间取决于具体实现的版本,在一些处理器上延迟时间是零。第二它可以避免在退出循环的时候因内存顺序冲突(memory order violation)而引起CPU流水线被清空(CPU pipeline flush),从而提高CPU的执行效率。

3 只能保证一个共享变量的原子操作
CAS 只对单个共享变量有效,当操作涉及跨多个共享变量时 CAS 无效。但是从 JDK 1.5开始,提供了AtomicReference类来保证引用对象之间的原子性,你可以把多个变量放在一个对象里来进行 CAS 操作.所以我们可以使用锁或者利用AtomicReference类把多个共享变量合并成一个共享变量来操作。

问题:数据库的索引

1、什么是数据库的索引

数据库索引:是数据库管理系统中一个排序的数据结构,以协助快速查询、更新数据库表中数据。

实现:索引的实现通常使用 B 树及其变种 B+ 树。加速了数据访问,因为存储引擎不会再去扫描整张表得到需要的数据;相反,它从根节点开始,根节点保存了子节点的指针,存储引擎会根据指针快速寻找数据。
在这里插入图片描述
上图显示了一种索引方式。左边是数据库中的数据表,有col1和col2两个字段,一共有15条记录;右边是以col2列为索引列的B_TREE索引,每个节点包含索引的键值和对应数据表地址的指针,这样就可以都过B_TREE在O(logn)的时间复杂度内获取相应的数据,这样明显地加快了检索的速度。

为表设置索引要付出代价的:一是增加了数据库的存储空间,二是在插入和修改数据时要花费较多的时间(因为索引也要随之变动)。

2、数据库的索引的优缺点

优点:创建索引可以大大提高系统的性能。

第一,通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。

第二,可以大大加快数据的检索速度,这也是创建索引的最主要的原因。

第三,可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。

第四,在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。

第五,通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。

缺点

第一,创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。

第二,索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。

第三,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。

3、应该在这些列上创建索引

在经常需要搜索的列上,可以加快搜索的速度;在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构;

在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度;在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的;

在经常需要排序的列上创建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间;

在经常使用在 WHERE 子句中的列上面创建索引,加快条件的判断速度。

4、不应该创建索引的的这些列具有下列特点

第一,对于那些在查询中很少使用或者参考的列不应该创建索引。这是因为,既然这些列很少使用到,因此有索引或者无索引,并不能提高查询速度。相反,由于增加了索引,反而降低了系统的维护速度和增大了空间需求。

第二,对于那些只有很少数据值的列也不应该增加索引。这是因为,由于这些列的取值很少,例如人事表的性别列,在查询的结果中,结果集的数据行占了表中数据行的很大比例,即需要在表中搜索的数据行的比例很大。增加索引,并不能明显加快检索速度。

第三,对于那些定义为 text, image 和 bit 数据类型的列不应该增加索引。这是因为,这些列的数据量要么相当大,要么取值很少。

第四,当修改性能远远大于检索性能时,不应该创建索引。这是因为,修改性能和检索性能是互相矛盾的。当增加索引时,会提高检索性能,但是会降低修改性能。当减少索引时,会提高修改性能,降低检索性能。因此,当修改性能远远大于检索性能时,不应该创建索引。

5、数据库设计器中创建三种索引:唯一索引、主键索引和聚集索引

唯一索引是不允许其中任何两行具有相同索引值的索引。
当现有数据中存在重复的键值时,大多数数据库不允许将新创建的唯一索引与表一起保存。数据库还可能防止添加将在表中创建重复键值的新数据。例如,如果在 employee 表中职员的姓(lname)上创建了唯一索引,则任何两个员工都不能同姓。

主键索引数据库表经常有一列或列组合,其值唯一标识表中的每一行。该列称为表的主键。在数据库关系图中为表定义主键将自动创建主键索引,主键索引是唯一索引的特定类型。该索引要求主键中的每个值都唯一。当在查询中使用主键索引时,它还允许对数据的快速访问。

聚集索引在聚集索引中,表中行的物理顺序与键值的逻辑(索引)顺序相同。一个表只能包含一个聚集索引。

如果某索引不是聚集索引,则表中行的物理顺序与键值的逻辑顺序不匹配。与非聚集索引相比,聚集索引通常提供更快的数据访问速度。

6、MyISAM 和 InnoDB 两个存储引擎的索引

MyISAM 索引实现

MyISAM 引擎使用 B+Tree 作为索引结构,叶节点的 data 域存放的是数据记录的地址。下图是 MyISAM 索引的原理图:
在这里插入图片描述
这里设表一共有三列,假设我们以 Col1 为主键,则图 8 是一个 MyISAM 表的主索引(Primary key)示意。可以看出 MyISAM 的索引文件仅仅保存数据记录的地址。

辅助索引

在 MyISAM 中,主索引和辅助索引(Secondary key)在结构上没有任何区别,只是主索引要求 key 是唯一的,而辅助索引的 key 可以重复。如果我们在 Col2 上建立一个辅助索引,则此索引的结构如下图所示
在这里插入图片描述
同样也是一颗 B+Tree,data 域保存数据记录的地址。因此,MyISAM 中索引检索的算法为首先按照 B+Tree 搜索算法搜索索引,如果指定的 Key 存在,则取出其data 域的值,然后以 data 域的值为地址,读取相应数据记录。

MyISAM 的索引方式也叫做“非聚集索引”,之所以这么称呼是为了与 InnoDB的聚集索引区分。

InnoDB 索引实现

虽然 InnoDB 也使用 B+Tree 作为索引结构,但具体实现方式却与 MyISAM 截然不同。

1.第一个重大区别是 InnoDB 的数据文件本身就是索引文件。从上文知道,MyISAM 索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。

而在InnoDB 中,表数据文件本身就是按 B+Tree 组织的一个索引结构,这棵树的叶点data 域保存了完整的数据记录。这个索引的 key 是数据表的主键,因此 InnoDB 表数据文件本身就是主索引。

在这里插入图片描述
上图是 InnoDB 主索引(同时也是数据文件)的示意图,可以看到叶节点包含了完整的数据记录。这种索引叫做聚集索引。因为 InnoDB 的数据文件本身要按主键聚集,

1 .InnoDB 要求表必须有主键(MyISAM 可以没有),如果没有显式指定,则 MySQL系统会自动选择一个可以唯一标识数据记录的列作为主键,如果不存在这种列,则MySQL 自动为 InnoDB 表生成一个隐含字段作为主键,类型为长整形。

