原文链接:http://blog.csdn.net/han____shuai/article/details/50573066

在这一篇之前的内容是《Factor Analysis》,由于非常理论,打算学完整个课程后再写。在写这篇之前,我阅读了PCA、SVD和LDA。这几个模型相近,却都有自己的特点。本篇打算先介绍PCA,至于他们之间的关系,只能是边学边体会了。PCA以前也叫做Principal factor analysis。

1. 问题

真实的训练数据总是存在各种各样的问题:

1、 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余。

2、 拿到一个数学系的本科生期末考试成绩单,里面有三列,一列是对数学的兴趣程度,一列是复习时间,还有一列是考试成绩。我们知道要学好数学,需要有浓厚的兴趣,所以第二项与第一项强相关,第三项和第二项也是强相关。那是不是可以合并第一项和第二项呢?

3、 拿到一个样本,特征非常多,而样例特别少,这样用回归去直接拟合非常困难,容易过度拟合。比如北京的房价:假设房子的特征是(大小、位置、朝向、是否学区房、建造年代、是否二手、层数、所在层数),搞了这么多特征,结果只有不到十个房子的样例。要拟合房子特征->房价的这么多特征,就会造成过度拟合。

4、 这个与第二个有点类似,假设在IR中我们建立的文档-词项矩阵中,有两个词项为“learn”和“study”,在传统的向量空间模型中,认为两者独立。然而从语义的角度来讲,两者是相似的,而且两者出现频率也类似,是不是可以合成为一个特征呢?

5、 在信号传输过程中,由于信道不是理想的,信道另一端收到的信号会有噪音扰动,那么怎么滤去这些噪音呢?

回顾我们之前介绍的《模型选择和规则化》,里面谈到的特征选择的问题。但在那篇中要剔除的特征主要是和类标签无关的特征。比如“学生的名字”就和他的“成绩”无关,使用的是互信息的方法。

而这里的特征很多是和类标签有关的,但里面存在噪声或者冗余。在这种情况下,需要一种特征降维的方法来减少特征数,减少噪音和冗余,减少过度拟合的可能性。

下面探讨一种称作主成分分析(PCA)的方法来解决部分上述问题。PCA的思想是将n维特征映射到k维上(k<n),这k维是全新的正交特征。这k维特征称为主元,是重新构造出来的k维特征,而不是简单地从n维特征中去除其余n-k维特征。

2. PCA计算过程

首先介绍PCA的计算过程:

假设我们得到的2维数据如下:

clip_image001[4]

行代表了样例,列代表特征,这里有10个样例,每个样例两个特征。可以这样认为,有10篇文档,x是10篇文档中“learn”出现的TF-IDF,y是10篇文档中“study”出现的TF-IDF。也可以认为有10辆汽车,x是千米/小时的速度,y是英里/小时的速度,等等。

第一步分别求x和y的平均值,然后对于所有的样例,都减去对应的均值。这里x的均值是1.81,y的均值是1.91,那么一个样例减去均值后即为(0.69,0.49),得到

clip_image002[4]

第二步,求特征协方差矩阵,如果数据是3维,那么协方差矩阵是

clip_image003[4]

这里只有x和y,求解得

clip_image004[4]

对角线上分别是x和y的方差,非对角线上是协方差。协方差大于0表示x和y若有一个增,另一个也增;小于0表示一个增,一个减;协方差为0时,两者独立。协方差绝对值越大,两者对彼此的影响越大,反之越小。

第三步,求协方差的特征值和特征向量,得到

clip_image005[4]

上面是两个特征值,下面是对应的特征向量,特征值0.0490833989对应特征向量为clip_image007[4],这里的特征向量都归一化为单位向量。

第四步,将特征值按照从大到小的顺序排序,选择其中最大的k个,然后将其对应的k个特征向量分别作为列向量组成特征向量矩阵。

这里特征值只有两个,我们选择其中最大的那个,这里是1.28402771,对应的特征向量是clip_image009[6]

第五步,将样本点投影到选取的特征向量上。假设样例数为m,特征数为n,减去均值后的样本矩阵为DataAdjust(m*n),协方差矩阵是n*n,选取的k个特征向量组成的矩阵为EigenVectors(n*k)。那么投影后的数据FinalData为

clip_image011[4]

这里是

FinalData(10*1) = DataAdjust(10*2矩阵)×特征向量clip_image009[7]

得到结果是

clip_image012[4]

这样,就将原始样例的n维特征变成了k维,这k维就是原始特征在k维上的投影。

上面的数据可以认为是learn和study特征融合为一个新的特征叫做LS特征,该特征基本上代表了这两个特征。

上述过程有个图描述:

clip_image013[4]

