计算机网络面试常见问题

  • 计算机网络面试常见问题
    • 一.TCP/IP 各层的结构与功能, 都有哪些协议?
      • 1.1Tcp/IP的五层协议
      • 1.2应用层
      • 1.3运输层
      • 1.4网络层
      • 1.5数据链路层
      • 1.6物理层
    • 二.TCP 三次握手和四次挥手(面试常客)
      • 2.1 TCP 三次握手漫画图解
      • 2.2 为什么要三次握手
      • 2.3 第 2 次握手传回了 ACK,为什么还要传回 SYN?
      • 2.5为什么要四次挥手
    • 三 TCP, UDP 协议的区别
    • 四 TCP 协议如何保证可靠传输
      • 4.1 ARQ 协议
      • 4.2 滑动窗口和流量控制
      • 4.3 拥塞控制
    • 五 在浏览器中输入 url 地址 ->> 显示主页的过程(面试常客)
    • 六 状态码
    • 七 各种协议与 HTTP 协议之间的关系
    • 八 HTTP 长连接, 短连接
    • 九 HTTP 是不保存状态的协议, 如何保存用户状态?
    • 十 Cookie 的作用是什么? 和 Session 有什么区别?
    • 十一 HTTP 1.0 和 HTTP 1.1 的主要区别是什么?
    • 十二 URI 和 URL 的区别是什么?
    • 十三 HTTP 和 HTTPS 的区别?
  • 1. HTTPS中的TLS
  • 2. 从网络协议的角度理解 HTTPS
      • 3.2.3. 数字签名
      • 3.2.4. 公钥密码
      • 3.2.5. 证书
      • 3.2.6. 密码小结
    • 3.3. TLS 使用的密码技术
    • 3.4. TLS 总结
    • 3.3. TLS 使用的密码技术
    • 3.4. TLS 总结

绝大部分内容来源javaguide,添上部分自己画的图片和注解修改内容,便于个人记忆
计算机网络是面试当中不可避免的知识点,虽然占比不多,但是十分重要,多多少少都会涉及其中内容,所以一点要认真学习

一.TCP/IP 各层的结构与功能, 都有哪些协议?

1.1Tcp/IP的五层协议

  • 应用层
  • 运输层
  • 网络层
  • 数据链路层
  • 物理层

在这里插入图片描述

结合互联网的情况,自上而下地,非常简要的介绍一下各层的作用。

1.2应用层

应用层(application-layer)的任务是通过应用进程间的交互来完成特定网络应用。应用层协议定义的是应用进程(进程:主机中正在运行的程序)间的通信和交互的规则。

相关协议:DNS,HTTP,SMTP

应用层交互的数据单元称为报文

域名系统

域名系统(Domain Name System 缩写 DNS,Domain Name 被译为域名)是因特网的一项核心服务,它作为可以将域名和 IP 地址相互映射的一个分布式数据库

HTTP 协议

超文本传输协议(HTTP,HyperText Transfer Protocol)是互联网上应用最为广泛的一种网络协议。所有的 WWW(万维网) 文件都必须遵守这个标准。设计 HTTP 最初的目的是为了提供一种发布和接收 HTML 页面的方法。(百度百科)

SMTP

简单邮件传输协议

1.3运输层

任务:负责两台主机进层之间的通信提供通用的数据传输服务。

由于一台主机可同时运行多个线程,因此运输层有复用和分用的功能。

复用:多个应用层进程可同时使用下面运输层的服务

分用:运输层把收到的信息分别交付上面应用层中的相应进程

运输层主要使用以下两种协议:

  1. 传输控制协议 TCP(Transmission Control Protocol)–提供面向连接的,可靠的数据传输服务。
  2. 用户数据协议 UDP(User Datagram Protocol)–提供无连接的,尽最大努力的数据传输服务(不保证数据传输的可靠性)。

1.4网络层

在计算机网络中进行通信的两个计算机之间可能会经过很多个数据链路,也可能还要经过很多通信子网。网络层的任务就是选择合适的网间路由和交换结点, 确保数据及时传送。

在发送数据时,网络层把运输层产生的报文段或用户数据报封装成分组和包进行传送。在 TCP/IP 体系结构中,由于网络层使用 IP 协议,因此分组也叫 IP 数据报 ,简称 数据报