同时,请尽量在 InnoDB 上采用自增字段做表的主键。因为 InnoDB 数据文件本身是一棵B+Tree,非单调的主键会造成在插入新记录时数据文件为了维持 B+Tree 的特性而频繁的分裂调整,十分低效,而使用自增字段作为主键则是一个很好的选择。如果表使用自增主键,那么每次插入新的记录,记录就会顺序添加到当前索引节点的后续位置,当一页写满,就会自动开辟一个新的页。如下图所示:
在这里插入图片描述
这样就会形成一个紧凑的索引结构,近似顺序填满。由于每次插入时也不需要移动已有数据,因此效率很高,也不会增加很多开销在维护索引上。

2.第二个与 MyISAM 索引的不同是 InnoDB 的辅助索引 data 域存储相应记录主键的值而不是地址。换句话说,InnoDB 的所有辅助索引都引用主键作为 data 域。
例如,图 11 为定义在 Col3 上的一个辅助索引:
在这里插入图片描述

问题:B树和B+树有什么区别?

B树是一颗多路平衡查找树。

每个节点最多有m-1个关键字(可以存有的键值对)。
根节点最少可以只有1个关键字。
非根节点至少有m/2个关键字。
每个节点中的关键字都按照从小到大的顺序排列,每个关键字的左子树中的所有关键字都小于它,而右子树中的所有关键字都大于它。
所有叶子节点都位于同一层,或者说根节点到每个叶子节点的长度都相同。
每个节点都存有索引和数据,也就是对应的key和value。
所以,根节点的关键字数量范围:1 <= k <= m-1,非根节点的关键字数量范围:m/2 <= k <= m-1。

另外,我们需要注意一个概念,描述一颗B树时需要指定它的阶数,阶数表示了一个节点最多有多少个孩子节点,一般用字母m表示阶数。

B+树其实和B树是非常相似的,我们首先看看相同点。

根节点至少一个元素
非根节点元素范围:m/2 <= k <= m-1
不同点。

B+树有两种类型的节点:内部结点(也称索引结点)和叶子结点。内部节点就是非叶子节点,内部节点不存储数据,只存储索引,数据都存储在叶子节点。
内部结点中的key都按照从小到大的顺序排列,对于内部结点中的一个key,左树中的所有key都小于它,右子树中的key都大于等于它。叶子结点中的记录也按照key的大小排列。
每个叶子结点都存有相邻叶子结点的指针,叶子结点本身依关键字的大小自小而大顺序链接。
父节点存有右孩子的第一个元素的索引。
B+树相对于B树有一些自己的优势,可以归结为下面几点。

单一节点存储的元素更多,使得查询的IO次数更少,所以也就使得它更适合做为数据库MySQL的底层数据结构了。
所有的查询都要查找到叶子节点,查询性能是稳定的,而B树,每个节点都可以查找到数据,所以不稳定。
所有的叶子节点形成了一个有序链表,更加便于查找。
参考:

B+树的非叶子节点只是存储key,占用空间非常小,因此每一层的节点能索引到的数据范围更加的广。换句话说,每次IO操作可以搜索更多的数据。
叶子节点两两相连,符合磁盘的预读特性。比如叶子节点存储50和55,它有个指针指向了60和62这个叶子节点,那么当我们从磁盘读取50和55对应的数据的时候,由于磁盘的预读特性,会顺便把60和62对应的数据读取出来。这个时候属于顺序读取,而不是磁盘寻道了,加快了速度。
支持范围查询,而且部分范围查询非常高效,每个节点能索引的范围更大更精确,也意味着 B+树单次磁盘IO的信息量大于B-树,I/O效率更高。
原因是数据都是存储在叶子节点这一层,并且有指针指向其他叶子节点,这样范围查询只需要遍历叶子节点这一层,无需整棵树遍历。

由于磁盘的存取速度与内存之间鸿沟,为了提高效率,要尽量减少磁盘I/O.磁盘往往不是严格按需读取,而是每次都会预读,磁盘读取完需要的数据,会顺序向后读一定长度的数据放入内存。而这样做的理论依据是计算机科学中著名的局部性原理:

当一个数据被用到时,其附近的数据也通常会马上被使用,程序运行期间所需要的数据通常比较集中

延伸问题:与哈希索引的区别?

简单地说,哈希索引就是采用一定的哈希算法,把键值换算成新的哈希值,检索时不需要类似B+树那样从根节点到叶子节点逐级查找,只需一次哈希算法即可立刻定位到相应的位置,速度非常快。

如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据。
如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索。
同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询)。
哈希索引也不支持多列联合索引的最左匹配规则。
B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。

问题:MyISAM 和 InnoDB 的区别有哪些?

InnoDB 支持事务,但是MyISAM 不支持事务。这也是 MySQL 选择 InnoDB作为 默认存储引擎的原因之一;
InnoDB 支持外键,但是 MyISAM 不支持。如果一个表包含外键,并且存储引擎是InnoDB,把它转为 MyISAM就会失败;
InnoDB 使用的是聚集索引,MyISAM使用非聚集索引。聚簇索引的文件存放在主键索引的叶子节点上,所以 InnoDB 必须要有主键,通过主键索引效率很高。但是辅助索引需要两次查询,先查询到主键,然后再通过主键查询到数据。所以,主键不应该过大,因为主键太大,其他索引也都会很大。非聚集索引的话,数据文件是分离的,索引保存的是数据文件的指针。主键索引和辅助索引是独立的。
InnoDB 不保存表的具体行数,执行 select count(*) from table 时需要全表扫描。但是MyISAM用一个变量保存了整个表的行数,执行上述语句时只需要读出该变量即可,速度很快;
InnoDB 最小的锁粒度是行级锁,MyISAM 最小的锁粒度是表级锁。一个更新语句会锁住整张表,导致其他查询和更新都会被阻塞,所以并发访问受到很大的限制。

问题:延伸问题:如何选择存储引擎?

是否要支持事务,如果要请选择 InnoDB,如果不需要可以考虑 MyISAM;

如果表中绝大多数都只是读查询,可以考虑 MyISAM,如果既有读写也挺频繁,那就使用InnoDB。

系统崩溃后,MyISAM恢复起来更困难,能否接受,不能接受就选 InnoDB;

MySQL5.5版本开始InnoDB已经成为MySQL的默认引擎,说明其优势是有目共睹的。如果不知道用什么存储引擎,那就用InnoDB,跟着官方走,至少不会差。

问题:MySQL主从复制是怎么做的?