正号表示预处理后的样本点,斜着的两条线就分别是正交的特征向量(由于协方差矩阵是对称的,因此其特征向量正交),最后一步的矩阵乘法就是将原始样本点分别往特征向量对应的轴上做投影。

如果取的k=2,那么结果是

clip_image014[4]

这就是经过PCA处理后的样本数据,水平轴(上面举例为LS特征)基本上可以代表全部样本点。整个过程看起来就像将坐标系做了旋转,当然二维可以图形化表示,高维就不行了。上面的如果k=1,那么只会留下这里的水平轴,轴上是所有点在该轴的投影。

这样PCA的过程基本结束。在第一步减均值之后,其实应该还有一步对特征做方差归一化。比如一个特征是汽车速度(0到100),一个是汽车的座位数(2到6),显然第二个的方差比第一个小。因此,如果样本特征中存在这种情况,那么在第一步之后,求每个特征的标准差clip_image016[6],然后对每个样例在该特征下的数据除以clip_image016[7]

归纳一下,使用我们之前熟悉的表示方法,在求协方差之前的步骤是:

clip_image017[4]

其中clip_image019[6]是样例,共m个,每个样例n个特征,也就是说clip_image019[7]是n维向量。clip_image021[4]是第i个样例的第j个特征。clip_image023[4]是样例均值。clip_image025[4]是第j个特征的标准差。

整个PCA过程貌似及其简单,就是求协方差的特征值和特征向量,然后做数据转换。但是有没有觉得很神奇,为什么求协方差的特征向量就是最理想的k维向量?其背后隐藏的意义是什么?整个PCA的意义是什么?

3. PCA理论基础

要解释为什么协方差矩阵的特征向量就是k维理想特征,我看到的有三个理论:分别是最大方差理论、最小错误理论和坐标轴相关度理论。这里简单探讨前两种,最后一种在讨论PCA意义时简单概述。

3.1 最大方差理论

在信号处理中认为信号具有较大的方差,噪声有较小的方差,信噪比就是信号与噪声的方差比,越大越好。如前面的图,样本在横轴上的投影方差较大,在纵轴上的投影方差较小,那么认为纵轴上的投影是由噪声引起的。

因此我们认为,最好的k维特征是将n维样本点转换为k维后,每一维上的样本方差都很大。

比如下图有5个样本点:(已经做过预处理,均值为0,特征方差归一)

clip_image026[4]

下面将样本投影到某一维上,这里用一条过原点的直线表示(前处理的过程实质是将原点移到样本点的中心点)。

clip_image028[4]

假设我们选择两条不同的直线做投影,那么左右两条中哪个好呢?根据我们之前的方差最大化理论,左边的好,因为投影后的样本点之间方差最大。

这里先解释一下投影的概念:

QQ截图未命名

红色点表示样例clip_image037[14],蓝色点表示clip_image037[15]在u上的投影,u是直线的斜率也是直线的方向向量,而且是单位向量。蓝色点是clip_image037[16]在u上的投影点,离原点的距离是clip_image039[4](即clip_image030[4]或者clip_image041[4])由于这些样本点(样例)的每一维特征均值都为0,因此投影到u上的样本点(只有一个到原点的距离值)的均值仍然是0。

回到上面左右图中的左图,我们要求的是最佳的u,使得投影后的样本点方差最大。

由于投影后均值为0,因此方差为:

clip_image042[4]

中间那部分很熟悉啊,不就是样本特征的协方差矩阵么(clip_image037[17]的均值为0,一般协方差矩阵都除以m-1,这里用m)。

clip_image044[10]来表示clip_image046[4]clip_image048[6]表示clip_image050[4],那么上式写作

clip_image052[4] 

由于u是单位向量,即clip_image054[4],上式两边都左乘u得,clip_image056[4]

clip_image058[4]

We got it!clip_image044[11]就是clip_image048[7]的特征值,u是特征向量。最佳的投影直线是特征值clip_image044[12]最大时对应的特征向量,其次是clip_image044[13]第二大对应的特征向量,依次类推。

因此,我们只需要对协方差矩阵进行特征值分解,得到的前k大特征值对应的特征向量就是最佳的k维新特征,而且这k维新特征是正交的。得到前k个u以后,样例clip_image037[18]通过以下变换可以得到新的样本。

clip_image059[4]

