图象边缘检测中边界闭合性的分析与探讨

摘   要 在图象边缘检测中往往要求所检测到的边缘具有封闭特性,本文详细地分析了目前常用的两种算法:哈夫变换和Canny边缘检测算法,最后,探讨边缘算子应满足的准则。
关键词 边缘检测;闭合性;哈夫变换;Canny算子
 
1引言
      图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值。图象的边缘部分集中了图象的大部分信息,图象边缘的确定与提取对于整个图象场景的识别与理解是非常重要的,同时也是图象分割所依赖的重要特征,边缘检测主要是图象的灰度变化的度量、检测和定位,自从1959提出边缘检测以来,经过五十多年的发展,已有许多中不同的边缘检测方法。在我们常用的几种用于边缘检测的算子中Laplace算子常常会产生双边界;而其他一些算子如Sobel算子又往往会形成不闭合区域。本文主要讨论了在边缘检测中,获取封闭边界区域的算法。
2 图象边缘检测的基本步骤
     (1)滤波。边缘检测主要基于导数计算,但受噪声影响。但滤波器在降低噪声的同时也导致边缘强度的损失。
     (2)增强。增强算法将邻域中灰度有显著变化的点突出显示。一般通过计算梯度幅值完成。
     (3)检测。但在有些图象中梯度幅值较大的并不是边缘点。最简单的边缘检测是梯度幅值阈值判定。
     (4)定位。精确确定边缘的位置。

 
图1 边缘检测酸法的基本步骤
3 边界闭合的算法
3.1 哈夫变换[3]
      由于噪声的存在,用各种算子得到的边缘象素不连续,但是由于边缘象素之间有一定的连续性,我们就可以根据边缘象素在梯度幅度或梯度方向上的连续性把他们连接起来。具体说来,如果象素(s,t)在象素(x,y)的领域且它们的梯度幅度与梯度方向在给定的阈值下满足:
 
 
T是幅度阈值;A是角度阈值;

      那么,如对所有的边缘象素都进行上述的判断和连接就可以得到一个闭合的边界。
哈夫变换方法是利用图像得全局特性而对目标轮廓进行直接检测的方法,在已知区域形状的条件下,哈夫变换可以准确地捕获到目标的边界(连续的获不连续的),并最终以连续曲线的形式输出变换结果,该变换可以从强噪声环境中将已知形状的目标准确得分割提取出来。
     哈夫变换的核心思想是: 点—线的对偶性(duality)。通过变换将图象从图像控件转换到参数空间,在图像空间中一条过点(x,y)的直线方程为y=px+q,通过代数变换可以转换为另一种形式p=-px+y,即参数空间中过点(p,q)的一条直线,如果在图像空间中保持直线的斜率和截距的不变,其在参数空间必定过点(p,q),这也就说明,在图像空间中共线的点对应参数空间共点的线. 哈夫变换就是根据上述点—线的对偶性把在图象空间中存在的直线检测问题转换为参数空间中存在的点检测问题,后者的处理要比前者简单易行得多,只需简单地累加统计即可实现对边缘的检测.
哈夫变换不仅能检测直线等一阶曲线的目标,对于园、椭圆等高阶的曲线都可以检测出来。如圆的方程为:

     其参数空间是一个3D空间A(a,b,r),原理与检测直线上的点相同,只是复杂性增加了。如果圆的半径r己知,则问题又回到了2D空间A(a,b)
     哈夫变换对已知目标的检测过程受随机噪声和曲线中断等不利因素的影响很小,而且分割出的目标是直接放到另一个“干净”的缓存中的,因此可以做到零噪声,是相当有优势的。常规的哈夫变换在理论上能对所有可以写出具体解析表达式的曲线进行目标检测,但是在实际处理时,经常待检测的目标不规则或是很难获取甚至根本没有解析式,此时就要采取广义上的哈夫变换来检测目标,
3.2最优的阶梯型边缘检测算法(canny边缘检测)
     1.Canny边缘检测基本原理
     (1)图象边缘检测必须满足两个条件:一能有效地抑制噪声;二必须尽量精确确定边缘的位置。
     (2)根据对信噪比与定位乘积进行测度,得到最优化逼近算子。这就是Canny边缘检测算子。
     (3)类似与Marr(LoG)边缘检测方法,也属于先平滑后求导数的方法。
     2.Canny边缘检测算法:
     step1:用高斯滤波器平滑图象;
     step2:用一阶偏导的有限差分来计算梯度的幅值和方向;
     step3:对梯度幅值进行非极大值抑制;
     step4:用双阈值算法检测和连接边缘。
     step1:高斯平滑函数

 
 
 
 
       
 
      step3:非极大值抑制
      仅仅得到全局的梯度并不足以确定边缘,因此为确定边缘,必须保留局部梯度最大的点,而抑制非极大值。(non-maxima suppression,NMS)
解决方法:利用梯度的方向。
图2非极大值抑制
四个扇区的标号为0到3,对应3*3邻域的四种可能组合。
      在每一点上,邻域的中心象素M与沿着梯度线的两个象素相比。如果M的梯度值不比沿梯度线的两个相邻象素梯度值大,则令M=0。
即:
       step4:阈值化
       减少假边缘段数量的典型方法是对N[i,j]使用一个阈值。将低于阈值的所有值赋零值。但问题是如何选取阈值?
       解决方法:双阈值算法。双阈值算法对非极大值抑制图象作用两个阈值τ1和τ2,且2τ1≈τ2,从而可以得到两个阈值边缘图象N1[i,j]和N2[i,j]。由于N2[i,j]使用高阈值得到,因而含有很少的假边缘,但有间断(不闭合)。双阈值法要在N2[i,j]中把边缘连接成轮廓,当到达轮廓的端点时,该算法就在N1[i,j]的8邻点位置寻找可以连接到轮廓上的边缘,这样,算法不断地在N1[i,j]中收集边缘,直到将N2[i,j]连接起来为止。
4 边缘算子应满足的准则
    若满足此准则,就能保证单边缘只有一个响应。
对一个算法的性能评价可分为两个阶段进行:计算假边缘与丢失边缘的数目;测量用于估计位置和方向的误差(或误差分布)。边缘检测算法的优劣也可用品质因数(Figure of Merit)来描述。Pratt品质因数是其中一种,它着重考虑了丢失了有效的边缘、边缘定位误差和将噪声判断为边缘等三种误差。
5 结束语
       边缘检测在图象分割、模式识别、机器视觉等中都有重要作用,人们已研究出很多种边缘检测算法,而哈夫变换和canny边缘算子等是最经典的算法,人们已在这些经典算法基础上提出一些新的改进算法。
 