在这里插入图片描述
主从复制主要涉及三个线程:binlog 线程、I/O 线程和 SQL 线程。这个过程是靠这三个过程的密切配合来进行的。

binlog 线程 :负责将主服务器上的数据更改写入二进制日志(Binary log)中。
I/O 线程 :负责从主服务器上读取二进制日志,并写入从服务器的中继日志(Relay log)。
SQL 线程 :负责读取中继日志,解析出主服务器已经执行的数据更改并在从服务器中重放(Replay)。

问题:大表优化

当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下:

  1. 限定数据的范围
    务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内;

  2. 读/写分离
    经典的数据库拆分方案,主库负责写,从库负责读;

  3. 垂直分区
    根据数据库里面数据表的相关性进行拆分。 例如,用户表中既有用户的登录信息又有用户的基本信息,可以将用户表拆分成两个单独的表,甚至放到单独的库做分库。

简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。

垂直拆分的优点: 可以使得列数据变小,在查询时减少读取的Block数,减少I/O次数。此外,垂直分区可以简化表的结构,易于维护。
垂直拆分的缺点: 主键会出现冗余,需要管理冗余列,并会引起Join操作,可以通过在应用层进行Join来解决。此外,垂直分区会让事务变得更加复杂;
4. 水平分区
保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。 水平拆分可以支撑非常大的数据量。

水平拆分是指数据表行的拆分,表的行数超过200万行时,就会变慢,这时可以把一张的表的数据拆成多张表来存放。举个例子:我们可以将用户信息表拆分成多个用户信息表,这样就可以避免单一表数据量过大对性能造成影响。

水平拆分可以支持非常大的数据量。需要注意的一点是:分表仅仅是解决了单一表数据过大的问题,但由于表的数据还是在同一台机器上,其实对于提升MySQL并发能力没有什么意义,所以 水平拆分最好分库 。

水平拆分能够 支持非常大的数据量存储,应用端改造也少,但 分片事务难以解决 ,跨节点Join性能较差,逻辑复杂

问题:如何保证缓存与数据库双写时的数据一致性?

一般来说,就是如果系统不是严格要求缓存和数据库必须一致性的话,缓存可以稍微的跟数据库偶尔有不一致的情况,最好不要做这个方案,可以将读请求和写请求串行化,串到一个内存队列里去,这样就可以保证一定不会出现不一致的情况

串行化之后,就会导致系统的吞吐量会大幅度的降低,用比正常情况下多几倍的机器去支撑线上的一个请求。

问题:红黑树和AVL树有什么区别?

AVL 和RBT 都是二叉查找树的优化。其性能要远远好于二叉查找树。他们之间都有自己的优势,其应用上也有不同。

结构对比: AVL的结构高度平衡,RBT的结构基本平衡。平衡度AVL > RBT.

查找对比: AVL 查找时间复杂度最好,最坏情况都是O(logN)。

RBT 查找时间复杂度最好为O(logN),最坏情况下比AVL略差。

插入删除对比: 1. AVL的插入和删除结点很容易造成树结构的不平衡,而RBT的平衡度要求较低。因此在大量数据插入的情况下,RBT需要通过旋转变色操作来重新达到平衡的频度要小于AVL。

如果需要平衡处理时,RBT比AVL多一种变色操作,而且变色的时间复杂度在O(logN)数量级上。但是由于操作简单,所以在实践中这种变色仍然是非常快速的。
当插入一个结点都引起了树的不平衡,AVL和RBT都最多需要2次旋转操作。但删除一个结点引起不平衡后,AVL最多需要logN 次旋转操作,而RBT最多只需要3次。因此两者插入一个结点的代价差不多,但删除一个结点的代价RBT要低一些。
AVL和RBT的插入删除代价主要还是消耗在查找待操作的结点上。因此时间复杂度基本上都是与O(logN) 成正比的。
总体评价:大量数据实践证明,RBT的总体统计性能要好于平衡二叉树。

问题:mysql和redis的区别

1、mysql和redis的数据库类型

mysql是关系型数据库,主要用于存放持久化数据,将数据存储在硬盘中,读取速度较慢。

redis是NOSQL,即非关系型数据库,也是缓存数据库,即将数据存储在缓存中,缓存的读取速度快,能够大大的提高运行效率,但是保存时间有限

2、mysql的运行机制

mysql作为持久化存储的关系型数据库,相对薄弱的地方在于每次请求访问数据库时,都存在着I/O操作,如果反复频繁的访问数据库。第一:会在反复链接数据库上花费大量时间,从而导致运行效率过慢;第二:反复的访问数据库也会导致数据库的负载过高,那么此时缓存的概念就衍生了出来。

3、什么是缓存

缓存就是数据交换的缓冲区(cache),当浏览器执行请求时,首先会对在缓存中进行查找,如果存在,就获取;否则就访问数据库。

缓存的好处就是读取速度快

4、redis和mysql的区别总结

(1)类型上

从类型上来说,mysql是关系型数据库,redis是缓存数据库

(2)作用上

mysql用于持久化的存储数据到硬盘,功能强大,但是速度较慢

redis用于存储使用较为频繁的数据到缓存中,读取速度快

(3)需求上

mysql和redis因为需求的不同,一般都是配合使用。

补充:
redis和mysql要根据具体业务场景去选型

mysql:数据放在磁盘
redis:数据放在内存

redis适合放一些频繁使用,比较热的数据,因为是放在内存中,读写速度都非常快,一般会应用在下面一些场景

排行榜、计数器、消息队列推送、好友关注、粉丝

首先要知道mysql存储在磁盘里,redis存储在内存里,redis既可以用来做持久存储,也可以做缓存,而目前大多数公司的存储都是mysql + redis,mysql作为主存储,redis作为辅助存储被用作缓存,加快访问读取的速度,提高性能
那么为什么不直接全部用redis存储呢?
我的看法是:因为redis存储在内存中,如果存储在内存中,存储容量肯定要比磁盘少很多,那么要存储大量数据,只能花更多的钱去购买内存,造成在一些不需要高性能的地方是相对比较浪费的,所以目前基本都是mysql(主) + redis(辅),在需要性能的地方使用redis,在不需要高性能的地方使用mysql,好钢用在刀刃上
1、mysql支持sql查询,可以实现一些关联的查询以及统计;

2、redis对内存要求比较高,在有限的条件下不能把所有数据都放在redis;