其中的第j维就是clip_image037[19]clip_image061[4]上的投影。

通过选取最大的k个u,使得方差较小的特征(如噪声)被丢弃。

这是其中一种对PCA的解释,第二种是错误最小化。即3.2部分。

3.2 最小平方误差理论

clip_image001

假设有这样的二维样本点(红色点),回顾我们前面探讨的是求一条直线,使得样本点投影到直线上的点的方差最大。本质是求直线,那么度量直线求的好不好,不仅仅只有方差最大化的方法。再回想我们最开始学习的线性回归等,目的也是求一个线性函数使得直线能够最佳拟合样本点,那么我们能不能认为最佳的直线就是回归后的直线呢?回归时我们的最小二乘法度量的是样本点到直线的坐标轴距离。比如这个问题中,特征是x,类标签是y。回归时最小二乘法度量的是距离d。如果使用回归方法来度量最佳直线,那么就是直接在原始样本上做回归了,跟特征选择就没什么关系了。

因此,我们打算选用另外一种评价直线好坏的方法,使用点到直线的距离d’来度量。

现在有n个样本点clip_image003,每个样本点为m维(这节内容中使用的符号与上面的不太一致,需要重新理解符号的意义)。将样本点clip_image005在直线上的投影记为clip_image007,那么我们就是要最小化

clip_image009

这个公式称作最小平方误差(Least Squared Error)。

而确定一条直线,一般只需要确定一个点,并且确定方向即可。

第一步确定点:

假设要在空间中找一点clip_image011来代表这n个样本点,“代表”这个词不是量化的,因此要量化的话,我们就是要找一个m维的点clip_image011[1],使得

clip_image012

最小。其中clip_image014是平方错误评价函数(squared-errorcriterion function),假设m为n个样本点的均值:

clip_image015

那么平方错误可以写作:

clip_image017

后项与clip_image019无关,看做常量,而clip_image021,因此最小化clip_image014[1]时,

clip_image023 

clip_image019[1]是样本点均值。

第二步确定方向:

我们从clip_image019[2]拉出要求的直线(这条直线要过点m),假设直线的方向是单位向量e。那么直线上任意一点,比如clip_image007[1]就可以用点me来表示

clip_image025 

其中clip_image027clip_image029到点m的距离。

我们重新定义最小平方误差:

clip_image030

这里的k只是相当于iclip_image032就是最小平方误差函数,其中的未知参数是clip_image034e

实际上是求clip_image032[1]的最小值。首先将上式展开:

clip_image036

我们首先固定e,将其看做是常量,clip_image038,然后对clip_image027[1]进行求导,得

clip_image039

这个结果意思是说,如果知道了e,那么将clip_image041e做内积,就可以知道了clip_image043e上的投影离m的长度距离,不过这个结果不用求都知道。

然后是固定clip_image027[2],对e求偏导数,我们先将公式(8)代入clip_image032[2],得 

clip_image044

其中clip_image045 与协方差矩阵类似,只是缺少个分母n-1,我们称之为散列矩阵(scattermatrix)。

然后可以对e求偏导数,但是e需要首先满足clip_image038[1],引入拉格朗日乘子clip_image047,来使clip_image049最大(clip_image032[3]最小),令

clip_image050

求偏导

clip_image051

这里存在对向量求导数的技巧,方法这里不多做介绍。可以去看一些关于矩阵微积分的资料,这里求导时可以将clip_image049[1]看作是clip_image053,将clip_image055看做是clip_image057

导数等于0时,得

clip_image058

两边除以n-1就变成了,对协方差矩阵求特征值向量了。

从不同的思路出发,最后得到同一个结果,对协方差矩阵求特征向量,求得后特征向量上就成为了新的坐标,如下图:

clip_image059

这时候点都聚集在新的坐标轴周围,因为我们使用的最小平方误差的意义就在此。

4. PCA理论意义

PCA将n个特征降维到k个,可以用来进行数据压缩,如果100维的向量最后可以用10维来表示,那么压缩率为90%。同样图像处理领域的KL变换使用PCA做图像压缩。但PCA要保证降维后,还要保证数据的特性损失最小。再看回顾一下PCA的效果。经过PCA处理后,二维数据投影到一维上可以有以下几种情况:

clip_image060

我们认为左图好,一方面是投影后方差最大,一方面是点到直线的距离平方和最小,而且直线过样本点的中心点。为什么右边的投影效果比较差?直觉是因为坐标轴之间相关,以至于去掉一个坐标轴,就会使得坐标点无法被单独一个坐标轴确定。

PCA得到的k个坐标轴实际上是k个特征向量,由于协方差矩阵对称,因此k个特征向量正交。看下面的计算过程。

假设我们还是用clip_image062来表示样例,m个样例,n个特征。特征向量为eclip_image064表示第i个特征向量的第1维。那么原始样本特征方程可以用下面式子来表示:

前面两个矩阵乘积就是协方差矩阵clip_image066(除以m后),原始的样本矩阵A是第二个矩阵m*n。

clip_image068

上式可以简写为clip_image070

我们最后得到的投影结果是clip_image072,E是k个特征向量组成的矩阵,展开如下:

clip_image074

得到的新的样例矩阵就是m个样例到k个特征向量的投影,也是这k个特征向量的线性组合。e之间是正交的。从矩阵乘法中可以看出,PCA所做的变换是将原始样本点(n维),投影到k个正交的坐标系中去,丢弃其他维度的信息。举个例子,假设宇宙是n维的(霍金说是11维的),我们得到银河系中每个星星的坐标(相对于银河系中心的n维向量),然而我们想用二维坐标去逼近这些样本点,假设算出来的协方差矩阵的特征向量分别是图中的水平和竖直方向,那么我们建议以银河系中心为原点的x和y坐标轴,所有的星星都投影到x和y上,得到下面的图片。然而我们丢弃了每个星星离我们的远近距离等信息。

clip_image075

5. 总结与讨论

这一部分来自http://www.cad.zju.edu.cn/home/chenlu/pca.htm

PCA技术的一大好处是对数据进行降维的处理。我们可以对新求出的“主元”向量的重要性进行排序,根据需要取前面最重要的部分,将后面的维数省去,可以达到降维从而简化模型或是对数据进行压缩的效果。同时最大程度的保持了原有数据的信息。

PCA技术的一个很大的优点是,它是完全无参数限制的。在PCA的计算过程中完全不需要人为的设定参数或是根据任何经验模型对计算进行干预,最后的结果只与数据相关,与用户是独立的。 
但是,这一点同时也可以看作是缺点。如果用户对观测对象有一定的先验知识,掌握了数据的一些特征,却无法通过参数化等方法对处理过程进行干预,可能会得不到预期的效果,效率也不高。

clip_image076

图表 4:黑色点表示采样数据,排列成转盘的形状。 
容易想象,该数据的主元是clip_image077或是旋转角clip_image078

如图表 4中的例子,PCA找出的主元将是clip_image077[1]。但是这显然不是最优和最简化的主元。clip_image077[2]之间存在着非线性的关系。根据先验的知识可知旋转角clip_image078[1]是最优的主元(类比极坐标)。则在这种情况下,PCA就会失效。但是,如果加入先验的知识,对数据进行某种划归,就可以将数据转化为以clip_image078[2]为线性的空间中。这类根据先验知识对数据预先进行非线性转换的方法就成为kernel-PCA,它扩展了PCA能够处理的问题的范围,又可以结合一些先验约束,是比较流行的方法。

有时数据的分布并不是满足高斯分布。如图表 5所示,在非高斯分布的情况下,PCA方法得出的主元可能并不是最优的。在寻找主元时不能将方差作为衡量重要性的标准。要根据数据的分布情况选择合适的描述完全分布的变量,然后根据概率分布式

clip_image079

来计算两个向量上数据分布的相关性。等价的,保持主元间的正交假设,寻找的主元同样要使clip_image080。这一类方法被称为独立主元分解(ICA)。

clip_image081

图表 5:数据的分布并不满足高斯分布,呈明显的十字星状。 
这种情况下,方差最大的方向并不是最优主元方向。

另外PCA还可以用于预测矩阵中缺失的元素。

6. 其他参考文献

tutorial on Principal Components Analysis LI Smith – 2002

Tutorial on PrincipalComponent Analysis J Shlens

http://www.cmlab.csie.ntu.edu.tw/~cyy/learning/tutorials/PCAMissingData.pdf

http://www.cad.zju.edu.cn/home/chenlu/pca.htm

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. Java反编译利器-Jad, Jode, Java Decompiler等及其IDE插件

    对于长年使用Java的程序员,大部分应该都会或多或少的使用到反编译软件。毕竟,不可能你所使用到的每一个包都会提供完善的javadoc,而且,有时候代码比javadoc更容易理解。这里将讲述笔者所了解的一些反编译软件以及它们各自的IDE插件版。简介 现在业内的反编译软件据说有几十…...

    2024/5/2 3:01:52
  2. PCA降维 C++实现

    这是本人在学习PCA降维的过程中,根据算法写成的C++代码。 PCA是模式识别中常见的特征降维的算法,其大体步骤可以分为以下几个部分: (1)原始特征矩阵归一化处理 (2)求取归一化处理后特征矩阵的协方差矩阵 (3)计算协方差矩阵的特征值及其对应的特征向量 (4)按照特征值…...