参考文献
[1]贾云德.机器视觉[M].北京:科学出版社,2000
[2]章毓晋.图象处理和分析[M].北京:清华大学出版社,1999
[3]郎锐.数字图象处理学.北京:希望电子出版社,2002
[4]王娜,李霞.一种新的改进Canny边缘检测算法.深圳大学学报,2005,4(2),149-152

边缘提取以及边缘增强是不少图像处理软件都具有的基本功能,它的增强效果很明显,在用于
识别的应用中,图像边缘也是非常重要的特征之一。图像边缘保留了原始图像中相当重要的部分信息,
而又使得总的数据量减小了很多,这正符合特征提取的要求。在以后要谈到的霍夫变换(检测图像中的几
何形状)中,边缘提取就是前提步骤。

这里我们只考虑灰度图像,用于图像识别的边缘提取比起仅仅用于视觉效果增强的边缘提取要
复杂一些。要给图像的边缘下一个定义还挺困难的,从人的直观感受来说,边缘对应于物体的边界。图
像上灰度变化剧烈的区域比较符合这个要求,我们一般会以这个特征来提取图像的边缘。但在遇到包含
纹理的图像上,这有点问题,比如说,图像中的人穿了黑白格子的衣服,我们往往不希望提取出来的边
缘包括衣服上的方格。但这个比较困难,涉及到纹理图像的处理等方法。

好了,既然边缘提取是要保留图像的灰度变化剧烈的区域,从数学上,最直观的方法就是微分
(对于数字图像来说就是差分),在信号处理的角度来看,也可以说是用高通滤波器,即保留高频信号。
这是最关键的一步,在此之前有时需要对输入图像进行消除噪声的处理。

用于图像识别的边缘提取往往需要输出的边缘是二值图像,即只有黑白两个灰度的图像,其中
一个灰度代表边缘,另一个代表背景。此外,还需要把边缘细化成只有一个像素的宽度。总的说来边缘
提取的步骤如下:

1,去噪声
2,微分运算
3,2值化处理
4,细化

第二步是关键,有不少书把第二步就直接称为边缘提取。实现它的算法也有很多,一般的图像
处理教科书上都会介绍好几种,如拉普拉兹算子,索贝尔算子,罗伯特算子等等。这些都是模板运算,
首先定义一个模板,模板的大小以3*3的较常见,也有2*2,5*5或更大尺寸的。运算时,把模板中心对
应到图像的每一个像素位置,然后按照模板对应的公式对中心像素和它周围的像素进行数学运算,算出
的结果作为输出图像对应像素点的值。

需要说明的是,模板运算是图像的一种处理手段--邻域处理,有许多图像增强效果都可以采用
模板运算实现,如平滑效果,中值滤波(一种消除噪声的方法),油画效果,图像的凹凸效果等等。这些
算法都比较简单,为人们常用。

关于前面提到的几种边缘提取算子(拉普拉兹算子,索贝尔算子,罗伯特算子),教科书上都有
较为详细的介绍,我这里不多说了,(手头上没有教科书,也懒得翻译英文资料),如果你们有时间,可
以把这些方法的具体情况仔细介绍一下。这里对拉普拉兹算子和索贝尔算子补充两句。拉普拉兹算子是
2阶微分算子,也就是说,相当于求取2次微分,它的精度还算比较高,但对噪声过于敏感(有噪声的情
况下效果很差)是它的重大缺点,所以这种算子并不是特别常用。索贝尔算子是最常用的算子之一(它是
一种一阶算子),方法简单效果也不错,但提取出的边缘比较粗,要进行细化处理。另外,索贝尔算子
也可提取出图像边缘的方向信息来,有文章论证过,在不考虑噪声的情况下,它取得的边缘信息误差不
超过7度。

顺便说一句,往往我们在进行边缘提取时只注意到位置信息,而忽略了边缘的方向。事实上,
图像的边缘总有一定的走向,我们可以用边缘曲线的法线方向(和切线垂直的直线)来代表边缘点的方向
。在图像识别的应用中,这个方向是非常重要的信息。


上面的几种算子是属于比较简单的方法,边缘提取的精度都不算特别高,下面介绍几种高级算
法。首先是马尔(Marr)算子,马尔是计算机视觉这门学问的奠基人,很了不起,但这些理论很难懂。他
提出的边缘提取方法可以看成两个步骤,一个是平滑作用来消除噪声,另一个是微分提取边缘,也可以
说是由两个滤波器组成,低通滤波去除噪声,高通滤波提取边缘。人们也称这种方法为LOG滤波器,这也
是根据它数学表达式和滤波器形状起的名字。也可以采用模板运算来实现这种算法,但模板的大小一般
要在7*7以上,所以运算复杂程度比索贝尔算子等要大不少,运算时间当然也长许多。

另外一种非常重要的算法是坎尼(Canny)算子,这是坎尼在1986年写的一篇论文里仔细论述的。
他给出了判断边缘提取方法性能的指标。而坎尼算子也是图像处理领域里的标准方法,也可以说是默认
的方法。比较奇怪的是,国内的图像处理教科书中,介绍坎尼算子的很少。本人见过的书中,郑南宁的
‘计算机视觉与模式识别’(1998年),算是介绍的比较详细的。坎尼算子在使用时要提供给一些参数,
用于控制算法的性能,实际上,对于不同的图像或不同的边缘提取目的,应该提供不同的参数,以达到
最佳效果。它也有模板运算方法,模板的大小也比较大,和提供的参数有关,标准的大小差不多是17*17
,可以根据算子的可分离性用快速算法(否则就会慢的一塌糊涂),坎尼算子的2值化也很有特色,具有
一定的智能性。