3、mysql偏向于存数据,redis偏向于快速取数据,但redis查询复杂的表关系时不如mysql,所以可以把热门的数据放redis,mysql存基本数据

问题:Redis 和 Memcached 的区别

Redis支持更丰富的数据类型(支持更复杂的应用场景):Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。memcached只支持简单的字符串类型。
Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用,而Memecached把数据全部存在内存之中。
集群模式:Memcached没有原生的集群模式,需要依靠客户端来实现往集群中分片写入数据;但是 Redis 目前是原生支持 cluster 模式的.
Memcached是多线程,非阻塞I/O复用的网络模型;Redis使用单线程的多路 I/O 复用模型。
Redis 常见数据结构以及使用场景分析
String
String数据结构是简单的key-value类型,value其实不仅可以是String,也可以是数字。
可以用作常规key-value缓存,也可以用来计数,比如说记录微博数,粉丝数等。

Hash
hash 是一个 string 类型的 field 和 value 的映射表,hash 特别适合用于存储对象,后续操作的时候,可以直接仅仅修改这个对象中的某个字段的值。 比如我们可以 hash 数据结构来存储用户信息,商品信息等等。

List
list 就是链表,list的应用场景非常多,也是Redis最重要的数据结构之一,比如微博的关注列表,粉丝列表,消息列表等功能都可以用Redis的 list 结构来实现。list的底层是一个双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销。

Set
set 对外提供的功能与list类似是一个列表的功能,特殊之处在于 set 是可以自动排重的。

当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set集合内的重要接口,这个也是list所不能提供的。可以基于 set 轻易实现交集、并集、差集的操作。

比如:在微博应用中,可以将一个用户所有的关注人存在一个集合中,将其所有粉丝存在一个集合。Redis可以非常方便的实现如共同关注、共同粉丝、共同喜好等功能。这个过程也就是求交集的过程。

Sorted Set
和set相比,sorted set增加了一个权重参数score,使得集合中的元素能够按score进行有序排列。

举例: 在直播系统中,实时排行信息包含直播间在线用户列表,各种礼物排行榜,弹幕消息(可以理解为按消息维度的消息排行榜)等信息,适合使用 Redis 中的 Sorted Set 结构进行存储。

问题:什么是AOF重写?

AOF重写可以产生一个新的AOF文件,这个新的AOF文件和原有的AOF文件所保存的数据库状态一样,但体积更小。

在执行 BGREWRITEAOF 命令时,Redis 服务器会维护一个 AOF 重写缓冲区,该缓冲区会在子进程创建新AOF文件期间,记录服务器执行的所有写命令。当子进程完成创建新AOF文件的工作之后,服务器会将重写缓冲区中的所有内容追加到新AOF文件的末尾,使得新旧两个AOF文件所保存的数据库状态一致。最后,服务器用新的AOF文件替换旧的AOF文件,以此来完成AOF文件重写操作。

缓存雪崩和缓存穿透问题解决方案
缓存雪崩
就是缓存同一时间大面积的失效,所以,后面的请求都会落到数据库上,造成数据库短时间内承受大量请求而崩掉。

解决办法:

事前:尽量保证整个 Redis 集群的高可用性,发现机器宕机尽快补上。选择合适的内存淘汰策略。
事中:本地缓存 + Hystrix限流和降级,避免MySQL崩掉。
事后:利用 Redis 持久化机制保存的数据尽快恢复缓存。
缓存穿透
一般是黑客故意去请求缓存中不存在的数据,导致所有的请求都落到数据库上,造成数据库短时间内承受大量请求而崩掉。

解决办法:

有很多种方法可以有效地解决缓存穿透问题,最常见的则是采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被 这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。另外也有一个更为简单粗暴的方法(我们采用的就是这种),如果一个查询返回的数据为空(不管是数据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。

问题:数据库与数据仓库的区别

简单理解下数据仓库是多个数据库以一种方式组织起来
数据库强调范式,尽可能减少冗余
数据仓库强调查询分析的速度,优化读取操作,主要目的是快速做大量数据的查询
数据仓库定期写入新数据,但不覆盖原有数据,而是给数据加上时间戳标签
数据库采用行存储,数据仓库一般采用列存储(行存储与列存储区别见题3)
数据仓库的特征是面向主题、集成、相对稳定、反映历史变化,存储数历史数据;数据库是面向事务的,存储在线交易数据
数据仓库的两个基本元素是维表和事实表,维是看待问题的角度,比如时间、部门等,事实表放着要查询的数据

问题:SQL的数据类型

字符串:char、varchar、text
二进制串:binary、varbinary
布尔类型:boolean
数值类型:integer、smallint、bigint、decimal、numeric、float、real、double
时间类型:date、time、timestamp、interval

问题:left join,right join,inner join,full join之间的区别?

1.inner join(内连接),在两张表进行连接查询时,只保留两张表中完全匹配的结果集。

2.left join,在两张表进行连接查询时,会返回左表所有的行,即使在右表中没有匹配的记录。

3.right join,在两张表进行连接查询时,会返回右表所有的行,即使在左表中没有匹配的记录。

4.full join,在两张表进行连接查询时,返回左表和右表中所有没有匹配的行。

问题:having和where的区别?

本质的区别就是:
where筛选的是数据库表里面本来就有的字段
而having筛选的字段是从前筛选的字段筛选的

where和having都可以使用的场景:

select goods_price,goods_name from sw_goods where goods_price>100select goods_price,goods_name from sw_goods having goods_price>100

原因:goods_price作为条件也出现在了查询字段中。

只可以使用where,不可以使用having的情况:

select goods_name,goods_number from sw_goods where goods_price>100select goods_name,goods_number from sw_goods having goods_price>100(X)

原因:goods_price作为筛选条件没有出现在查询字段中,所以就会报错。

having的原理是先select 然后从select出来的进行筛选。而where是先筛选在select。

只可以使用having,不可以使用where的情况:

select goods_category_id,avg(good_price) as ag from sw_goods group by goods_category having ag>1000select  goods_category_id,avg(goods_price) as ag from sw_goods where ag>1000 group by goods_category(X)报错,这个表里没有这个ag这个字段。

where子句中一般不使用聚合函数那种情况。

问题:not in和not exists区别

如果查询语句使用了not in 那么内外表都进行全表扫描,没有用到索引;
而not extsts 的子查询依然能用到表上的索引。
所以无论那个表大,用not exists都比not in要快。
也就是说,in和exists需要具体情况具体分析,not in和not exists就不用分析了,尽量用not exists就好了。

问题:mysql中设置row number

SET @row_number = 0; 
SELECT (@row_number:=@row_number + 1) AS num FROM table

问题:sql中null与‘ ’的区别。

null表示空,用is null判断
'‘表示空字符串,用=’'判断

问题:mysql 中视图和表的区别以及联系是什么?

