这是看到的一篇对神经网络的讲解的文章,我觉得写得很好,也仔细学习了学习,最近我可能也得用这个东西,现在确实是很火啊,也很实用。

 

神经网络和深度学习

  • 神经网络:一种可以通过观测数据使计算机学习的仿生语言范例
  • 深度学习:一组强大的神经网络学习技术

        神经网络和深度学习目前提供了针对图像识别,语音识别和自然语言处理领域诸多问题的最佳解决方案。传统的编程方法中,我们告诉计算机如何去做,将大问题划分为许多小问题,精确地定义了计算机很容易执行的任务。而神经网络不需要我们告诉计算机如何处理问题,而是通过从观测数据中学习,计算出他自己的解决方案。自动地从数据中学习看起来很有前途。然而直到2006年我们都不知道如何训练神经网络使得它比传统的方法更好,除了一些特定问题。直到2006年称为深度神经网络的学习技术被提出,这些技术现在被称为深度学习。它们得到了很好的发展,今天,深度神经网络和深度学习在计算机视觉、语音识别和自然语言处理等许多重要问题上取得了出色的表现。

 

初识神经网络

人类的视觉系统是世界上最棒的系统之一,比如下列一串手写数字: 

 

        大多数人都可以一眼看出它是504192。在我们大脑的每一个半球,都有主要的视觉皮质V1V1,它包含了1.4亿个神经元,在这些神经元之间有数百亿的接触。然而人类的视觉不仅仅包含了V1V1,而是一系列的视觉皮质V1,V2,V3,V4,V5V1,V2,V3,V4,V5,逐步进行更复杂的图像处理。我们大脑里有一台超级计算机,通过数亿年的进化,可以很好的适应这个视觉世界。识别手写数字并不容易,我们人类惊人地可以理解我们眼睛所看到的东西,但这些工作都是在我们不知不觉中就完成了,我们根本不知道我们大脑完成了多么负责的工作。

        神经网络解决这类问题通过不一样的方式。思想是把大量的手写数字作为训练样本,然后生成一个可以通过训练样本学习的系统。换句话说,神经网络使用样本自动地推断出识别手写数字的规则。此外,通过增加训练样本的数量,该网络可以学到更多,并且更加准确。因此,当我展示下图100个训练样本时,可能我们可以通过使用成千上万甚至上亿的训练样本来建立一个更好的手写识别系统。、

        该文我们将写一个程序实现一个神经网络,学习如何识别手写数字。在不使用神经网络代码库的情况下,74行代码就可以完成。但是这短短的代码识别数字的准确率超过96%。此外,后面的文章我们将可以实现准确率高达99%的方法。事实上,最好的商业神经网络现在已经很好了,银行可以用它们来处理支票,并通过邮局来识别地址。

        的确,如果这篇文章只是描述如何实现一个手写数字识别的代码,那么很短的篇幅就可以讲完。但是在这个过程中,我们会讲到许多神经网络的核心思想,包括两种重要类型的神经元(感知机和sigmoid神经元),和标准的神经网络的学习算法,被称为随机梯度下降法。整篇文章我致力于解释为什么这样做,并且建立你的神经网络观念。在本文的结尾,我们将了解深度学习是什么,和为什么它很重要。

 

感知机

        感知机是一类人造神经元,在许多神经网络中,主要的神经元模型是sigmoid神经元。我们将很快的了解什么是sigmoid神经元,但是想要知道为什么sigmoid要这么定义,就需要我们花点时间去了解感知机。

        感知机如何工作?一个感知机通过一些二进制的输入x1,x2,...x1,x2,...,然后产生一个二进制的输出: 

        在上图中,感知机有三个输入x1,x2,x3x1,x2,x3,通常它可以有更多或者更少的输入。Rosenblatt提出了一个简单的规则来计算输出,它用权重w1,w2...w1,w2...来表示各个输入对输出的重要性。神经元的输出,要么是0要么是1,由权重和∑jwjxj∑jwjxj的值是否小于或者大于某一阈值。和权重一样,阈值也是一个实数,它是神经元的一个参数。用代数式表达就是:

以上就是感知机的工作原理。

        这是基本的数学模型,你可以认为感知机是一种通过权衡各个因素做出决定的设备。举个例子,假设周末就要来了,你们城市有一场奶酪节,你很喜欢奶酪,你正在犹豫要不要去参加,你可能通过权衡下面三个因素来做出你的决定:

  1. 当天天气怎么样
  2. 你的男朋友或者女朋友要不要一起去
  3. 交通是否方便

        我们可以通过对应的二进制变量x1,x2,x3x1,x2,x3来表示这三个因素。比如,x1x1表示天气很好,x1=0x1=0表示天气很差,同样x2=1x2=1表示女朋友想去,以此类推。

 

        现在,假设你真的非常喜欢奶酪,以至于你无论你女朋友去不去,或者交通十分不便,你都很想去。但是可能因为你又非常非常讨厌恶劣天气导致你绝对不会参加。这时你可以使用感知机来模拟这种决策。因为天气对你的影响最大,你可以选择w1=6w1=6来表示天气的权重,w2=2,w3=2w2=2,w3=2来表示其他的因素,w1w1的权重最大表示天气因素对你影响最大。最后假设你选择了5作为阈值,这样以来,你的感知机决策模型就建立好了。也就是说这个模型在天气好的时候会输出1,天气不好的时候输出0,其实和其他两个因素没关系。