还有一种算法:Shen-Castan算子,大概可称为沈峻算子,总之是中国人的成果,效果和坎尼
算子不相上下,这种算法在对边缘提取好坏的判别标准上有些不同。(这种方法我没用过,好象编起程
序来,要比坎尼算子还复杂)

在实际的图像处理与识别应用中,有时需要根据被处理图像的种类以及实际目的,量身定做算
法,边缘提取也是一样,但是基本原理都是一样的。

canny算子代码

void CreatGauss(double sigma, double **pdKernel, int *pnWidowSize);

void GaussianSmooth(SIZE sz, LPBYTE pGray, LPBYTE pResult, double sigma);

void Grad(SIZE sz, LPBYTE pGray, int *pGradX, int *pGradY, int *pMag);

void NonmaxSuppress(int *pMag, int *pGradX, int *pGradY, SIZE sz, LPBYTE pNSRst);

void EstimateThreshold(int *pMag, SIZE sz, int *pThrHigh, int *pThrLow, LPBYTE pGray,
          double dRatHigh, double dRatLow);

void Hysteresis(int *pMag, SIZE sz, double dRatLow, double dRatHigh, LPBYTE pResult);

void TraceEdge(int y, int x, int nThrLow, LPBYTE pResult, int *pMag, SIZE sz);

void Canny(LPBYTE pGray, SIZE sz, double sigma, double dRatLow,
       double dRatHigh, LPBYTE pResult);

#include "afx.h"
#include "math.h"
#include "canny.h"

//  一维高斯分布函数,用于平滑函数中生成的高斯滤波系数
void CreatGauss(double sigma, double **pdKernel, int *pnWidowSize)
{

 LONG i;

 //数组中心点
 int nCenter;

 //数组中一点到中心点距离
 double dDis;

 //中间变量
 double dValue;
 double dSum;
 dSum = 0;

 // [-3*sigma,3*sigma] 以内数据,会覆盖绝大部分滤波系数
 *pnWidowSize = 1+ 2*ceil(3*sigma);

 nCenter = (*pnWidowSize)/2;

 *pdKernel = new double[*pnWidowSize];

 //生成高斯数据
 for(i=0;i<(*pnWidowSize);i++)
 {
  dDis = double(i - nCenter);
  dValue = exp(-(1/2)*dDis*dDis/(sigma*sigma))/(sqrt(2*3.1415926)*sigma);
  (*pdKernel)[i] = dValue;
  dSum+=dValue;

 }
 //归一化
 for(i=0;i<(*pnWidowSize);i++)
 {
  (*pdKernel)[i]/=dSum;
 }

}

//用高斯滤波器平滑原图像
void GaussianSmooth(SIZE sz, LPBYTE pGray, LPBYTE pResult, double sigma)
{
 LONG x, y;
 LONG i;

 //高斯滤波器长度
 int nWindowSize;

 //窗口长度
 int nLen;

 //一维高斯滤波器
 double *pdKernel;

 //高斯系数与图像数据的点乘
 double dDotMul;
 
 //滤波系数总和
 double dWeightSum;
 
 double *pdTemp;
 pdTemp = new double[sz.cx*sz.cy];

 //产生一维高斯数据
 CreatGauss(sigma, &pdKernel, &nWindowSize);

 nLen = nWindowSize/2;
 
 //x方向滤波
 for(y=0;y<sz.cy;y++)
 {
  for(x=0;x<sz.cx;x++)
  {
   dDotMul = 0;
   dWeightSum = 0;
   for(i=(-nLen);i<=nLen;i++)
   {
    //判断是否在图像内部
    if((i+x)>=0 && (i+x)<sz.cx)
    {
     dDotMul+=(double)pGray[y*sz.cx+(i+x)] * pdKernel[nLen+i];
     dWeightSum += pdKernel[nLen+i];
    }
   }
   pdTemp[y*sz.cx+x] = dDotMul/dWeightSum;
  }
 }

 //y方向滤波
 for(x=0; x<sz.cx;x++)
 {
  for(y=0; y<sz.cy; y++)
  {
   dDotMul = 0;
   dWeightSum = 0;
   for(i=(-nLen);i<=nLen;i++)
   {
    if((i+y)>=0 && (i+y)< sz.cy)
    {
     dDotMul += (double)pdTemp[(y+i)*sz.cx+x]*pdKernel[nLen+i];
     dWeightSum += pdKernel[nLen+i];
    }
   }
   pResult[y*sz.cx+x] = (unsigned char)dDotMul/dWeightSum;
  }
 }

 delete []pdKernel;
 pdKernel = NULL;

 delete []pdTemp;
 pdTemp = NULL;

}

// 方向导数,求梯度
void Grad(SIZE sz, LPBYTE pGray,int *pGradX, int *pGradY, int *pMag)
{
 LONG y,x;

 //x方向的方向导数
 for(y=1;y<sz.cy-1;y++)
 {
  for(x=1;x<sz.cx-1;x++)
  {
   pGradX[y*sz.cx +x] = (int)( pGray[y*sz.cx+x+1]-pGray[y*sz.cx+ x-1]  );
  }
 }

 //y方向方向导数
 for(x=1;x<sz.cx-1;x++)
 {
  for(y=1;y<sz.cy-1;y++)
  {
   pGradY[y*sz.cx +x] = (int)(pGray[(y+1)*sz.cx +x] - pGray[(y-1)*sz.cx +x]);
  }
 }