一、两者的区别

1)本质

表是内容,视图是窗口。视图是已经编译好的sql语句,是基于sql语句的结果集的可视化的表,而表不是。

2)实与虚

表属于全局模式中的表,是实表;视图属于局部模式的表,是虚表。

3)是否存在物理记录

视图没有,而表有。

4)是否占用物理空间

表占用物理空间,而视图不占用。视图只是逻辑概念的存在,表可以及时对它进行修改,但视图只能用创建的语句来修改。

5)是否影响

视图的建立(create)和删除(drop)只影响视图本身,不影响对应的基本表。

6)安全因素

视图是查看数据表的一种方法,可以查询数据表中某些字段构成的数据,只是一些sql语句的集合。从安全的角度来说,视图可以防止用户接触数据表,因而用户不知道表结构。

二、两者的联系

视图是在基本表之上建立的表,它的结构(即所定义的列)和内容(即所有记录)都来自基本表,它依据基本表存在而存在。一个视图可以对应一个基本表,也可以对应多个基本表。视图是基本表的抽象和在逻辑意义上建立的新关系。

问题:行存储和列存储的区别。

(1)行存储:传统数据库的存储方式,同一张表内的数据放在一起,插入更新很快。缺点是每次查询即使只涉及几列,也要把所有数据读取.
(2)列存储:OLAP等情况下,将数据按照列存储会更高效,每一列都可以成为索引,投影很高效。缺点是查询是选择完成时,需要对选择的列进行重新组装。
“当你的核心业务是 OLTP 时,一个行式数据库,再加上优化操作,可能是个最好的选择。
当你的核心业务是 OLAP 时,一个列式数据库,绝对是更好的选择”

问题:如何写SQL求出中位数平均数和众数(除了用count之外的方法)

1)中位数
方案1(没考虑到偶数个数的情况):

set @m = (select count(*)/2 from table)

select column from table order by column limit @m, 1

方案2(考虑偶数个数,中位数是中间两个数的平均):

set @index = -1

select avg(table.column)

from

(select @index:=@index+1 as index, column

from table order by column) as t

where t.index in (floor(@index/2),ceiling(@index/2))

2)平均数:select avg(distinct column) from table
3)众数:select column, count(*) from table group by column order by column desc limit 1

2、手写SQL

问题:有一张用户签到表【t_user_attendence】,标记每天用户是否签到(说明:该表包含所有用户所有工作日的出勤记录) ,包含三个字段:日期【fdate】,用户id【fuser_id】,用户当天是否签到【fis_sign_in:0否1是】;

问题1:请计算截至当前每个用户已经连续签到的天数(输出表仅包含当天签到的所有用户,计算其连续签到天数)

输出表【t_user_consecutive_days】:用户id【fuser_id】,用户联系签到天数【fconsecutive_days】

思路:先找用户最近一次未签到日期,再用今天减那个日期

create table t_user_consecutive_days as 
select fuser_id
,datediff('20200322',fdate_max) fconsecutive_days
from(select fuser_id,max(fdate) fdate_maxfrom t_user_attendencewhere fis_sign_in = 0group by fuser_id) t1
;

问题2:请计算每个用户历史以来最大的连续签到天数(输出表为用户签到表中所有出现过的用户,计算其历史最大连续签到天数)

输出表【t_user_max_days】:用户id【fuser_id】,用户最大连续签到天数【fmax_days】

问题2答案:把用户所有签到记录转化成一条0-1字符串序列,用0做split切割,计算切出来的1序列组中的最大长度

create table t_user_max_days as
select fuser_id
,max(length(cut_fsign_record)) as fmax_days
(select fuser_id
,fsign_record
,cut_fsign_record
from(select fuser_id,wm_concat(fis_sign_in) fsign_recordfrom t_user_attendencegroup by fuser_id) t1
lateral view explode(split(fsign_record,'0')) t as cut_fsign_record
) t2
where cut_fsign_record<>''
group by fuser_id
;

3、手写Python

题目:针对股票的最大回撤率指标定义,给出代码实现思路。给定的是产品所有交易日的净值序列,且其净值序列已按照日期排序。

最大回撤率:在选定周期内任一历史时点往后推,产品净值走到最低点时的收益率回撤幅度的最大值。

追问:如何在提升计算效率?

这道题类似的题目其实在leecode也有,这个大概是变化但类似版本(可以搜leecode股票最大回报);因为团队里处理比较多金融资产数据,这个指标是策略中最常见的指标之一,所以也是一道工作中攒下来的题目。这个指标的计算优化问题真的非常值得问,我后面会列几个版本的代码思路和实现代码。

通常最简单的计算实现,会需要O(n2)的计算复杂度;可以针对如何降低计算复杂度,专门追问。

基础实现

def max_drawdown(accnavArr):mdd = 0for i in range(0, len(accnavArr)):for j in range(i + 1, len(accnavArr)):drawdown = accnavArr[i] / accnavArr[j] - 1if drawdown < mdd:mdd = drawdownreturn mdd

空间换时间实现版本:

把每个时间点计算的最大值都存到一个列表结构中,最大回撤的计算只需要再依赖这个列表进行多一次循环计算。

def maxDrawdownGainCal(accnavArr):      # 默认accnavArr按日期降序排列maxDrawdown = 10000maxGain =0arr_len = len(accnavArr)maxList = [0.0] * arr_lenminList = [0.0] * arr_lenmaxList[arr_len-1] = accnavArr[arr_len-1]minList[arr_len-1] = accnavArr[arr_len-1]for i in range(arr_len-2,-1,-1):if accnavArr[i] > maxList[i+1]:maxList[i] = accnavArr[i]else:maxList[i] = maxList[i+1]if accnavArr[i] < minList[i+1]:minList[i] = accnavArr[i]else:minList[i] = minList[i+1]for i in range(0,arr_len):mdd = (accnavArr[i]/maxList[i]-1)mg = (accnavArr[i]/minList[i]-1)if mdd < maxDrawdown : maxDrawdown = mddif mg > maxGain : maxGain = mgreturn maxDrawdown,maxGain
查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. hbase的安装部署-------------------<版本2.0.6>

    概况版本:2.0.6节点: 3个tar -zxf hbase-2.0.4-bin.tar.gz -C /opt/apps/ 解压到指定目录在安装HBase的前提之下 ******提醒:集群中的每一台机器的时间一定同步,要么误差在一定的范围内 否则安装会出现异常!!!******如果没有时间同步抛…...