        显然,人类的决策模型不仅仅只有感知机。但是这个例子说明了感知机如何做出决定的。一个复杂的感知机网络可以做出更加精准的决定似乎是合理的:

        在这个网络中,第一列感知机——我们称作第一层感知机,通过权衡输入用来做三个很简单的决定。那么第二层的感知机是干什么的呢?这些感知机每一个都通过权衡第一层输出的结果作为输入而做决定。这样以来第二层的感知机可以比第一层做出更加复杂和抽象的决策。更复杂的决策可以在第三层做出。通过这种方式,一个第一层的感知机网络可以进行十分复杂的决策。

        顺便说一下,我们定义的一个感知机都只有一个输出,上图的多层感知机看起来一个感知机有很多个输出,其实它只是把同一个输出传递给不同的下一层感知机用来利用,如果不嫌难看,你也可以先画一条输出线,然后再分支。

        让我们简化一下感知机的描述方式,首先我们可以使用向量点积的方式代替∑jwjxj∑jwjxj,即W⋅X=∑jwjxjW·X=∑jwjxj,其中W和XW和X分别是权重值和输入值所组成的向量。其次,我们可以把阈值threshold移到不等式的另一边,即b=−thresholdb=−threshold,其中b被称为感知机的偏差。通过偏差代替阈值,综上,感知机规则改写为: 

        你可以把偏差b看作衡量感知机输出1的难易程度。从生物学的角度来讲,偏差衡量一个感知机是否容易激活。如果偏差b是个很大的实数,那么该感知机就很容易输出1。显然,目前引入偏差让我们对感知机的描述只是产生了很小的改变,后面我们将会看到它导致的进一步简化。后文我们将不再使用阈值而是使用偏差。

        前面已经说过感知机是一个权衡输入做决定的方法。感知机的另一种使用方法是计算我们通常认为是底层计算的基本逻辑函数,如AND、OR和NAND。比如,假设我们有一个感知机有两个输入,每一个的权重都是-2,偏差是3,下图是该感知机模型: 

        然后我们看到输入值为[0,0]的话,感知机输出值就为1,因为(−2)∗0+(−2)∗0+3=3(−2)∗0+(−2)∗0+3=3是正数。这里使用*表示乘法是显而易见的。同样无论输入[0,1]还是[1,0],最后产生的结果都是1,但是当输入[1,1]的时候产生的结果是0,因为计算出来的表达式为-1。其实我们的感知机在这里实现了一个NAND功能。

        该例子说明了感知机可以用来计算简单的逻辑函数。事实上,我们可以使用感知机网络计算任何逻辑函数。因为任何逻辑计算都可以通过NAND组合而产生。比如,我们可以使用NAND门来构建一个含有两位的电路x1和x2x1和x2。这需要按位求和,x1⊕x2x1⊕x2,也需要在x1和x2x1和x2都为1时该位设为1,也就是做按位乘积x1x2x1x2: 

        为了得到等价的感知机网络,我们将所有的NAND门替换为拥有两个输入,输入权重均为-2,偏差全为3的感知机。下图是所得的网络。 

 

        需要注意的时,最左侧的感知机的输出被最下方的感知机作为输入使用了两次。前面的感知机模型的定义中并没有说是否允许一个输出被同一个感知机使用多次。事实上这并不重要。如果我们不想允许这种情况存在,我们可以简单的将两天直线合并,用一根权重为-4的线代替这两根权重为-2的线。然后上述感知机网络变为下面这个等价的网络,其中没有标记的输入权重仍是-2:     

        到目前为止,我都是把像x1,x2x1,x2这样的输入当作变量画在了网络的左侧,事实上,通常我们会画一个额外的感知机——输入层,对输入进行编码: 

 

        可以看到输入感知器有输出但没有输入. 

 

        但它实际上并不是一个没有输入的感知机。如果我们确实有一个没有输入的感知机,那么∑jwjxj∑jwjxj的值一直都是0,因此感知机的输出就只和偏差b有关,这时感知机仅仅输出一个固定的值,而不是期望得到的值。我们最好把输入感知机看作是一个特殊的单元,用来简单的定义为了输出所需要的那些值x1,x2...x1,x2...