 //求梯度

 //中间变量
 double dSqt1;
 double dSqt2;

 for(y=0; y<sz.cy; y++)
 {
  for(x=0; x<sz.cx; x++)
  {
   //二阶范数求梯度
   dSqt1 = pGradX[y*sz.cx + x]*pGradX[y*sz.cx + x];
   dSqt2 = pGradY[y*sz.cx + x]*pGradY[y*sz.cx + x];
   pMag[y*sz.cx+x] = (int)(sqrt(dSqt1+dSqt2)+0.5);
  }
 }
}

//非最大抑制
void NonmaxSuppress(int *pMag, int *pGradX, int *pGradY, SIZE sz, LPBYTE pNSRst)
{
 LONG y,x;
 int nPos;

 //梯度分量
 int gx;
 int gy;

 //中间变量
 int g1,g2,g3,g4;
 double weight;
 double dTmp,dTmp1,dTmp2;

 //设置图像边缘为不可能的分界点
 for(x=0;x<sz.cx;x++)
 {
  pNSRst[x] = 0;
  pNSRst[(sz.cy-1)*sz.cx+x] = 0;

 }
 for(y=0;y<sz.cy;y++)
 {
  pNSRst[y*sz.cx] = 0;
  pNSRst[y*sz.cx + sz.cx-1] = 0;
 }

 for(y=1;y<sz.cy-1;y++)
 {
  for(x=1;x<sz.cx-1;x++)
  {
   //当前点
   nPos = y*sz.cx + x;

   //如果当前像素梯度幅度为0,则不是边界点
   if(pMag[nPos] == 0)
   {
    pNSRst[nPos] = 0;
   }
   else
   {
    //当前点的梯度幅度
    dTmp = pMag[nPos];

    //x,y方向导数
    gx = pGradX[nPos];
    gy = pGradY[nPos];

    //如果方向导数y分量比x分量大,说明导数方向趋向于y分量
    if(abs(gy) > abs(gx))
    {
     //计算插值比例
     weight = fabs(gx)/fabs(gy);

     g2 = pMag[nPos-sz.cx];
     g4 = pMag[nPos+sz.cx];

     //如果x,y两个方向导数的符号相同
     //C 为当前像素,与g1-g4 的位置关系为:
     //g1 g2
     //      C
     //       g4 g3
     if(gx*gy>0)
     {
      g1 = pMag[nPos-sz.cx-1];
      g3 = pMag[nPos+sz.cx+1];
     }

     //如果x,y两个方向的方向导数方向相反
     //C是当前像素,与g1-g4的关系为:
     //       g2 g1
     //        C
     //    g3 g4
     else
     {
      g1 = pMag[nPos-sz.cx+1];
      g3 = pMag[nPos+sz.cx-1];
     }
    }

    //如果方向导数x分量比y分量大,说明导数的方向趋向于x分量
    else
    {
     //插值比例
     weight = fabs(gy)/fabs(gx);

     g2 = pMag[nPos+1];
     g4 = pMag[nPos-1];

     //如果x,y两个方向的方向导数符号相同
     //当前像素C与 g1-g4的关系为
     //  g3
     //  g4 C g2
     //       g1
     if(gx * gy > 0)
     {
      g1 = pMag[nPos+sz.cx+1];
      g3 = pMag[nPos-sz.cx-1];
     }
     
     //如果x,y两个方向导数的方向相反
     // C与g1-g4的关系为
     //   g1
     //    g4 C g2
     //     g3
     else
     {
      g1 = pMag[nPos-sz.cx+1];
      g3 = pMag[nPos+sz.cx-1];
     }
    }

    //利用 g1-g4 对梯度进行插值
    {
     dTmp1 = weight*g1 + (1-weight)*g2;
     dTmp2 = weight*g3 + (1-weight)*g4;

     //当前像素的梯度是局部的最大值
     //该点可能是边界点
     if(dTmp>=dTmp1 && dTmp>=dTmp2)
     {
      pNSRst[nPos] = 128;
     }
     else
     {
      //不可能是边界点
      pNSRst[nPos] = 0;
     }
    }
   }
  }
 }
}

// 统计pMag的直方图,判定阈值
void EstimateThreshold(int *pMag, SIZE sz, int *pThrHigh, int *pThrLow, LPBYTE pGray,
          double dRatHigh, double dRatLow)
{
 LONG y,x,k;

 //该数组的大小和梯度值的范围有关,如果采用本程序的算法
 //那么梯度的范围不会超过pow(2,10)
 int nHist[256];

 //可能边界数
 int nEdgeNum;

 //最大梯度数
 int nMaxMag;

 int nHighCount;

 nMaxMag = 0;

 //初始化
 for(k=0;k<256;k++)
 {
  nHist[k] = 0;
 }
 //统计直方图,利用直方图计算阈值
 for(y=0;y<sz.cy;y++)
 {
  for(x=0;x<sz.cx;x++)
  {
   if(pGray[y*sz.cx+x]==128)
   {
    nHist[pMag[y*sz.cx+x]]++;
   }
  }
 }

 nEdgeNum = nHist[0];
 nMaxMag = 0;

 //统计经过“非最大值抑制”后有多少像素
 for(k=1;k<256;k++)
 {
  if(nHist[k] != 0)
  {
   nMaxMag = k;
  }

  //梯度为0的点是不可能为边界点的
  //经过non-maximum suppression后有多少像素
  nEdgeNum += nHist[k];

 }

 //梯度比高阈值*pThrHigh 小的像素点总书目
 nHighCount = (int)(dRatHigh * nEdgeNum + 0.5);

 k=1;
 nEdgeNum = nHist[1];

 //计算高阈值
 while((k<(nMaxMag-1)) && (nEdgeNum < nHighCount))
 {
  k++;
  nEdgeNum += nHist[k];
 }

 *pThrHigh = k;

 //低阈值
 *pThrLow = (int)((*pThrHigh) * dRatLow + 0.5);