    2024/4/24 0:16:35
  2. QGC Bug修改——飞行模式中高亮行与实际行不匹配的BUG

    有没有用v4.0版本的发现遥控器的飞行模式设置有问题的。正常应该是1-4-6 通道可以设置的,而该版本中只有2和5通道能用,如下:定位到问题的具体位置: //PX4\PX4SimpleFlightModes.qml:105 Repeater {model: 6QGCLabel {Layout.fillWidth: truetext: qsTr(&q…...

    2024/4/21 18:47:35
  3. Java毕业设计_基于SSM的医院预约挂号系统设计与实现

    基于SSM的医院预约挂号系统设计与实现 基于SSM的医院预约挂号系统设计与实现mysql数据库创建语句 基于SSM的医院预约挂号系统设计与实现oracle数据库创建语句 基于SSM的医院预约挂号系统设计与实现sqlserver数据库创建语句 基于SSM的医院预约挂号系统设计与实现spring+springMV…...

    2024/4/30 14:50:48
  4. 南京邮电大学2019-2020第二学年度微型计算机接口技术考试真题回忆

    2020.9.1号 计算机学院选修课微机接口回忆,因为疫情原因吧,感觉没有来年说的那么难。选择题哪个不是存储器译码方法(幸好考试前看了) PC机IO端口编址方法 写控制字时 CS‾\overline{CS}CS、WR‾\overline{WR}WR、RD‾\overline{RD}RD信号是什么 日时钟中断源是什么 并行芯片…...

    2024/4/27 10:31:34
  5. RabbitMQ的介绍-1

    什么是MQ? 消息总线(Message Queue),是一种跨进程、异步的通信机制,用于上下游传递消息。由消息系统来确保消息的可靠传递。 MQ的作用的? 应用解耦、异步、流量削锋、数据分发、错峰流控、日志收集等等… MQ衡量标准 服务性能、数据存储、集群架构 主流竞品分析 当前市面上…...

    2024/5/6 3:45:44
  6. 新冠疫情下的智能建筑

    9.2-9.4 刚好是一年一度的国际智能建筑展(SIBT)在浦东举行。作为第四届参加的老鸟,当然得去捧场,同时了解下当前同行的进展和动态。年初爆发的COVID-19无疑对本次展会带来了重大影响。从进场参观需要备齐双码(健康码+邀请码)+身份证,到安检红外测温,再到身边常可看到的…...

    2024/4/22 4:56:35
  7. 系统分析师历年真题与答案解析视频 下载 软考高级视频下载 系统分析师历年整理答案解析视频讲义下载

    系统分析师历年真题与答案解析视频 下载 软考高级视频下载 系统分析师历年真题答案解析视频讲义下载一、前言软考高级——系统分析师是软考高级最有含金量的一门考试之一,可以用来评定职称。软件和互联网公司中可以招投标非常有用。二、备考心得愿望强烈:一定要给自己找到足够…...

    2024/4/22 23:19:04
  8. Linux 内存回收机制

    1.回收整体框图__get_free_pages:返回的是虚拟地址; alloc_pages:返回的是struct page*结构; unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) {struct page *page;/** __get_free_pages() returns a 32-bit address, which cannot represent* a high…...

    2024/5/1 15:30:15
  9. 高性能网络编程(七):到底什么是高并发?一文即懂!

    本文由小米信息技术团队研发工程师陈刚原创,原题“当我们在谈论高并发的时候究竟在谈什么?”,为了更好的内容呈现,即时通讯网收录时有修订和改动。1、引言在即时通讯网社区里,多是做IM、消息推送、客服系统、音视频聊天这类实时通信方面的开发者,在涉及到即时通讯技术时聊…...

    2024/4/29 19:13:42
  10. 【MySQL调优】21条MySQL调优策略(面试够吹了)

    文章目录1. 为查询缓存优化你的查询2. EXPLAIN 你的 SELECT 查询(索引相关)3. 当只要一行数据时使用 LIMIT 14. 为搜索字段建索引5. 在 Join 表的时候使用相当类型的例,并将其索引6. 千万不要 ORDER BY RAND(),单表sql打乱返回的数据行/字段7. 避免 SELECT *8. 永远为每张表…...

    2024/4/23 22:04:23
  11. CSS 三 高级语法

    选择器的分组你可以对选择器进行分组,这样,被分组的选择器就可以分享相同的声明。用逗号将需要分组的选择器分开。在下面的例子中,我们对所有的标题元素进行了分组。所有的标题元素都是绿色的。h1,h2,h3,h4,h5,h6 {color: green;}继承及其问题根据 CSS,子元素从父元素继承属…...

    2024/4/30 0:33:31
  12. Tomcat-Connector(链接器)

    参考:Tomcat架构解析 后面会对这些进行排版,整理,总结,修改等。 Tomcat服务器Server两大组件Container和Connector 前面已经介绍了Container(容器) Connector设计 要想与container配合实现一个完整的服务器功能,Connector至少要完成下面几项功能。 监听服务器端口,读取来…...

    2024/4/11 15:44:26
  13. Nginx+Tomcat负载均衡、动静分离群集

    文章目录一、Tomcat重要目录二、Nginx应用介绍三、Nginx负载均衡实现原理四、实验:Nginx+Tomcat负载均衡、动静分离 一、Tomcat重要目录bin:存放启动和关闭Tomcat脚本 conf:存放Tomcat不同的配置文件 doc:存放Tomcat文档 lib:存放Tomcat运行需要的库文件 logs:存放Tomcat…...

    2024/4/23 15:50:45
  14. go每日新闻--2020-09-03

    go 语言中文网(每日资讯)_2020-09-03 一、Go 语言中文网CGO 如何生成兼容 C 的结构体? 花开并蒂—站在 Go 接口之上的反射分析 Go 每日一库之 jobrunner二、亚军进化史Go 技术日报(2020-09-02) 三、 polarisxu玩转 VS Code 之你可能不知道的一些技巧 Go 1.15.1 和 Go 1.14.8 发…...