        上述的例子论证了一个感知机网络可以用来模拟许多包含了NAND门的电路。因为NAND门是通用的计算方法,因此感知机也通用于计算。

        感知机的计算普遍性既让人欣慰,又让人失望。安心是因为感知机网络可以和其他任意的计算设备相媲美,失望是因为它看起来仅仅像是一种新型的逻辑门,而不是什么NB的技术。

        然而事实上并不是这这样的,事实证明我们可以设计出能够自动调节人工神经元网络参数和偏差的学习算法。这种调参是对外部刺激的相应,不需要程序员的干预。这些学习算法使我们能够以一种与传统的逻辑门截然不同的方式使用人工神经元。它并不是明确的列出门电路,我们的神经网络可以简单的学习解决问题,有些问题是很难通过设计传统电路就能解决的。

 

Sigmoid神经元

        学习算法看起来非常好。但是我们如何才能为神经网络设计一个这样的算法呢?假设我们有一个感知器网络,我们想让它学习着去解决一些问题。举个例子,网络的输入可能是手写数字的原始扫描像素数据。我们想让这个网络学习出一个可以识别出对应数字的参数和偏差。为了了解如何学习,假设我们对网络中的权重和偏差做了一些小的改变。我们想要这个小的权重的改变造成一点网络中对应的输出的改变,这个特性让学习变得可能。下图是我们想要的(这个网络太简单不能做手写数字的识别): 

 

        如果对权重和偏差一个晓得调节可以造成输出的很小的变化,然后我们就可以根据这个事实修改权重和偏差,使得我们的网络以我们想要的方式做得更多。举个例子,假设这个网络总是把9分类为8,我们可以想办法对网络的权重和偏差做一些小的改变,使得网络可以将图片分为9。然后我们重复这样做,一次又一次改变权重和偏差,使得输出越来越好,网络就得到了学习。

        问题是当你的网络包含感知机时不会发生这种情况。事实上,任何一个感知机上发生一点小的改变有时可能导致感知机的结果翻转(要么翻转要么不变),由0变为1或者相反。这样的翻转可能造成造成一系列连锁反应,造成其他所有感知机的复杂变化。也就是当你可能调节到数字9可以被很好的识别时,网络在其他图像上的行为已经变得完全难以控制。这使得我们通过一点点调试参数和偏差让网络更接近期望的行为变得艰难。或许有一些巧妙得方法来解决这个问题,但是如何使用一个感知机网络学习并不是那么容易的事情。

        我们可以通过一种新的人造神经元来解决上述问题——sigmoid神经元。Sigmoid神经元和感知机很相似,但是它却可以实现当对权重和偏差做微小的改变时,输出量的改变也是微小的。这将使得sigmoid神经元网络可以学习成为了可能。

       下面开始描述sigmoid神经元。我们将像描述感知机那样描述sigmoid神经元: 

 

        

和感知机一样,sigmoid函数也拥有输入向量,但是它的输入向量不再仅限于0和1,而是0到1之间的连续值。比如,0.1314可以作为sigmoid神经元的输入值。同样,sigmoid神经元对每个输入都有分配权重和一个总的偏差。但是输出也不再是0和1,而是σ(w⋅x)+bσ(w⋅x)+b,其中σσ被称为sigmoid函数,定义为: 

 

 

一个拥有输入x1,x2...x1,x2...权重w1,w2...w1,w2...偏差b的sigmoid神经元的输出为: 

        这个式子咋一看比感知机的公式复杂很多,事实上,它和感知机很相似。为了体现和感知机的相似性,假设z=w⋅x+bz=w⋅x+b是一个很大的正数,那么e−z≈0e−z≈0,那么σ(z)≈1σ(z)≈1。也就是说当z=w⋅x+bz=w⋅x+b是一个很大的正数时,sigmoid神经元的输出就接近于1,这就像一个感知机一样。反之当z=w⋅x+bz=w⋅x+b是一个很小的负数时,sigmoid的输出结果趋近于0,这和感知机的行为很相似。只有当w⋅x+bw⋅x+b的值不大不小的时候,sigmoid的输出才和感知机不一样。

对于σσ的代数式我们该如何理解?事实上,对于σσ的精确表达并不重要,重要的是σσ所形成的函数图形: 

 

该函数图形是阶跃函数的平滑处理之后的样子。 

 

        如果σσ改为一个阶跃函数,那么sigmoid神经元就等同于感知机,因为他的输出结果和感知机的输出结果情况一模一样,当w⋅x+bw⋅x+b为正输出1,反之输出0。通过上面的描述,我们通过使用函数σσ得到一个平滑版本的感知机。函数σσ的平滑功能比它具体的代数表达式要重要得多。有了平滑处理,才使得我们在稍微改变权重或者偏差的时候,神经元的输出值才会有些许改变,而不是要么不变要么翻转。事实上,微积分告诉我们输出值得改变量可以近似表达为: 

 

     

         其中求和是对于所有的权重而言, ∂output/∂wj∂output/∂wj和∂output/∂b∂output/∂b分别表示输出在wjwj和偏差b方向上的偏导数。不要因为这里有求偏导而感到惊慌,虽然是在求偏导,但实际上他在说一件十分简单的东西:ΔoutputΔoutput是一个自变量为Δwj和ΔbΔwj和Δb的线性函数。这样的线性关系使得在改变微小的权重和偏差时可以的到期望的输出的微小改变成为一件容易的事情。虽然sigmoid神经元和感知机在行为上有很多相似之处,但是他可以很轻松的知道如何微小的改变权重和偏差使得输出改变。

        如果σσ函数的形状比其代数表达式重要,那么我们为什么又要指定它的代数表达式为等式(3)那样呢?事实上,在后文我们也会偶尔考虑使用其他激活函数。在使用不同激活函数时,唯一的改变时方程(5)中的偏导数的改变。通过计算发现,使用σσ这样一个指数函数对于分化是有好处的。无论如何,σσ函数是最常见的激活函数。