}

//利用函数寻找边界起点
void Hysteresis(int *pMag, SIZE sz, double dRatLow, double dRatHigh, LPBYTE pResult)
{
 LONG y,x;

 int nThrHigh,nThrLow;

 int nPos;
 //估计TraceEdge 函数需要的低阈值,以及Hysteresis函数使用的高阈值
 EstimateThreshold(pMag, sz,&nThrHigh,&nThrLow,pResult,dRatHigh,dRatLow);

 //寻找大于dThrHigh的点,这些点用来当作边界点,
 //然后用TraceEdge函数跟踪该点对应的边界
 for(y=0;y<sz.cy;y++)
 {
  for(x=0;x<sz.cx;x++)
  {
   nPos = y*sz.cx + x;

   //如果该像素是可能的边界点,并且梯度大于高阈值,
   //该像素作为一个边界的起点
   if((pResult[nPos]==128) && (pMag[nPos] >= nThrHigh))
   {
    //设置该点为边界点
    pResult[nPos] = 255;
    TraceEdge(y,x,nThrLow,pResult,pMag,sz);
   }

  }
 }

 //其他点已经不可能为边界点
 for(y=0;y<sz.cy;y++)
 {
  for(x=0;x<sz.cx;x++)
  {
   nPos = y*sz.cx + x;

   if(pResult[nPos] != 255)
   {
    pResult[nPos] = 0;
   }
  }
 }
}

//根据Hysteresis 执行的结果,从一个像素点开始搜索,搜索以该像素点为边界起点的一条边界的
//一条边界的所有边界点,函数采用了递归算法
//       从(x,y)坐标出发,进行边界点的跟踪,跟踪只考虑pResult中没有处理并且可能是边界
//  点的像素(=128),像素值为0表明该点不可能是边界点,像素值为255表明该点已经是边界点

void TraceEdge(int y, int x, int nThrLow, LPBYTE pResult, int *pMag, SIZE sz)
{
 //对8邻域像素进行查询
 int xNum[8] = {1,1,0,-1,-1,-1,0,1};
 int yNum[8] = {0,1,1,1,0,-1,-1,-1};

 LONG yy,xx,k;

 for(k=0;k<8;k++)
 {
  yy = y+yNum[k];
  xx = x+xNum[k];

  if(pResult[yy*sz.cx+xx]==128 && pMag[yy*sz.cx+xx]>=nThrLow )
  {
   //该点设为边界点
   pResult[yy*sz.cx+xx] = 255;

   //以该点为中心再进行跟踪
   TraceEdge(yy,xx,nThrLow,pResult,pMag,sz);
  }
 }
}


// Canny算子
void Canny(LPBYTE pGray, SIZE sz, double sigma, double dRatLow,
       double dRatHigh, LPBYTE pResult)
{
 //经过高斯滤波后的图像
 LPBYTE pGaussSmooth;

 pGaussSmooth = new unsigned char[sz.cx*sz.cy];

 //x方向导数的指针
 int *pGradX;
 pGradX = new int[sz.cx*sz.cy];
 
 //y方向
 int *pGradY;
 pGradY = new int[sz.cx*sz.cy];
 
 //梯度的幅度
 int *pGradMag;
 pGradMag = new int[sz.cx*sz.cy];

 //对原图高斯滤波
 GaussianSmooth(sz,pGray,pGaussSmooth,sigma);

 //计算方向导数和梯度的幅度
 Grad(sz,pGaussSmooth,pGradX,pGradY,pGradMag);

 //应用非最大抑制
 NonmaxSuppress(pGradMag,pGradX,pGradY,sz,pResult);

 //应用Hysteresis,找到所有边界
 Hysteresis(pGradMag,sz,dRatLow,dRatHigh,pResult);

 delete[] pGradX;
 pGradX = NULL;
 delete[] pGradY;
 pGradY = NULL;
 delete[] pGradMag;
 pGradMag = NULL;
 delete[] pGaussSmooth;
 pGaussSmooth = NULL;


 
}

/*
void CChildWnd::OnCanny()
{
 if (! m_fOpenFile)
 {
  return;
 }
 m_fDone = TRUE; 
 RGBToGray(szImg, aRGB, aGray, BPP);
 Canny(aGray,szImg,0.1,0.9,0.76,aBinImg);
  
 ShowGrayImage("l",szImg,aBinImg);
}
//*/

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. HFSS中弯曲的单极子天线的建模

    1.背景介绍HFSS课程最近安排了仿真紧凑型圆极化天线,模型如下图1.1所示,从图1.1中可见,该天线由四个弯曲的单极子和印刷在电路板上的馈电网络组成。建模的难点就是四个弯曲的的单极子天线处的圆柱直角,如图1.1中红色圆圈标出来的那样。图1.1 原模型2.建模过程 介质基板和馈…...

    2024/4/17 18:29:33
  2. Java代码获取网络和本地视频时长等信息

    目标最近项目中需要对上传的本地视频和从其他服务器拷贝的视频进行校验功能,校验主要包括视频的时长,大小,格式等信息,那么如何获取这些信息呢?思路本地视频,从过文件流读取,再通过FFMpeg.exe获取到相关视频信息; 网络视频,通过http下载到本地临时文件,在通过上述本地视频方法…...

    2024/4/17 18:29:10
  3. JS开发日常总结---单引号和双引号的区别

    双引号会搜索引号内的内容是不是有变量,有则输出其值,没有则输出原有内容。所以输出纯字符串的时候用单引号比双引号效率高,因为省去检索的过程。...

    2024/4/26 15:09:02
  4. linux tomcat 配置远程调试

    1.利用xftp工具找到/data/webapp/tomcat/bin目录下的catalina.sh文件(也可以使用xshell用命令编辑该文件) 编辑该文件,在文件的最开始添加如下内容 CATALINA_OPTS="-server -Xdebug -Xnoagent -Djava.compiler=NONE -Xrunjdwp:transport=dt_socket,server=y,suspend=n,ad…...