    2024/5/1 21:53:58
  3. 降维--PCA,特征选择

    降维引入原因均值和方差的矩阵形式PCA最大投影方差最小重构代价PCA算法描述 引入原因 为了防止过拟合,我们通常的解决办法有:增加数据,正则化,降维等方法。 为什么要引入降维呢? 当数据量过大特征过多的时候,数据的维度过高有可能会导致维度灾难。在没有更过数据进行补充…...

    2024/5/2 4:35:34
  4. Java编程琐事(5)——Java反编译工具和Java混淆器

    一、Java反编译: Java程序运行是动态连接的,因此编译成的目标文件中包含有符号表,使得Java程序很容易被反编译。常用的工具:jd-gui、jad等。jd-gui无疑是反编译工具中的“奔驰”,可以将WEB-INF/classes目录下的文件一次全部反编译成功(在没有使用混淆工具的情况下)。I l…...

    2024/5/2 2:52:51
  5. 关于PCA作用于过拟合时的一些策略

    之前在进行数据挖掘比赛的时候,同事友推荐使用PCA降维。使用过后的效果也并不是很好。 且今天在听机器学习课程的时候,听到老师给出如下建议: 为了避免overfitting,并不推荐采用PCA算法。因为无论如何,PCA还是会丢失信息。 更推荐使用regularization,来避免过拟合,此时的…...

    2024/5/2 4:57:13
  6. java之七篇:为何java可反编译

    的确java的编译类文件可反编译,市面上可见到java的反编译具jad等;类似工具POwerbuider编译的也可被反编译。哎,编译成伪代码虚拟机解释执行的都有这个通病,这的确是个窘地。无可,为何?继续后文诠释一二…。 1)解释执行的虚拟机运算执行基于栈、离不开栈,基于栈运行都会…...

    2024/5/2 4:09:04
  7. 降维算法(PCA)

    降维方法1、主成分分析(PCA) 在PCA中,数据从原来的坐标系转换到新的坐标系,新坐标系的选择是由数据本身决定的。第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴选择和第一个坐标轴正交且具有最大方差的方向。该过程一直重复,重复次数为原始数据中特征的…...

    2024/5/2 0:33:18
  8. 好用的Java反编译工具,支持JDK1.4,5.0,6.0,还提供了eclipse插件 (转)

    一个非常好用的Java反编译工具:官方描述“The “Java Decompiler project” aims to develop tools in order to decompile and analyze Java 5 “byte code” and the later versions.”。 官方网址:http://java.decompiler.free.fr/ 使用效果如图:它还提供了eclipse插件:…...

    2024/5/2 6:22:26
  9. 主成分分析PCA 与 梯度上升法

    什么是PCA 主成分分析,就是找出数据里最主要的方面,用数据里最主要的方面来代替原始数据。在数据压缩消除冗余和数据噪音消除领域都有广泛应用。 具体的,假如我们的数据集是n维的,共有m个数据(x(1),x(2),…,x(m))。我们希望将这m个数据的维度从n维降到n’维,希望这m个n’维…...

    2024/5/1 22:13:33
  10. 深入java 通过反编译看枚举用法

    这篇文章总结java1.5后jdk中新加的一种类型:enum。更多的源代码请访问我的github:https://github.com/yangsheng20080808/deepIntoJava本文分为2大部分反编译看枚举怎么用 其实枚举用法很简单反编译看枚举怎么用枚举是基于泛型实现的,枚举是什么,其实枚举就是一个普通的类:…...

    2024/4/26 4:55:00
  11. 【机器学习】pca和sklearn运用实战

    pca pca可用于数据降维,也可以用于特征选择。pca通过将数据集映射到方差最大的方向上,保留影响分类最大的因素,减少数据维数。 pca求解方法 pca如何将数据集映射到方差最大的方向上呢? 对于方阵而言 通过特征值λ\lambdaλ和特征向量xxx,即Ax=λxAx=\lambda xAx=λx,将特…...

    2024/4/21 12:45:30
  12. 样本数少于特征数的PCA降维

    模式识别在做SVM支持向量机的分类问题的时候,考虑到读取的图片特征数过大,如我的图片进行压缩之后还是有8100多的特征,而我的训练样本数只有600多张,需要用PCA降一下维,但是平时学的PCA降维要求样本数要大于特征数的,不然求不出协方差矩阵。我们老师说可以将训练样本的特…...

    2024/4/13 1:28:38
  13. Java基础-IDEA反编译

    我们都知道,Java程序是我们编写的代码经过编译变成class可执行文件,反编译就是其逆向过程,就是将可执行的class文件反编译为代码的过程。 关于反编译,网上也有很多的工具,博主在此介绍一下idea反编译。 准备需要反编译的class文件。博主这里随便找了一个根据输入求均值的例…...