        我们应该如何解释sigmoid神经元的输出呢?显然,感知机和sigmoid神经元之间最大的不同在于,sigmoid输出的值不止0和1.他们可以输出0到1之间的所有实数。这将会是很有用的,比如:如果我们想要使用输出值表示输入到一个神经网络的像素图像的平均强度。但有时候这也是很烦人的一件事。假设我们想要从网络中获得输出值来表示是否“图像表示的是9”或者“图像表示的不是9”,显然,感知机的输出0和1会更加清楚。但是在实际使用的时候,我们会建立一个共识来解决这个问题,比如输出的值大于0.5我们认为它是9,反之不是9.

 

神经网络的架构

        在下一节我将介绍一个可以很好识别手写数字的神经网络。在此之前,先解释一下网络中的各部分的专业术语。假设我们有一个网络: 

 

        正如前面提到的,最左边的一层称为输入层,位于这一层的神经元称为输入神经元。最右边的输出层包含了输出神经元,本例只有一个输出神经元。中间的层被称为隐藏层,因为这些神经元既不是输出也不是输入。隐藏层听起来很神秘,我第一次听到这个词的时候,我觉得它一定有深刻的哲学或数学意义。但是他真的其实就只意味着既不是输入也不是输出而已。上图的神经网络中只包含了一个隐藏层,但是有些网络有许多隐藏层,比如下图的四层网络结构,含有两个隐藏层:

 

        因为历史的原因,这样的多层网络有时候被称作多层感知机(MLPs),尽管这个网络是有sigmoid组成的而不是感知机。本文不会使用MLP这个术语,但是你应该知道它的存在。

        网络中的输入和输出层一般都被设计的很简单。比如:假设我们试图识别一幅图像是否是9,一个自然的方法就是将该图片的灰度值编码作为神经元的输入。如果这个图片是64X64的灰度图,那么我们的输入神经元就有64X64=4096个输入神经元,它的值随着灰度在0到1里适当的变化。输出神经元只有一个,输出的值小于0.5表示这个数字不是9,反之就是9.

        虽然输入输出层的设计很简单,但是隐藏层的设计却是门艺术。我们不可能通过一些简单的经验法则来总结隐藏层的设计过程。相反,神经网络的研究人员已经开发了隐藏层的许多的最优设计规则,这可以帮助人们从他们的网络中的到预期的行为。比如,这种启发式可以帮助人们决定如何权衡网络的隐藏层数和训练网络所需的时间。我们将在后面见到几种这样的最优设计规则。

        到目前为止,我们所讨论的神经网络都是上一层的输出作为下一层的输入。这样的网络被称为前馈神经网络(FeedforwardNerralNetworksFeedforwardNerralNetworks)。这意味着在网络中没有环状,信息总是往前走的,不会反向。如果我们确实有环,我们将会遇到函数σσ的输入依赖于其输出,这很难理解,所以我们不允许这样的循环。

        然而,有些人造神经网络中存在反馈回路是可能的。这样的模型称为递归神经网络。这些模型的思想是让神经元在有限时间里激活,然后保持非激活状态。这种激活可以刺激其他神经元在稍后一段时间激活。这会导致许神经元激活,随着时间推移,我们将获得一串激活神经元。在这样的模型中,循环不会引起问题,因为一个神经元的输出只会在稍后的时间影响它的输入,而不是马上就影响。

        递归神经网络的影响力比前馈神经网络的小,一部分原因是到目前为止,递归网络的学习算法不那么强大。但是递归网络仍然很有研究意义。比起前馈网络,它更接近我们大脑的思维方式。递归网络可能解决一些前馈网络很难解决的问题。本书目前只专注于更广泛使用的前馈网络。

--------------------- 

作者:CUG_UESTC 

来源:CSDN 

原文:https://blog.csdn.net/qq_31192383/article/details/77145993 

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. 给技术创业的九个忠告

    很长一段时间,我对国内IC设计产业的困境感到迷惑不解。在这个产业里,聚集了中国最聪明的头脑(其中绝大多数是海归精英)。政府很舍得花钱支持,VC也很重视,有硅谷的成熟商业模式,又背靠全球最大的移动通信和消费电子市场。但事实很悲哀,远在整个经济的冬天到来之前,这个…...

    2024/4/17 23:13:04
  2. 对颜色空间YUV、RGB的理解

    接触到了一些yuv相关的信息。从Camera中拿到的每一帧,它的默认格式是NV21,它是一种yuv格式,然后转成OpenCV所需的BGR。Camera的每一帧的数据格式还可以指定成别的格式。因此开始关注了yuv这个名词,后面还有yuv的各种衍生,因此仔细地梳理一下自己的理解,以及与RGB对比。什…...

    2024/5/1 23:51:11
  3. C#中的颜色对照表

    Color c1 = Color.FromArgb(32,178,170); //此方法设置的颜色,其透明度属性alpha=255,完全不透明。 Color c2 = Color.FromKnownColor(KnownColor.LightSeaGreen); Color c3 = System.Drawing.Color.Lime;颜色对照表:https://blog.csdn.net/basycia/article/details/504493…...