    2024/4/13 9:01:49
  15. 密码学之恺撒加密(03)

    恺撒加密文章目录恺撒加密一、中国古代加密二、外国加密三、凯撒位移加密四、凯撒加密和解密五、频度分析法破解恺撒加密密码棒频率分析解密法英文字母频率统计表:提示:以下是本篇文章正文内容,下面案例可供参考 一、中国古代加密 看一个小故事 , 看看古人如何加密和解密:…...

    2024/4/16 0:41:01
  16. 【Koa】简单聊聊 ORM 基本概念、ORM应用

    ORM 基本概念 - 什么是ORM即Object-Relationl Mapping,它的作用是在关系型数据库和对象之间作一个映射,这样,我们在具体的操作数据库的时候,就不需要再去和复杂的SQL语句打交道,只要像平时操作对象一样操作它就可以了 。- 什么是“持久化”持久(Persistence),即把数据(…...

    2024/5/6 5:08:24
  17. 186、商城业务-检索服务-页面分页数据渲染

    <div class="header_form"><input id="keyword_input" type="text" placeholder="手机"/><a href="javascript:searchByKeyword();">搜索</a></div>function searchByKeyword(){searchProduc…...

    2024/4/25 13:23:41
  18. ssrf-lab踩坑记录

    详细安装见Centos7下安装Docker(详细安装教程) 可以配置镜像加速器,在阿里云找docker节点解决办法Linux -bash: git: 未找到命令的解决方法 呃。。不过最后还是有点问题没有解决。。 还是要转到phpstudy进行搭建 先来简单了解一下ssrf概念: SSRF(Server-Side Request Forger…...

    2024/5/3 21:41:28
  19. 我的Security+不完全备考指南报班

    报班日期:7月14日 考试日期:8月22日 考试分数:830分 备考策略 因为从事信息安全相关工作,一直想要考个证书,经过多方考虑选择了Security+认证。通过Security+学习了解了很多新的知识点,还是非常有益处的。我的经验是一定要认真的听谷安老师的课程,课后看录播复习,完整看…...

    2024/5/3 8:31:09
  20. 计算机网络期末考纲2020

    -计算机网络复习 计算机网络期末考试题型: 一、 单选题(15小题,共30分) 二、 多选题(5小题,共10分) 三、 填空题(共10分) 四、 判断题(共10分) 五、 综合应用题(4小题,共40分) 第一章:概述 1、计算机网络的两个基本特点(连通性和共享) 2、互联网的组成(核心和…...

    2024/4/24 2:54:37

最新文章

  1. HAL PWM 配置 占空比 频率 stm32 学习笔记

    title: HALPWM配置占空比频率 tags: STM32ClionHal 1.STM32CubeMX学习笔记&#xff08;13&#xff09;——PWM输出(呼吸灯)使用 2.STM32标准库HAL库 | 高精度动态调节PWM输出频率占空比 看你cubemx 里面的配置时钟频率是多少 参照第二篇文章描述修改 下面俩个参数就行 uin…...

    2024/5/7 14:04:38
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/5/7 10:36:02
  3. Python读取文件里内容

    如果要读取一个文件里的内容是 # 文件名&#xff1a;db.txt 1 2 3 4代码如下 import requests f open("db.txt", mode"rb") content f.read() f.close()data content.decode(utf-8)# 存到 list 里 data_list data.split(\r\n) print(data_list)# 结果…...

    2024/5/5 8:37:34
  4. GIS与数字孪生共舞,打造未来智慧场景

    作为一名数字孪生资深用户&#xff0c;近日我深刻理解到GIS&#xff08;地理信息系统&#xff09;在构建数字孪生体中的关键作用。 数字孪生技术旨在构建现实世界的虚拟镜像&#xff0c;而GIS则是这一镜像中不可或缺的空间维度框架和导航灯塔。数字孪生的核心是通过数字化方式…...

    2024/5/2 2:35:02
  5. 416. 分割等和子集问题(动态规划)

    题目 题解 class Solution:def canPartition(self, nums: List[int]) -> bool:# badcaseif not nums:return True# 不能被2整除if sum(nums) % 2 ! 0:return False# 状态定义&#xff1a;dp[i][j]表示当背包容量为j&#xff0c;用前i个物品是否正好可以将背包填满&#xff…...

    2024/5/6 18:23:10
  6. 【Java】ExcelWriter自适应宽度工具类(支持中文)

    工具类 import org.apache.poi.ss.usermodel.Cell; import org.apache.poi.ss.usermodel.CellType; import org.apache.poi.ss.usermodel.Row; import org.apache.poi.ss.usermodel.Sheet;/*** Excel工具类** author xiaoming* date 2023/11/17 10:40*/ public class ExcelUti…...

    2024/5/6 18:40:38
  7. Spring cloud负载均衡@LoadBalanced LoadBalancerClient

    LoadBalance vs Ribbon 由于Spring cloud2020之后移除了Ribbon&#xff0c;直接使用Spring Cloud LoadBalancer作为客户端负载均衡组件&#xff0c;我们讨论Spring负载均衡以Spring Cloud2020之后版本为主&#xff0c;学习Spring Cloud LoadBalance&#xff0c;暂不讨论Ribbon…...

    2024/5/6 23:37:19
  8. TSINGSEE青犀AI智能分析+视频监控工业园区周界安全防范方案

    一、背景需求分析 在工业产业园、化工园或生产制造园区中&#xff0c;周界防范意义重大&#xff0c;对园区的安全起到重要的作用。常规的安防方式是采用人员巡查&#xff0c;人力投入成本大而且效率低。周界一旦被破坏或入侵&#xff0c;会影响园区人员和资产安全&#xff0c;…...

    2024/5/6 7:24:07
  9. VB.net WebBrowser网页元素抓取分析方法

    在用WebBrowser编程实现网页操作自动化时&#xff0c;常要分析网页Html&#xff0c;例如网页在加载数据时&#xff0c;常会显示“系统处理中&#xff0c;请稍候..”&#xff0c;我们需要在数据加载完成后才能继续下一步操作&#xff0c;如何抓取这个信息的网页html元素变化&…...

    2024/5/7 0:32:52
  10. 【Objective-C】Objective-C汇总

    方法定义 参考&#xff1a;https://www.yiibai.com/objective_c/objective_c_functions.html Objective-C编程语言中方法定义的一般形式如下 - (return_type) method_name:( argumentType1 )argumentName1 joiningArgument2:( argumentType2 )argumentName2 ... joiningArgu…...