    2024/4/18 20:03:17
  14. 高光谱图像基于MATLAB的PCA降维

    工具:matlab,本人使用的是2016a 使用数据集用公开的Salinas数据集为例,Salinas数据集为512*217*204,即它有204个波段,我们要把它从204维降至3维。matlab中内含了进行PCA降维的函数,但这个函数输进去的数据要是二维的,所以我们先用resharp函数把原矩阵处理成111104*204的…...

    2024/4/19 5:36:25
  15. 图像处理系列——图像融合之主成分分析(PCA)

    研究方向需要运用C/C++语言实现航空影像的处理工作,主要包括有配准和融合处理。在此主要讲一下自己学习到实现PCA融合算法的过程。起初限于自己水平,只能不断的摸索和学习。主要是借助于CSDN的资源,认真地学习了一些博主的文章,了解了PCA的原理,当自己实现时,还是会出现各…...

    2024/4/13 1:28:33
  16. Java反编译工具Jad的使用

    在学习Java的时候,如果想要看一些编译器搞的小动作,比如说自动帮我们补上无参构造方法或则说泛型中的类型擦除,这就需要我们将字节码(即.class)文件反编译回源代码来查看了。这里我给大家介绍一款反编译工具jad的使用。大家可以去这里下载jad工具https://varaneckas.com/jad…...

    2024/4/13 1:28:23
  17. 特征选择中PCA与KLT变换的区别

    简单概括:K-L变换(Karhunen–Love transform)应用范围比PCA广,可用于连续信号分析,离散信号分析,变换矩阵可包含二阶矩阵、协方差矩阵、自相关矩阵、总类内离散度矩阵等等。PCA变换(principal component analysis)又叫离散K-L变换,根据名称可知,在做特征分析时,PCA变…...

    2024/4/20 1:11:10
  18. PCA计算点云的法线

    我们知道PCA可以用来降维,并使降维后的数据尽可能保持原来的特征。比如二维散乱的点:经过PCA降维后,变成了一维直线,而该直线保证点尽可能分散,变成如下图(跟最小二乘是一样的):具体原理可参考http://blog.codinglabs.org/articles/pca-tutorial.html前面说的是二维降到一维时…...

    2024/4/15 6:36:22
  19. Java编译与反编译中的汉字乱码(IDEA反编译不要使用IntelliJ)

    一、什么是编译与反编译简单来讲,编译就是把.java文件生成为.class文件,反编译就是把.class生成为.java文件。如果看到这里你已经懂了就可以看第二大部分了,不然就再听我絮叨一下。我们编程的时候主要是写一个个.java文件,以及围绕它的相关配置。但是.java文件不可以直接被…...

    2024/4/13 1:29:35
  20. 如何通过反编译工具与插件 查看java *.class 文件源码

    Java Decompiler【java 反编译】:开发了反编译工具,可以方便查看*.class 文件源码。下面介绍几种查看源码的方式:工具&插件1、JD-GUI JD-GUI 是显示java 源代码 *.class文件的 图形界面工具。可以在这里下载:JD-GUI-DownLoad 下载下来后,打开该工具,直接将jar包 拖拽…...

    2024/4/13 1:29:25

最新文章

  1. python算法题

    需求 代码 class Solution:def searchInsert(self, nums: List[int], target: int) -> int:if max(nums) >target:for i in range(len(nums)-1):if nums[i1] > target and nums[i] <target:return i1if max(nums) <target:return len(nums)if min(nums) > …...

    2024/5/2 7:08:17
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. LeetCode-46. 全排列【数组 回溯】

    LeetCode-46. 全排列【数组 回溯】 题目描述&#xff1a;解题思路一&#xff1a;回溯。回溯三部曲解题思路二&#xff1a;0解题思路三&#xff1a;0 题目描述&#xff1a; 给定一个不含重复数字的数组 nums &#xff0c;返回其 所有可能的全排列 。你可以 按任意顺序 返回答案…...

    2024/5/1 5:12:19
  4. Linux常用命令2

    1.shell 输出&#xff1a; echo 输出环境变量$PATH&#xff1a; echo $PATH 2.设置一个新的环境变量HELLO &#xff0c;值为 hello export HELLO"hello" 3.清除环境变量 HELLO unset HELLO 4. sed 命令&#xff08;按行筛选文本&#xff09; 显示web.xml 所…...