    2024/5/2 1:33:37
  4. 函数递归的坑

    之前对函数递归的理解就是“自己调用自己”,这样理解没错,但这样忽视了一个很重要的问题:在递归一次后,第一次的函数是将会被挂起,而不是直接结束,在递归到最里面一层后,最里面一层结束,接下来仍然会运行倒数第二层,如果这时候恰巧你没有使用适当的方法结束这一层,又恰…...

    2024/5/1 22:45:15
  5. 网络工程师都学什么?网络工程师学习路线内容

    大家在备考软考的时候肯定想着选择那些科目报名比较好,比较有发展前途,这里给大家整理了网络工程师的学习路线以及学习内容,仅供大家参考。网络工程师是从事计算机信息系统的设计、建设、运行和维护工作,掌握网络技术的理论知识和操作技能。在软考中属中级资格,那么怎样才…...

    2024/3/31 16:51:34
  6. Fiddler抓包使用教程-Https

    转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/72956016 本文出自【赵彦军的博客】 开启 Https 抓包Fiddler 默认下,Fiddler不会捕获HTTPS会话,需要你设置下。from all processes : 抓取所有的 https 程序, 包括 本机 和 手机 from browsers only : 只…...

    2024/4/12 3:06:00
  7. 色彩转换系列之RGB格式与HSI格式互转原理及实现

    写在前面 HSI色彩空间是从人的视觉系统出发,直接用颜色三要素:色调(Hue)、饱和度(Saturation或Chroma)和亮度 (Intensity或Brightness)来描述色彩。H——表示颜色的相位角,是彩色最重要的属性,决定颜色的本质。红、绿、蓝分别相隔120度;互补色分别相差180度,即颜色的类别…...

    2024/4/12 13:02:02
  8. 网络表示学习简单总结(一)

    1. 网络表示学习的定义简单来说,网络表示学习就是通过相关算法将网络中的节点用一个低维稠密的向量空间表示(其中向量空间的维度远远小于节点的总个数),并且能够保持原有网络的相关结构和特征,然后再输入到深度学习的相关算法去完成节点分类,链路预测以及网络可视化等任务…...

    2024/4/12 14:18:42
  9. JS函数的递归和闭包的注意要点

    JavaScript函数表达式——“函数的递归和闭包”的注意要点 函数表达式的基本概念 name属性和函数提升 首先,name属性,通过这个属性可以访问到给函数指定的名字。(非标准的属性)如: function People(){};console.log(People.name); //People其次,函数声明提升,意味着可…...

    2024/4/12 3:05:18
  10. 最好最全的Fiddler教程

    http://www.cnblogs.com/TankXiao/archive/2012/02/06/2337728.html#decodeResponse...

    2024/4/17 23:43:58
  11. RGB颜色空间

    RGB颜色空间基本概念 RGB颜色空间以R(Red:红)、G(Green:绿)、B(Blue:蓝)三种基本色为基础,进行不同程度的叠加,产生丰富而广泛的颜色,所以俗称三基色模式。在大自然中有无穷多种不同的颜色,而人眼只能分辨有限种不同的颜色,RGB模式可表示一千六百多万种不同的颜色,…...

    2024/4/12 3:05:48
  12. (计算机网络课程实验)学习使用Wireshark进行网络捕获与分析

    一、实验目的 学习使用Wireshark进行网络捕获与分析 二、实验内容 使用Wireshark捕获TCP、UDP,ARP,HTTP等协议帧,并参照对应协议的帧格式进行阅读。 三、实验过程及结果 1,TCP协议帧:对应的IP协议帧:对应的TCP协议帧:2,UDP协议帧3,ARP协议帧四、总结 通过使用Wireshar…...

    2024/4/12 14:18:54
  13. JS 函数 函数递归

    微信小程序开发交流qq群 173683895承接微信小程序开发。扫码加微信。重要:函数也是对象,你可以给它们添加属性或者更改它们的属性。函数内部对象:arguments 解析:函数实际上是访问了函数体中一个名为 arguments 的内部对象,这个对象就如同一个类似于数组的对象一样,包括…...

    2024/4/16 0:00:01
  14. 最强大最好用的Web调试工具Fiddler教程

    Fiddler是最强大最好用的Web调试工具之一,它能记录所有客户端和服务器的http和https请求,允许你监视,设置断点,甚至修改输入输出数据. 使用Fiddler无论对开发还是测试来说,都有很大的帮助。 阅读目录 Fiddler的基本介绍Fiddler的工作原理同类的其它工具Fiddler如何捕获Fir…...

    2024/4/15 14:39:42
  15. 常用颜色RGB、灰度值、取色值、透明度。

    ■■■■■#DC143C——Crimson深红/猩红■■■■■#FFF0F5——LavenderBlush淡紫红■■■■■#DB7093——PaleVioletRed弱紫罗兰红■■■■■#FF69B4——HotPink热情的粉红■■■■■#FF1493——DeepPink深粉红■■■■■#C71585——MediumVioletRed中紫罗兰红■■■■■#DA70D…...