    2024/4/26 22:32:29
  5. 使用 Cocos2d-x 和粒子编辑器实现场景特效

    引言 Cocos2d-x引擎提供了强大的粒子系统,它在模仿自然现象、物理现象及空间扭曲上具备得天独厚的优势,为我们实现一些真实自然而又带有随机性的特效(如爆炸、烟花、水流)提供了方便。尽管如此,它众多的粒子属性还是着实让人头疼。因为如果要想自己编码写出炫丽的粒子效果…...

    2024/4/20 6:07:49
  6. HFSS与Designer协同仿真操作步骤

    记录的步骤此文件包含记录的所有步骤和信息以帮助你向其他人描述记录的步骤。 在共享此文件之前,应验证以下内容: 下面的步骤准确描述了记录过程。 以下信息或任何屏幕截图上没有你不希望其他人看到的内容。 除了你使用的函数和快捷键之外,不会记录你键入的密码或任何其他文本…...

    2024/4/17 18:28:39
  7. 翻车现场:我用pytorch和GAN做了一个生成神奇宝贝的失败模型

    前言 神奇宝贝已经是一个家喻户晓的动画了,我们今天来确认是否可以使用深度学习为他自动创建新的Pokemon。 我最终成功地使用了生成对抗网络(GAN)生成了类似Pokemon的图像,但是这个图像看起来并不像神奇宝贝。 虽然这个尝试失败了,但是我认为其他人可能会喜欢这个过程,现…...

    2024/4/19 17:56:07
  8. 某培训机构JAVA入门基础到精通全套教学视频(面试+笔试)

    每个人的学习方法是不同的,一个人的方法不见得适合另一个人,我个人比较喜欢看视频学习。 朋友去某机构培训,之后悄悄拷下视频,在这里我分享给各位想自学java的朋友,未来大牛路上一起奔跑。Java全套知识+面试密码:7px8...

    2024/4/17 18:29:15
  9. eclipse+tomcat配置不带项目名的访问路径

    eclipse是个功能强大的开发工具,使用非常广泛,eclipse集成tomcat做web开发,默认路径需要在localhost:8080/后面加上项目名称,又难看又不方便,很多时候我们需要使用localhost:8080直接访问自己的项目,下面来看看eclipse里如何配置。tomcat集成到eclipse里后,双击tomcat…...

    2024/4/17 18:28:03
  10. 电子商务案例:“玩家”精神玩出中国首富

    1996年任职Sybase 广州 分公司期间,丁磊并不比周围的人更为聪明。他的幸运在于他敏锐地感觉到了Internet的商机,网易由此诞生。 《易经》解“易”为“生生不息、博大精深”,1997年丁磊以此命名自己只有3个人的小公司,也可算作一语成谶。 2000年6月19日网易登陆Nasdaq,丁磊…...

    2024/4/17 18:29:03
  11. HFSS----微带天线设计实例之模型建立

    矩形微带天线介绍微带天线尺寸计算设计指标和天线尺寸计算HFSS设计流程创建物体模型设置为模式驱动求解类型,单位设置为mm创建参考地给参考GND设置理想导体边界条件创建长方体(介质层)创建微带天线的辐射源 创建矩形面因为这个平面为辐射源,所以需要为其设置理想导体边界条…...

    2024/4/17 18:28:40
  12. 20 WebGL使用纹理贴图

    案例查看地址:点击这里WebGL中纹理的限制WebGL中的纹理需要注意一点,所使用的图片数据的大小必须是2的阶乘,横竖的像素长度大小必须是32x32,128x128等2的阶乘的形式。当然,做一些处理的话,不是2的阶乘的图片数据也是可以用的,但是基本上作为纹理使用的图像数据的大小必须…...

    2024/4/23 23:09:49
  13. java模拟实现优酷视频真实地址解析

    用java实现优酷视频真实地址的解析,网上搜集了下资料,通过自己研究写了份java代码,跟大家一起分享下.大体的思路:原始URL--->ID---->后门URL---->JSON---->JSON关键参数分析组合----->下载地址. 例如:http://v.youku.com/v_show/id_XNzg5Mjk1MzAw.html,在这…...

    2024/5/4 4:52:20
  14. IIS+tomcat配置web项目

    iis配置tomcat,之前配置了很久一直没有成功,今天看到了这篇文章,写的很好,我终于成功了,特在此记录一下http://blog.csdn.net/qq_31394845/article/details/77619377配置环境:win10、tomcat、iis101.下载安装jdk、并配置安装环境;2.下载安装tomcat,并验证tomcat是否安装…...

    2024/4/20 13:58:51
  15. 徐松亮硬件教学-微波天线设计-基于HFSS软件的天线设计流程

    版权声明:本文为博主徐松亮的原创作品,未经允许不得转载,多谢支持!QQ:5387603推荐点击此链接:欢迎进入徐松亮博客一站式导航搜索(随时更新)本文主要是帮助大家了解设计射频天线的流程,不是教大家射频的基础知识,因为射频基础知识太多,涉及的概念自己上网查询即可。目录…...

    2024/5/2 12:58:08
  16. 深度学习框架之Keras感知:快速搭建生成对抗网络(GAN)生成自己想要的图片

    1. 写在前面 如果是刚入深度学习的新手小白,可能有着只学习了一点深度学习的理论,也见识到了各种神经网络的强大而不能立马实现的烦恼,想学习TensorFlow,pytorch等出色强大的深度学习框架,又看到那代码晦涩难懂而有些想知难而退,这时候,我觉得有必要掌握一下Keras了,这…...

    2024/4/17 18:29:39
  17. 2003年安全事件

    十六、2003年安全事件<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /> 1. 2003年1月全球遭拒绝服务*** <?xml:namespace prefix = st1 ns = "urn:schemas-microsoft-com:office:smarttags" />2003年1月2…...