    2024/4/30 5:32:18
  5. 【外汇早评】美通胀数据走低,美元调整

    原标题:【外汇早评】美通胀数据走低,美元调整昨日美国方面公布了新一期的核心PCE物价指数数据,同比增长1.6%,低于前值和预期值的1.7%,距离美联储的通胀目标2%继续走低,通胀压力较低,且此前美国一季度GDP初值中的消费部分下滑明显,因此市场对美联储后续更可能降息的政策…...

    2024/5/1 17:30:59
  6. 【原油贵金属周评】原油多头拥挤,价格调整

    原标题:【原油贵金属周评】原油多头拥挤,价格调整本周国际劳动节,我们喜迎四天假期,但是整个金融市场确实流动性充沛,大事频发,各个商品波动剧烈。美国方面,在本周四凌晨公布5月份的利率决议和新闻发布会,维持联邦基金利率在2.25%-2.50%不变,符合市场预期。同时美联储…...

    2024/4/30 18:14:14
  7. 【外汇周评】靓丽非农不及疲软通胀影响

    原标题:【外汇周评】靓丽非农不及疲软通胀影响在刚结束的周五,美国方面公布了新一期的非农就业数据,大幅好于前值和预期,新增就业重新回到20万以上。具体数据: 美国4月非农就业人口变动 26.3万人,预期 19万人,前值 19.6万人。 美国4月失业率 3.6%,预期 3.8%,前值 3…...

    2024/4/29 2:29:43
  8. 【原油贵金属早评】库存继续增加,油价收跌

    原标题:【原油贵金属早评】库存继续增加,油价收跌周三清晨公布美国当周API原油库存数据,上周原油库存增加281万桶至4.692亿桶,增幅超过预期的74.4万桶。且有消息人士称,沙特阿美据悉将于6月向亚洲炼油厂额外出售更多原油,印度炼油商预计将每日获得至多20万桶的额外原油供…...

    2024/4/30 18:21:48
  9. 【外汇早评】日本央行会议纪要不改日元强势

    原标题:【外汇早评】日本央行会议纪要不改日元强势近两日日元大幅走强与近期市场风险情绪上升,避险资金回流日元有关,也与前一段时间的美日贸易谈判给日本缓冲期,日本方面对汇率问题也避免继续贬值有关。虽然今日早间日本央行公布的利率会议纪要仍然是支持宽松政策,但这符…...

    2024/4/27 17:58:04
  10. 【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响

    原标题:【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响近日伊朗局势升温,导致市场担忧影响原油供给,油价试图反弹。此时OPEC表态稳定市场。据消息人士透露,沙特6月石油出口料将低于700万桶/日,沙特已经收到石油消费国提出的6月份扩大出口的“适度要求”,沙特将满…...

    2024/4/27 14:22:49
  11. 【外汇早评】美欲与伊朗重谈协议

    原标题:【外汇早评】美欲与伊朗重谈协议美国对伊朗的制裁遭到伊朗的抗议,昨日伊朗方面提出将部分退出伊核协议。而此行为又遭到欧洲方面对伊朗的谴责和警告,伊朗外长昨日回应称,欧洲国家履行它们的义务,伊核协议就能保证存续。据传闻伊朗的导弹已经对准了以色列和美国的航…...

    2024/4/28 1:28:33
  12. 【原油贵金属早评】波动率飙升,市场情绪动荡

    原标题:【原油贵金属早评】波动率飙升,市场情绪动荡因中美贸易谈判不安情绪影响,金融市场各资产品种出现明显的波动。随着美国与中方开启第十一轮谈判之际,美国按照既定计划向中国2000亿商品征收25%的关税,市场情绪有所平复,已经开始接受这一事实。虽然波动率-恐慌指数VI…...

    2024/4/30 9:43:09
  13. 【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试

    原标题:【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试美国和伊朗的局势继续升温,市场风险情绪上升,避险黄金有向上突破阻力的迹象。原油方面稍显平稳,近期美国和OPEC加大供给及市场需求回落的影响,伊朗局势并未推升油价走强。近期中美贸易谈判摩擦再度升级,美国对中…...

    2024/4/27 17:59:30
  14. 【原油贵金属早评】市场情绪继续恶化,黄金上破

    原标题:【原油贵金属早评】市场情绪继续恶化,黄金上破周初中国针对于美国加征关税的进行的反制措施引发市场情绪的大幅波动,人民币汇率出现大幅的贬值动能,金融市场受到非常明显的冲击。尤其是波动率起来之后,对于股市的表现尤其不安。隔夜美国股市出现明显的下行走势,这…...