    2024/4/19 8:43:05
  16. 神经网络和深度学习(一)——初识神经网络

    神经网络和深度学习神经网络:一种可以通过观测数据使计算机学习的仿生语言范例 深度学习:一组强大的神经网络学习技术神经网络和深度学习目前提供了针对图像识别,语音识别和自然语言处理领域诸多问题的最佳解决方案。传统的编程方法中,我们告诉计算机如何去做,将大问题划分…...

    2024/4/27 4:02:31
  17. 颜色RGB 与 html 代码 对照表

    参考网址 http://jsxzjh.bokee.com/3744988.html...

    2024/4/17 9:27:08
  18. 平面设计CMKY颜色和显示器RGB颜色对比

    我们这里所讨论的色差,是指在电脑显示器上所看到的颜色与实际印刷出来的颜色之间的差异。 需要明确的是:电脑显示器所显示的颜色与实际印刷颜色之间永远都存在差异,我们唯一可以做到的就是尽量减少这个差异,这涉及到很多方面的原因:图片素材、设计软件的色彩模式、显示器…...

    2024/4/5 0:01:06
  19. 物以类聚,人以群分--走出软件作坊:三五个人十来条枪 如何成为开发正规军(十一)

    上个星期和一群刚认识的朋友吃饭。很多朋友都看过了我的博客,对我写的《走出软件作坊:三五个人十来条枪》非常感兴趣,纷纷询问我怎么了解这么多。而你为什么会这样想,你又是如何做到的? 我说:其实我特别局限性。 一则我只工作了10年,但我一直在商业软件公司工作,赚钱为…...

    2024/4/18 14:39:12
  20. 小坦克的FidderScript

    通过前一篇博客 【小坦克: Fiddler教程】,我们了解了Fiddler的基本用法, 现在我们来看看Fiddler的高级用法. Fiddler Script。 Fiddler中的script 可以让我们自动修改Http request和Response的内容。 而不用手动地去下"断点"来修改http Request或Response中的值…...

    2024/4/5 0:01:05

最新文章

  1. 【C++】STL学习之优先级队列

    🔥博客主页: 小羊失眠啦. 🎥系列专栏:《C语言》 《数据结构》 《C》 《Linux》 ❤️感谢大家点赞👍收藏⭐评论✍️ 文章目录 前言一、优先级队列的使用1.1 基本功能1.2 优先级模式切换1.3 相关题目 二、模拟实现优先级…...

    2024/5/2 3:38:20
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言,在此感激不尽。 权重和梯度的更新公式如下: w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. composer常见错误解决

    在Java中,常见的问题和解决方法包括: 内存不足错误:Java应用程序在运行时可能会遇到内存不足的错误。可以通过增加JVM的堆内存大小来解决,可以通过设置-Xms和-Xmx参数来指定初始堆大小和最大堆大小。 java -Xms2G -Xmx4G YourAppl…...

    2024/4/30 3:27:03
  4. STM32-GPIO

    🤓🤓🤓 122.1 2.22.3 344.14.24.34.44.54.64.74.8 56788.18.299.19.2 STM32 第一个外设 1 对我们来说 和IO口没区别 ST公司非叫GPIO 2 2.1 第二个是超频了 F1 72M 这翻转就36 2.2 有cmos 和ttl两种数据手册里给出整个芯片最低电流为150ma 单…...

    2024/5/1 13:09:46
  5. 【外汇早评】美通胀数据走低,美元调整

    原标题:【外汇早评】美通胀数据走低,美元调整昨日美国方面公布了新一期的核心PCE物价指数数据,同比增长1.6%,低于前值和预期值的1.7%,距离美联储的通胀目标2%继续走低,通胀压力较低,且此前美国一季度GDP初值中的消费部分下滑明显,因此市场对美联储后续更可能降息的政策…...

    2024/5/1 17:30:59
  6. 【原油贵金属周评】原油多头拥挤,价格调整

    原标题:【原油贵金属周评】原油多头拥挤,价格调整本周国际劳动节,我们喜迎四天假期,但是整个金融市场确实流动性充沛,大事频发,各个商品波动剧烈。美国方面,在本周四凌晨公布5月份的利率决议和新闻发布会,维持联邦基金利率在2.25%-2.50%不变,符合市场预期。同时美联储…...

    2024/4/30 18:14:14
  7. 【外汇周评】靓丽非农不及疲软通胀影响

    原标题:【外汇周评】靓丽非农不及疲软通胀影响在刚结束的周五,美国方面公布了新一期的非农就业数据,大幅好于前值和预期,新增就业重新回到20万以上。具体数据: 美国4月非农就业人口变动 26.3万人,预期 19万人,前值 19.6万人。 美国4月失业率 3.6%,预期 3.8%,前值 3…...

    2024/4/29 2:29:43
  8. 【原油贵金属早评】库存继续增加,油价收跌

    原标题:【原油贵金属早评】库存继续增加,油价收跌周三清晨公布美国当周API原油库存数据,上周原油库存增加281万桶至4.692亿桶,增幅超过预期的74.4万桶。且有消息人士称,沙特阿美据悉将于6月向亚洲炼油厂额外出售更多原油,印度炼油商预计将每日获得至多20万桶的额外原油供…...