    2024/4/19 11:02:39
  18. java下载大文件时的文件时缓存区的应用

    在写视频上传系统的时候,java报错内存溢出。 视频上传大小为400MB,此时已经报内存溢出的。网上搜索了一番,可以通过缓冲区的办法来解决这个问题。BufferedOutputStream out = new BufferedOutputStream(new FileOutputStream(new File(Savepath + "\\"+file.getOr…...

    2024/4/17 18:31:16
  19. JavaWeb之Apache-Tomcat配置

    Apache-Tomcat是一款免费开源的Web服务器,对于Web开发来说它是国际上十分流行的服务器。它属于轻量级应用服务器,在中小型系统和并发访问用户不是很多的场合下被普遍使用,是开发和调试JSP程序的首选。对于一个初学者来说,可以这样认为,当在一台机器上配置好Apache 服务器,…...

    2024/4/17 18:28:22
  20. 高速数字电路AC耦合电容HFSS仿真

    高速数字电路AC耦合电容HFSS仿真 高速数字电路中我们经常会需要耦合电容,特别对于一样高速SERDES,往往都需要进行AC耦合,一些时钟线也有可能需要AC耦合,这个时候不可避免的需要使用到耦合电容,我们知道高速数字电路中,需要尽可能的保持传输线的阻抗恒定,减少信号反射,提…...

    2024/5/4 1:36:19

最新文章

  1. 【AIGC】本地部署 ollama + open-webui

    在之前的篇章《【AIGC】本地部署 ollama(gguf) 与项目整合》中我们已经使用 ollama 部署了一个基于预量化&#xff08;gguf&#xff09;的 Qwen1.5 模型&#xff0c;这个模型除了提供研发使用外&#xff0c;我还想提供给公司内部使用&#xff0c;因此还需要一个 ui 交互界面。 …...

    2024/5/5 10:26:42
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. HTML——3.链接、头部、图像

    一、链接 HTML 中的链接由 <a> 标签定义&#xff0c;用于创建可点击的文本或图像&#xff0c;以便导航到其他页面或资源。下面是一个简单的 HTML 链接示例&#xff1a; <a href"https://www.example.com">Visit Example</a> 在这个示例中&#…...

    2024/5/4 15:09:26
  4. MySQL之存储引擎,详细总结

    在介绍存储引擎之前我们先了解了解MySQL的体系结构&#xff1a; 连接层 最上层是一些客户端和链接服务&#xff0c;主要完成一些类似于连接处理、授权认证、及相关的安全方案。服务器也会为安全接入的每个客户端验证它所具有的操作权限 服务层 第二层架构主要完成大多数的核心…...

    2024/5/2 18:08:32
  5. 【外汇早评】美通胀数据走低,美元调整

    原标题:【外汇早评】美通胀数据走低,美元调整昨日美国方面公布了新一期的核心PCE物价指数数据,同比增长1.6%,低于前值和预期值的1.7%,距离美联储的通胀目标2%继续走低,通胀压力较低,且此前美国一季度GDP初值中的消费部分下滑明显,因此市场对美联储后续更可能降息的政策…...

    2024/5/4 23:54:56
  6. 【原油贵金属周评】原油多头拥挤,价格调整

    原标题:【原油贵金属周评】原油多头拥挤,价格调整本周国际劳动节,我们喜迎四天假期,但是整个金融市场确实流动性充沛,大事频发,各个商品波动剧烈。美国方面,在本周四凌晨公布5月份的利率决议和新闻发布会,维持联邦基金利率在2.25%-2.50%不变,符合市场预期。同时美联储…...

    2024/5/4 23:54:56
  7. 【外汇周评】靓丽非农不及疲软通胀影响

    原标题:【外汇周评】靓丽非农不及疲软通胀影响在刚结束的周五,美国方面公布了新一期的非农就业数据,大幅好于前值和预期,新增就业重新回到20万以上。具体数据: 美国4月非农就业人口变动 26.3万人,预期 19万人,前值 19.6万人。 美国4月失业率 3.6%,预期 3.8%,前值 3…...

    2024/5/4 23:54:56
  8. 【原油贵金属早评】库存继续增加,油价收跌

    原标题:【原油贵金属早评】库存继续增加,油价收跌周三清晨公布美国当周API原油库存数据,上周原油库存增加281万桶至4.692亿桶,增幅超过预期的74.4万桶。且有消息人士称,沙特阿美据悉将于6月向亚洲炼油厂额外出售更多原油,印度炼油商预计将每日获得至多20万桶的额外原油供…...

    2024/5/4 23:55:17
  9. 【外汇早评】日本央行会议纪要不改日元强势

    原标题:【外汇早评】日本央行会议纪要不改日元强势近两日日元大幅走强与近期市场风险情绪上升,避险资金回流日元有关,也与前一段时间的美日贸易谈判给日本缓冲期,日本方面对汇率问题也避免继续贬值有关。虽然今日早间日本央行公布的利率会议纪要仍然是支持宽松政策,但这符…...

    2024/5/4 23:54:56
  10. 【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响

    原标题:【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响近日伊朗局势升温,导致市场担忧影响原油供给,油价试图反弹。此时OPEC表态稳定市场。据消息人士透露,沙特6月石油出口料将低于700万桶/日,沙特已经收到石油消费国提出的6月份扩大出口的“适度要求”,沙特将满…...

    2024/5/4 23:55:05
  11. 【外汇早评】美欲与伊朗重谈协议

    原标题:【外汇早评】美欲与伊朗重谈协议美国对伊朗的制裁遭到伊朗的抗议,昨日伊朗方面提出将部分退出伊核协议。而此行为又遭到欧洲方面对伊朗的谴责和警告,伊朗外长昨日回应称,欧洲国家履行它们的义务,伊核协议就能保证存续。据传闻伊朗的导弹已经对准了以色列和美国的航…...