    2024/4/25 18:39:16
  15. 【外汇早评】美伊僵持,风险情绪继续升温

    原标题:【外汇早评】美伊僵持,风险情绪继续升温昨日沙特两艘油轮再次发生爆炸事件,导致波斯湾局势进一步恶化,市场担忧美伊可能会出现摩擦生火,避险品种获得支撑,黄金和日元大幅走强。美指受中美贸易问题影响而在低位震荡。继5月12日,四艘商船在阿联酋领海附近的阿曼湾、…...

    2024/4/28 1:34:08
  16. 【原油贵金属早评】贸易冲突导致需求低迷,油价弱势

    原标题:【原油贵金属早评】贸易冲突导致需求低迷,油价弱势近日虽然伊朗局势升温,中东地区几起油船被袭击事件影响,但油价并未走高,而是出于调整结构中。由于市场预期局势失控的可能性较低,而中美贸易问题导致的全球经济衰退风险更大,需求会持续低迷,因此油价调整压力较…...

    2024/4/26 19:03:37
  17. 氧生福地 玩美北湖(上)——为时光守候两千年

    原标题:氧生福地 玩美北湖(上)——为时光守候两千年一次说走就走的旅行,只有一张高铁票的距离~ 所以,湖南郴州,我来了~ 从广州南站出发,一个半小时就到达郴州西站了。在动车上,同时改票的南风兄和我居然被分到了一个车厢,所以一路非常愉快地聊了过来。 挺好,最起…...

    2024/4/29 20:46:55
  18. 氧生福地 玩美北湖(中)——永春梯田里的美与鲜

    原标题:氧生福地 玩美北湖(中)——永春梯田里的美与鲜一觉醒来,因为大家太爱“美”照,在柳毅山庄去寻找龙女而错过了早餐时间。近十点,向导坏坏还是带着饥肠辘辘的我们去吃郴州最富有盛名的“鱼头粉”。说这是“十二分推荐”,到郴州必吃的美食之一。 哇塞!那个味美香甜…...

    2024/4/30 22:21:04
  19. 氧生福地 玩美北湖(下)——奔跑吧骚年!

    原标题:氧生福地 玩美北湖(下)——奔跑吧骚年!让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 啊……啊……啊 两…...

    2024/5/1 4:32:01
  20. 扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!

    原标题:扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!扒开伪装医用面膜,翻六倍价格宰客!当行业里的某一品项火爆了,就会有很多商家蹭热度,装逼忽悠,最近火爆朋友圈的医用面膜,被沾上了污点,到底怎么回事呢? “比普通面膜安全、效果好!痘痘、痘印、敏感肌都能用…...

    2024/4/27 23:24:42
  21. 「发现」铁皮石斛仙草之神奇功效用于医用面膜

    原标题:「发现」铁皮石斛仙草之神奇功效用于医用面膜丽彦妆铁皮石斛医用面膜|石斛多糖无菌修护补水贴19大优势: 1、铁皮石斛:自唐宋以来,一直被列为皇室贡品,铁皮石斛生于海拔1600米的悬崖峭壁之上,繁殖力差,产量极低,所以古代仅供皇室、贵族享用 2、铁皮石斛自古民间…...

    2024/4/28 5:48:52
  22. 丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者

    原标题:丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者【公司简介】 广州华彬企业隶属香港华彬集团有限公司,专注美业21年,其旗下品牌: 「圣茵美」私密荷尔蒙抗衰,产后修复 「圣仪轩」私密荷尔蒙抗衰,产后修复 「花茵莳」私密荷尔蒙抗衰,产后修复 「丽彦妆」专注医学护…...

    2024/4/30 9:42:22
  23. 广州械字号面膜生产厂家OEM/ODM4项须知!

    原标题:广州械字号面膜生产厂家OEM/ODM4项须知!广州械字号面膜生产厂家OEM/ODM流程及注意事项解读: 械字号医用面膜,其实在我国并没有严格的定义,通常我们说的医美面膜指的应该是一种「医用敷料」,也就是说,医用面膜其实算作「医疗器械」的一种,又称「医用冷敷贴」。 …...

    2024/4/30 9:43:22
  24. 械字号医用眼膜缓解用眼过度到底有无作用?

    原标题:械字号医用眼膜缓解用眼过度到底有无作用?医用眼膜/械字号眼膜/医用冷敷眼贴 凝胶层为亲水高分子材料,含70%以上的水分。体表皮肤温度传导到本产品的凝胶层,热量被凝胶内水分子吸收,通过水分的蒸发带走大量的热量,可迅速地降低体表皮肤局部温度,减轻局部皮肤的灼…...

    2024/4/30 9:42:49
  25. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  26. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  27. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  28. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  29. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  30. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  31. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  32. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  33. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  34. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  35. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  36. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  37. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  38. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  39. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  40. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  41. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  42. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  43. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  44. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57