    2024/4/30 18:21:48
  9. 【外汇早评】日本央行会议纪要不改日元强势

    原标题:【外汇早评】日本央行会议纪要不改日元强势近两日日元大幅走强与近期市场风险情绪上升,避险资金回流日元有关,也与前一段时间的美日贸易谈判给日本缓冲期,日本方面对汇率问题也避免继续贬值有关。虽然今日早间日本央行公布的利率会议纪要仍然是支持宽松政策,但这符…...

    2024/4/27 17:58:04
  10. 【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响

    原标题:【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响近日伊朗局势升温,导致市场担忧影响原油供给,油价试图反弹。此时OPEC表态稳定市场。据消息人士透露,沙特6月石油出口料将低于700万桶/日,沙特已经收到石油消费国提出的6月份扩大出口的“适度要求”,沙特将满…...

    2024/4/27 14:22:49
  11. 【外汇早评】美欲与伊朗重谈协议

    原标题:【外汇早评】美欲与伊朗重谈协议美国对伊朗的制裁遭到伊朗的抗议,昨日伊朗方面提出将部分退出伊核协议。而此行为又遭到欧洲方面对伊朗的谴责和警告,伊朗外长昨日回应称,欧洲国家履行它们的义务,伊核协议就能保证存续。据传闻伊朗的导弹已经对准了以色列和美国的航…...

    2024/4/28 1:28:33
  12. 【原油贵金属早评】波动率飙升,市场情绪动荡

    原标题:【原油贵金属早评】波动率飙升,市场情绪动荡因中美贸易谈判不安情绪影响,金融市场各资产品种出现明显的波动。随着美国与中方开启第十一轮谈判之际,美国按照既定计划向中国2000亿商品征收25%的关税,市场情绪有所平复,已经开始接受这一事实。虽然波动率-恐慌指数VI…...

    2024/4/30 9:43:09
  13. 【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试

    原标题:【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试美国和伊朗的局势继续升温,市场风险情绪上升,避险黄金有向上突破阻力的迹象。原油方面稍显平稳,近期美国和OPEC加大供给及市场需求回落的影响,伊朗局势并未推升油价走强。近期中美贸易谈判摩擦再度升级,美国对中…...

    2024/4/27 17:59:30
  14. 【原油贵金属早评】市场情绪继续恶化,黄金上破

    原标题:【原油贵金属早评】市场情绪继续恶化,黄金上破周初中国针对于美国加征关税的进行的反制措施引发市场情绪的大幅波动,人民币汇率出现大幅的贬值动能,金融市场受到非常明显的冲击。尤其是波动率起来之后,对于股市的表现尤其不安。隔夜美国股市出现明显的下行走势,这…...

    2024/4/25 18:39:16
  15. 【外汇早评】美伊僵持,风险情绪继续升温

    原标题:【外汇早评】美伊僵持,风险情绪继续升温昨日沙特两艘油轮再次发生爆炸事件,导致波斯湾局势进一步恶化,市场担忧美伊可能会出现摩擦生火,避险品种获得支撑,黄金和日元大幅走强。美指受中美贸易问题影响而在低位震荡。继5月12日,四艘商船在阿联酋领海附近的阿曼湾、…...

    2024/4/28 1:34:08
  16. 【原油贵金属早评】贸易冲突导致需求低迷,油价弱势

    原标题:【原油贵金属早评】贸易冲突导致需求低迷,油价弱势近日虽然伊朗局势升温,中东地区几起油船被袭击事件影响,但油价并未走高,而是出于调整结构中。由于市场预期局势失控的可能性较低,而中美贸易问题导致的全球经济衰退风险更大,需求会持续低迷,因此油价调整压力较…...

    2024/4/26 19:03:37
  17. 氧生福地 玩美北湖(上)——为时光守候两千年

    原标题:氧生福地 玩美北湖(上)——为时光守候两千年一次说走就走的旅行,只有一张高铁票的距离~ 所以,湖南郴州,我来了~ 从广州南站出发,一个半小时就到达郴州西站了。在动车上,同时改票的南风兄和我居然被分到了一个车厢,所以一路非常愉快地聊了过来。 挺好,最起…...

    2024/4/29 20:46:55
  18. 氧生福地 玩美北湖(中)——永春梯田里的美与鲜

    原标题:氧生福地 玩美北湖(中)——永春梯田里的美与鲜一觉醒来,因为大家太爱“美”照,在柳毅山庄去寻找龙女而错过了早餐时间。近十点,向导坏坏还是带着饥肠辘辘的我们去吃郴州最富有盛名的“鱼头粉”。说这是“十二分推荐”,到郴州必吃的美食之一。 哇塞!那个味美香甜…...

    2024/4/30 22:21:04
  19. 氧生福地 玩美北湖(下)——奔跑吧骚年!

    原标题:氧生福地 玩美北湖(下)——奔跑吧骚年!让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 啊……啊……啊 两…...

    2024/5/1 4:32:01
  20. 扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!