    2024/5/4 23:54:56
  12. 【原油贵金属早评】波动率飙升,市场情绪动荡

    原标题:【原油贵金属早评】波动率飙升,市场情绪动荡因中美贸易谈判不安情绪影响,金融市场各资产品种出现明显的波动。随着美国与中方开启第十一轮谈判之际,美国按照既定计划向中国2000亿商品征收25%的关税,市场情绪有所平复,已经开始接受这一事实。虽然波动率-恐慌指数VI…...

    2024/5/4 23:55:16
  13. 【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试

    原标题:【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试美国和伊朗的局势继续升温,市场风险情绪上升,避险黄金有向上突破阻力的迹象。原油方面稍显平稳,近期美国和OPEC加大供给及市场需求回落的影响,伊朗局势并未推升油价走强。近期中美贸易谈判摩擦再度升级,美国对中…...

    2024/5/4 23:54:56
  14. 【原油贵金属早评】市场情绪继续恶化,黄金上破

    原标题:【原油贵金属早评】市场情绪继续恶化,黄金上破周初中国针对于美国加征关税的进行的反制措施引发市场情绪的大幅波动,人民币汇率出现大幅的贬值动能,金融市场受到非常明显的冲击。尤其是波动率起来之后,对于股市的表现尤其不安。隔夜美国股市出现明显的下行走势,这…...

    2024/5/4 18:20:48
  15. 【外汇早评】美伊僵持,风险情绪继续升温

    原标题:【外汇早评】美伊僵持,风险情绪继续升温昨日沙特两艘油轮再次发生爆炸事件,导致波斯湾局势进一步恶化,市场担忧美伊可能会出现摩擦生火,避险品种获得支撑,黄金和日元大幅走强。美指受中美贸易问题影响而在低位震荡。继5月12日,四艘商船在阿联酋领海附近的阿曼湾、…...

    2024/5/4 23:54:56
  16. 【原油贵金属早评】贸易冲突导致需求低迷,油价弱势

    原标题:【原油贵金属早评】贸易冲突导致需求低迷,油价弱势近日虽然伊朗局势升温,中东地区几起油船被袭击事件影响,但油价并未走高,而是出于调整结构中。由于市场预期局势失控的可能性较低,而中美贸易问题导致的全球经济衰退风险更大,需求会持续低迷,因此油价调整压力较…...

    2024/5/4 23:55:17
  17. 氧生福地 玩美北湖(上)——为时光守候两千年

    原标题:氧生福地 玩美北湖(上)——为时光守候两千年一次说走就走的旅行,只有一张高铁票的距离~ 所以,湖南郴州,我来了~ 从广州南站出发,一个半小时就到达郴州西站了。在动车上,同时改票的南风兄和我居然被分到了一个车厢,所以一路非常愉快地聊了过来。 挺好,最起…...

    2024/5/4 23:55:06
  18. 氧生福地 玩美北湖(中)——永春梯田里的美与鲜

    原标题:氧生福地 玩美北湖(中)——永春梯田里的美与鲜一觉醒来,因为大家太爱“美”照,在柳毅山庄去寻找龙女而错过了早餐时间。近十点,向导坏坏还是带着饥肠辘辘的我们去吃郴州最富有盛名的“鱼头粉”。说这是“十二分推荐”,到郴州必吃的美食之一。 哇塞!那个味美香甜…...

    2024/5/4 23:54:56
  19. 氧生福地 玩美北湖(下)——奔跑吧骚年!

    原标题:氧生福地 玩美北湖(下)——奔跑吧骚年!让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 啊……啊……啊 两…...

    2024/5/4 23:55:06
  20. 扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!

    原标题:扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!扒开伪装医用面膜,翻六倍价格宰客!当行业里的某一品项火爆了,就会有很多商家蹭热度,装逼忽悠,最近火爆朋友圈的医用面膜,被沾上了污点,到底怎么回事呢? “比普通面膜安全、效果好!痘痘、痘印、敏感肌都能用…...

    2024/5/5 8:13:33
  21. 「发现」铁皮石斛仙草之神奇功效用于医用面膜

    原标题:「发现」铁皮石斛仙草之神奇功效用于医用面膜丽彦妆铁皮石斛医用面膜|石斛多糖无菌修护补水贴19大优势: 1、铁皮石斛:自唐宋以来,一直被列为皇室贡品,铁皮石斛生于海拔1600米的悬崖峭壁之上,繁殖力差,产量极低,所以古代仅供皇室、贵族享用 2、铁皮石斛自古民间…...

    2024/5/4 23:55:16
  22. 丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者

    原标题:丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者【公司简介】 广州华彬企业隶属香港华彬集团有限公司,专注美业21年,其旗下品牌: 「圣茵美」私密荷尔蒙抗衰,产后修复 「圣仪轩」私密荷尔蒙抗衰,产后修复 「花茵莳」私密荷尔蒙抗衰,产后修复 「丽彦妆」专注医学护…...

    2024/5/4 23:54:58
  23. 广州械字号面膜生产厂家OEM/ODM4项须知!

    原标题:广州械字号面膜生产厂家OEM/ODM4项须知!广州械字号面膜生产厂家OEM/ODM流程及注意事项解读: 械字号医用面膜,其实在我国并没有严格的定义,通常我们说的医美面膜指的应该是一种「医用敷料」,也就是说,医用面膜其实算作「医疗器械」的一种,又称「医用冷敷贴」。 …...

    2024/5/4 23:55:01
  24. 械字号医用眼膜缓解用眼过度到底有无作用?

    原标题:械字号医用眼膜缓解用眼过度到底有无作用?医用眼膜/械字号眼膜/医用冷敷眼贴 凝胶层为亲水高分子材料,含70%以上的水分。体表皮肤温度传导到本产品的凝胶层,热量被凝胶内水分子吸收,通过水分的蒸发带走大量的热量,可迅速地降低体表皮肤局部温度,减轻局部皮肤的灼…...

    2024/5/4 23:54:56
  25. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  26. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  27. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  28. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  29. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  30. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  31. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  32. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  33. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  34. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  35. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  36. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  37. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  38. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  39. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  40. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  41. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  42. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  43. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  44. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57