    2024/5/6 6:01:13
  11. 【洛谷算法题】P5713-洛谷团队系统【入门2分支结构】

    &#x1f468;‍&#x1f4bb;博客主页&#xff1a;花无缺 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P5713-洛谷团队系统【入门2分支结构】&#x1f30f;题目描述&#x1f30f;输入格…...

    2024/5/6 7:24:06
  12. 【ES6.0】- 扩展运算符(...)

    【ES6.0】- 扩展运算符... 文章目录 【ES6.0】- 扩展运算符...一、概述二、拷贝数组对象三、合并操作四、参数传递五、数组去重六、字符串转字符数组七、NodeList转数组八、解构变量九、打印日志十、总结 一、概述 **扩展运算符(...)**允许一个表达式在期望多个参数&#xff0…...

    2024/5/7 1:54:46
  13. 摩根看好的前智能硬件头部品牌双11交易数据极度异常!——是模式创新还是饮鸩止渴?

    文 | 螳螂观察 作者 | 李燃 双11狂欢已落下帷幕&#xff0c;各大品牌纷纷晒出优异的成绩单&#xff0c;摩根士丹利投资的智能硬件头部品牌凯迪仕也不例外。然而有爆料称&#xff0c;在自媒体平台发布霸榜各大榜单喜讯的凯迪仕智能锁&#xff0c;多个平台数据都表现出极度异常…...

    2024/5/6 20:04:22
  14. Go语言常用命令详解(二)

    文章目录 前言常用命令go bug示例参数说明 go doc示例参数说明 go env示例 go fix示例 go fmt示例 go generate示例 总结写在最后 前言 接着上一篇继续介绍Go语言的常用命令 常用命令 以下是一些常用的Go命令&#xff0c;这些命令可以帮助您在Go开发中进行编译、测试、运行和…...

    2024/5/7 0:32:51
  15. 用欧拉路径判断图同构推出reverse合法性:1116T4

    http://cplusoj.com/d/senior/p/SS231116D 假设我们要把 a a a 变成 b b b&#xff0c;我们在 a i a_i ai​ 和 a i 1 a_{i1} ai1​ 之间连边&#xff0c; b b b 同理&#xff0c;则 a a a 能变成 b b b 的充要条件是两图 A , B A,B A,B 同构。 必要性显然&#xff0…...

    2024/5/6 7:24:04
  16. 【NGINX--1】基础知识

    1、在 Debian/Ubuntu 上安装 NGINX 在 Debian 或 Ubuntu 机器上安装 NGINX 开源版。 更新已配置源的软件包信息&#xff0c;并安装一些有助于配置官方 NGINX 软件包仓库的软件包&#xff1a; apt-get update apt install -y curl gnupg2 ca-certificates lsb-release debian-…...

    2024/5/6 7:24:04
  17. Hive默认分割符、存储格式与数据压缩

    目录 1、Hive默认分割符2、Hive存储格式3、Hive数据压缩 1、Hive默认分割符 Hive创建表时指定的行受限&#xff08;ROW FORMAT&#xff09;配置标准HQL为&#xff1a; ... ROW FORMAT DELIMITED FIELDS TERMINATED BY \u0001 COLLECTION ITEMS TERMINATED BY , MAP KEYS TERMI…...

    2024/5/6 19:38:16
  18. 【论文阅读】MAG:一种用于航天器遥测数据中有效异常检测的新方法

    文章目录 摘要1 引言2 问题描述3 拟议框架4 所提出方法的细节A.数据预处理B.变量相关分析C.MAG模型D.异常分数 5 实验A.数据集和性能指标B.实验设置与平台C.结果和比较 6 结论 摘要 异常检测是保证航天器稳定性的关键。在航天器运行过程中&#xff0c;传感器和控制器产生大量周…...

    2024/5/6 7:24:03
  19. --max-old-space-size=8192报错

    vue项目运行时&#xff0c;如果经常运行慢&#xff0c;崩溃停止服务&#xff0c;报如下错误 FATAL ERROR: CALL_AND_RETRY_LAST Allocation failed - JavaScript heap out of memory 因为在 Node 中&#xff0c;通过JavaScript使用内存时只能使用部分内存&#xff08;64位系统&…...

    2024/5/7 0:32:49
  20. 基于深度学习的恶意软件检测

    恶意软件是指恶意软件犯罪者用来感染个人计算机或整个组织的网络的软件。 它利用目标系统漏洞&#xff0c;例如可以被劫持的合法软件&#xff08;例如浏览器或 Web 应用程序插件&#xff09;中的错误。 恶意软件渗透可能会造成灾难性的后果&#xff0c;包括数据被盗、勒索或网…...

    2024/5/6 21:25:34
  21. JS原型对象prototype

    让我简单的为大家介绍一下原型对象prototype吧&#xff01; 使用原型实现方法共享 1.构造函数通过原型分配的函数是所有对象所 共享的。 2.JavaScript 规定&#xff0c;每一个构造函数都有一个 prototype 属性&#xff0c;指向另一个对象&#xff0c;所以我们也称为原型对象…...

    2024/5/7 11:08:22
  22. C++中只能有一个实例的单例类

    C中只能有一个实例的单例类 前面讨论的 President 类很不错&#xff0c;但存在一个缺陷&#xff1a;无法禁止通过实例化多个对象来创建多名总统&#xff1a; President One, Two, Three; 由于复制构造函数是私有的&#xff0c;其中每个对象都是不可复制的&#xff0c;但您的目…...

    2024/5/7 7:26:29
  23. python django 小程序图书借阅源码

    开发工具&#xff1a; PyCharm&#xff0c;mysql5.7&#xff0c;微信开发者工具 技术说明&#xff1a; python django html 小程序 功能介绍&#xff1a; 用户端&#xff1a; 登录注册&#xff08;含授权登录&#xff09; 首页显示搜索图书&#xff0c;轮播图&#xff0…...

    2024/5/7 0:32:47
  24. 电子学会C/C++编程等级考试2022年03月(一级)真题解析

    C/C++等级考试(1~8级)全部真题・点这里 第1题:双精度浮点数的输入输出 输入一个双精度浮点数,保留8位小数,输出这个浮点数。 时间限制:1000 内存限制:65536输入 只有一行,一个双精度浮点数。输出 一行,保留8位小数的浮点数。样例输入 3.1415926535798932样例输出 3.1…...

    2024/5/6 16:50:57
  25. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  26. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  27. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  28. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  29. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  30. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  31. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  32. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  33. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  34. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  35. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  36. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  37. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  38. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  39. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  40. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  41. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  42. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  43. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  44. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57