    原标题:扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!扒开伪装医用面膜,翻六倍价格宰客!当行业里的某一品项火爆了,就会有很多商家蹭热度,装逼忽悠,最近火爆朋友圈的医用面膜,被沾上了污点,到底怎么回事呢? “比普通面膜安全、效果好!痘痘、痘印、敏感肌都能用…...

    2024/4/27 23:24:42
  21. 「发现」铁皮石斛仙草之神奇功效用于医用面膜

    原标题:「发现」铁皮石斛仙草之神奇功效用于医用面膜丽彦妆铁皮石斛医用面膜|石斛多糖无菌修护补水贴19大优势: 1、铁皮石斛:自唐宋以来,一直被列为皇室贡品,铁皮石斛生于海拔1600米的悬崖峭壁之上,繁殖力差,产量极低,所以古代仅供皇室、贵族享用 2、铁皮石斛自古民间…...

    2024/4/28 5:48:52
  22. 丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者

    原标题:丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者【公司简介】 广州华彬企业隶属香港华彬集团有限公司,专注美业21年,其旗下品牌: 「圣茵美」私密荷尔蒙抗衰,产后修复 「圣仪轩」私密荷尔蒙抗衰,产后修复 「花茵莳」私密荷尔蒙抗衰,产后修复 「丽彦妆」专注医学护…...

    2024/4/30 9:42:22
  23. 广州械字号面膜生产厂家OEM/ODM4项须知!

    原标题:广州械字号面膜生产厂家OEM/ODM4项须知!广州械字号面膜生产厂家OEM/ODM流程及注意事项解读: 械字号医用面膜,其实在我国并没有严格的定义,通常我们说的医美面膜指的应该是一种「医用敷料」,也就是说,医用面膜其实算作「医疗器械」的一种,又称「医用冷敷贴」。 …...

    2024/4/30 9:43:22
  24. 械字号医用眼膜缓解用眼过度到底有无作用?

    原标题:械字号医用眼膜缓解用眼过度到底有无作用?医用眼膜/械字号眼膜/医用冷敷眼贴 凝胶层为亲水高分子材料,含70%以上的水分。体表皮肤温度传导到本产品的凝胶层,热量被凝胶内水分子吸收,通过水分的蒸发带走大量的热量,可迅速地降低体表皮肤局部温度,减轻局部皮肤的灼…...

    2024/4/30 9:42:49
  25. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下:1、长按电脑电源键直至关机,然后再按一次电源健重启电脑,按F8健进入安全模式2、安全模式下进入Windows系统桌面后,按住“winR”打开运行窗口,输入“services.msc”打开服务设置3、在服务界面,选中…...

    2022/11/19 21:17:18
  26. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像(每一幅图像的大小是564*564) f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  27. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面,在等待界面中我们需要等待操作结束才能关机,虽然这比较麻烦,但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  28. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows,请勿关闭计算机”的提示,要过很久才能进入系统,有的用户甚至几个小时也无法进入,下面就教大家这个问题的解决方法。第一种方法:我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  29. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题,电脑时发现开机屏幕显现“正在配置Windows Update,请勿关机”(如下图所示),而且还需求等大约5分钟才干进入系统。这是怎样回事呢?一切都是正常操作的,为什么开时机呈现“正…...

    2022/11/19 21:17:13
  30. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示,没过几秒后电脑自动重启,每次开机都这样无法进入系统,此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一:开机按下F8,在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  31. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况,就是电脑提示正在准备windows请勿关闭计算机,碰到这样的问题该怎么解决呢,现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法:1、2、依次…...

    2022/11/19 21:17:11
  32. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后,每次关机的时候桌面上都会显示一个“配置Windows Update的界面,提示请勿关闭计算机”,每次停留好几分钟才能正常关机,导致什么情况引起的呢?出现配置Windows Update…...

    2022/11/19 21:17:10
  33. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着,别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚,只能是考虑备份数据后重装系统了。解决来方案一:管理员运行cmd:net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  34. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题:电脑提示“配置Windows Update请勿关闭计算机”怎么办?win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢?一般的方…...

    2022/11/19 21:17:08
  35. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容,让我们赶快一起来看一下吧!关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  36. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  37. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了,具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面,长时间没反应,无法进入系统。这个问题原来帮其他同学也解决过,网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  38. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法,并在最后教给你1种保护系统安全的好方法,一起来看看!电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中,添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  39. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候,开启电脑发现电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机。。.这要怎么办呢?下面小编就带着大家一起看看吧!如果能够正常进入系统,建议您暂时移…...

    2022/11/19 21:17:02
  40. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容,让我们赶快一起来看一下吧!配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  41. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题,就是我们的win7系统在关机的时候,总是喜欢显示“准备配置windows,请勿关机”这样的一个页面,没有什么大碍,但是如果一直等着的话就要两个小时甚至更久都关不了机,非常…...

    2022/11/19 21:17:00
  42. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时,一般是您正对windows进行升级,但是这个要是长时间没有反应,我们不能再傻等下去了。可能是电脑出了别的问题了,来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  43. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况,当我们打开电脑之后,发现一直停留在一个界面:“配置Windows Update失败,还原更改请勿关闭计算机”,等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  44. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57