这里要注意:不要把运输层的“用户数据报 UDP ”和网络层的“ IP 数据报”弄混

另外,无论是哪一层的数据单元,都可笼统地用“分组”来表示。

互联网是由大量的异构(heterogeneous)网络通过路由器(router)相互连接起来的。互联网使用的网络层协议是无连接的网际协议(Internet Protocol)和许多路由选择协议,因此互联网的网络层也叫做网际层IP 层。 ----- 著作权归Guide哥所有。

1.5数据链路层

数据链路层(data link layer)通常简称为链路层。两台主机之间的数据传输,总是在一段一段的链路上传送的,这就需要使用专门的链路层的协议。 在两个相邻节点之间传送数据时,数据链路层将网络层交下来的 IP 数据报组装成帧,在两个相邻节点间的链路上传送帧。每一帧包括数据和必要的控制信息(如同步信息,地址信息,差错控制等)。

在接收数据时,控制信息使接收端能够知道一个帧从哪个比特开始和到哪个比特结束。这样,数据链路层在收到一个帧后,就可从中提出数据部分,上交给网络层。 控制信息还使接收端能够检测到所收到的帧中有无差错。如果发现差错,数据链路层就简单地丢弃这个出了差错的帧,以避免继续在网络中传送下去白白浪费网络资源。如果需要改正数据在链路层传输时出现差错(这就是说,数据链路层不仅要检错,而且还要纠错),那么就要采用可靠性传输协议来纠正出现的差错。这种方法会使链路层的协议复杂些。

1.6物理层

在物理层上所传送的数据单位是比特

物理层(physical layer)的作用是实现相邻计算机节点之间比特流的透明传送,尽可能屏蔽掉具体传输介质和物理设备的差异, 使其上面的数据链路层不必考虑网络的具体传输介质是什么。“透明传送比特流”表示经实际电路传送后的比特流没有发生变化,对传送的比特流来说,这个电路好像是看不见的。

在互联网使用的各种协议中最重要和最著名的就是 TCP/IP 两个协议。现在人们经常提到的 TCP/IP 并不一定单指 TCP 和 IP 这两个具体的协议,而往往表示互联网所使用的整个 TCP/IP 协议族。

附送一张七层体系结构图

在这里插入图片描述

二.TCP 三次握手和四次挥手(面试常客)

为了准确无误地把数据送达目标处,TCP 协议采用了三次握手策略。

2.1 TCP 三次握手漫画图解

如下图所示,下面的两个机器人通过 3 次握手确定了对方能正确接收和发送消息

图解http

在这里插入图片描述

简单示意图:

在这里插入图片描述

  • 客户端–发送带有 SYN 标志的数据包–一次握手–服务端
  • 服务端–发送带有 SYN/ACK 标志的数据包–二次握手–客户端
  • 客户端–发送带有带有 ACK 标志的数据包–三次握手–服务端

详细示意图

在这里插入图片描述

2.2 为什么要三次握手

三次握手的目的——————》建立可靠的通信信道

————》数据的传输和发送

————》确保自己与对方的发送和接受信息是正常

第一次:

client:?

server:对方发送,自己接受

第二次:

client:自己发送,自己接收

server:同一

第三次:

client:同二

server:同一,外加对方接收,自己发送

所以三次握手就能确认双发收发功能都正常,缺一不可。

2.3 第 2 次握手传回了 ACK,为什么还要传回 SYN?

传回 ACK ————》表示服务端告诉客户端我已经收到你发送的信号,表示客户端 《 ——》 通信正常

回传 SYN 信号 则是为了建立并确认服务端 ————》客户端 的通信

SYN 同步序列编号(Synchronize Sequence Numbers) 是 TCP/IP 建立连接时使用的握手信号。在客户机和服务器之间建立正常的 TCP 网络连接时,客户机首先发出一个 SYN 消息,服务器使用 SYN-ACK 应答表示接收到了这个消息,最后客户机再以 ACK(Acknowledgement)消息响应。这样在客户机和服务器之间才能建立起可靠的 TCP 连接,数据才可以在客户机和服务器之间传递。

2.5为什么要四次挥手

在这里插入图片描述

断开一个 TCP 连接则需要“四次挥手”:

  • 客户端-发送一个 FIN,用来关闭客户端到服务器的数据传送
  • 服务器-收到这个 FIN,它发回一 个 ACK,确认序号为收到的序号加 1 。和 SYN 一样,一个 FIN 将占用一个序号
  • 服务器-关闭与客户端的连接,发送一个 FIN 给客户端
  • 客户端-发回 ACK 报文确认,并将确认序号设置为收到序号加 1

任何一方都可以在数据传送结束后发出连接释放的通知,待对方确认后进入半关闭状态。当另一方也没有数据再发送的时候,则发出连接释放通知,对方确认后就完全关闭了 TCP 连接。

举个例子:A 和 B 打电话,通话即将结束后,A 说“我没啥要说的了”,B 回答“我知道了”,但是 B 可能还会有要说的话,A 不能要求 B 跟着自己的节奏结束通话,于是 B 可能又巴拉巴拉说了一通,最后 B 说“我说完了”,A 回答“知道了”,这样通话才算结束。

三 TCP, UDP 协议的区别

在这里插入图片描述

这个图片不太好记,最好是理解来背

UDP 在传送数据之前==不需要先建立连接远地主机在收到 UDP 报文后,不需要给出任何确认==。虽然 UDP 不提供可靠交付,但在某些情况下 UDP 却是一种最有效的工作方式(一般用于即时通信),比如: QQ 语音、 QQ 视频 、直播等等

TCP==提供面向连接的服务。在传送数据之前必须先建立连接,数据传送结束后要释放连接。==TCP 不提供广播或多播服务。由于 TCP 要提供可靠的,面向连接的传输服务(TCP 的可靠体现在 TCP 在传递数据之前,会有三次握手来建立连接,而且在数据传递时,有确认、窗口、重传、拥塞控制机制,在数据传完后,还会断开连接用来节约系统资源),这难以避免增加了许多开销,如确认,流量控制,计时器以及连接管理等。这不仅使协议数据单元的首部增大很多,还要占用许多处理机资源。TCP 一般用于文件传输、发送和接收邮件、远程登录等场景。

四 TCP 协议如何保证可靠传输

  1. 应用数据被分割成 TCP 认为最适合发送的数据块。
  2. TCP 给发送的每一个包进行编号,接收方对数据包进行排序,把有序数据传送给应用层。
  3. 校验和: TCP 将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输过程中的任何变化。如果收到段的检验和有差错,TCP 将丢弃这个报文段和不确认收到此报文段。
  4. TCP 的接收端会丢弃重复的数据
  5. 流量控制: TCP 连接的每一方都有固定大小的缓冲空间,TCP 的接收端只允许发送端发送接收端缓冲区能接纳的数据。当接收方来不及处理发送方的数据,能提示发送方降低发送的速率,防止包丢失。TCP 使用的流量控制协议是可变大小的滑动窗口协议。 (TCP 利用滑动窗口实现流量控制
  6. 拥塞控制: 当网络拥塞时,减少数据的发送。
  7. ARQ 协议: 也是为了实现可靠传输的,它的基本原理就是每发完一个分组就停止发送,等待对方确认。在收到确认后再发下一个分组。
  8. 超时重传: 当 TCP 发出一个段后,它启动一个定时器,等待目的端确认收到这个报文段。如果不能及时收到一个确认,将重发这个报文段。

4.1 ARQ 协议

自动重传请求(Automatic Repeat-reQuest,ARQ)是 OSI 模型中数据链路层和传输层的错误纠正协议之一。它通过使用确认和超时这两个机制,在不可靠服务的基础上实现可靠的信息传输。如果发送方在发送后一段时间之内没有收到确认帧,它通常会重新发送。ARQ 包括停止等待 ARQ 协议和连续 ARQ 协议。

停止等待 ARQ 协议

停止等待协议是为了实现可靠传输的,它的基本原理就是每发完一个分组就停止发送,等待对方确认(回复 ACK)。如果过了一段时间(超时时间后),还是没有收到 ACK 确认,说明没有发送成功,需要重新发送,直到收到确认后再发下一个分组。

在停止等待协议中,若接收方收到重复分组,就丢弃该分组,但同时还要发送确认。

优缺点:

  • 优点: 简单
  • 缺点: 信道利用率低,等待时间长

1) 无差错情况:

发送方发送分组, 接收方在规定时间内收到, 并且回复确认. 发送方再次发送。

2) 出现差错情况(超时重传):

停止等待协议中超时重传是指只要超过一段时间仍然没有收到确认,就重传前面发送过的分组(认为刚才发送过的分组丢失了)。因此每发送完一个分组需要设置一个超时计时器,其重传时间应比数据在分组传输的平均往返时间更长一些。这种自动重传方式常称为 自动重传请求 ARQ 。另外在停止等待协议中若收到重复分组,就丢弃该分组,但同时还要发送确认。连续 ARQ 协议 可提高信道利用率。发送维持一个发送窗口,凡位于发送窗口内的分组可连续发送出去,而不需要等待对方确认。接收方一般采用累积确认,对按序到达的最后一个分组发送确认,表明到这个分组位置的所有分组都已经正确收到了。

3) 确认丢失和确认迟到

  • 确认丢失 :确认消息在传输过程丢失。当 A 发送 M1 消息,B 收到后,B 向 A 发送了一个 M1 确认消息,但却在传输过程中丢失。而 A 并不知道,在超时计时过后,A 重传 M1 消息,B 再次收到该消息后采取以下两点措施:1. 丢弃这个重复的 M1 消息,不向上层交付。 2. 向 A 发送确认消息。(不会认为已经发送过了,就不再发送。A 能重传,就证明 B 的确认消息丢失)。
  • 确认迟到 :确认消息在传输过程中迟到。A 发送 M1 消息,B 收到并发送确认。在超时时间内没有收到确认消息,A 重传 M1 消息,B 仍然收到并继续发送确认消息(B 收到了 2 份 M1)。此时 A 收到了 B 第二次发送的确认消息。接着发送其他数据。过了一会,A 收到了 B 第一次发送的对 M1 的确认消息(A 也收到了 2 份确认消息)。处理如下:1. A 收到重复的确认后,直接丢弃。2. B 收到重复的 M1 后,也直接丢弃重复的 M1。

连续 ARQ 协议

连续 ARQ 协议可提高信道利用率。发送方维持一个发送窗口,凡位于发送窗口内的分组可以连续发送出去,而不需要等待对方确认。接收方一般采用累积确认,对按序到达的最后一个分组发送确认,表明到这个分组为止的所有分组都已经正确收到了。

优缺点:

  • 优点: 信道利用率高,容易实现,即使确认丢失,也不必重传。
  • 缺点: 不能向发送方反映出接收方已经正确收到的所有分组的信息。 比如:发送方发送了 5 条 消息,中间第三条丢失(3 号),这时接收方只能对前两个发送确认。发送方无法知道后三个分组的下落,而只好把后三个全部重传一次。这也叫 Go-Back-N(回退 N),表示需要退回来重传已经发送过的 N 个消息。

4.2 滑动窗口和流量控制

TCP 利用滑动窗口实现流量控制。流量控制是为了控制发送方发送速率,保证接收方来得及接收。 接收方发送的确认报文中的窗口字段可以用来控制发送方窗口大小,从而影响发送方的发送速率。将窗口字段设置为 0,则发送方不能发送数据。

4.3 拥塞控制

在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏。这种情况就叫拥塞。拥塞控制就是为了防止过多的数据注入到网络中,这样就可以使网络中的路由器或链路不致过载。拥塞控制所要做的都有一个前提,就是网络能够承受现有的网络负荷。拥塞控制是一个全局性的过程,涉及到所有的主机,所有的路由器,以及与降低网络传输性能有关的所有因素。相反,流量控制往往是点对点通信量的控制,是个端到端的问题。流量控制所要做到的就是抑制发送端发送数据的速率,以便使接收端来得及接收。

为了进行拥塞控制,TCP 发送方要维持一个 拥塞窗口(cwnd) 的状态变量。拥塞控制窗口的大小取决于网络的拥塞程度,并且动态变化。发送方让自己的发送窗口取为拥塞窗口和接收方的接受窗口中较小的一个。

TCP 的拥塞控制采用了四种算法,即 慢开始拥塞避免快重传快恢复。在网络层也可以使路由器采用适当的分组丢弃策略(如主动队列管理 AQM),以减少网络拥塞的发生。

  • 慢开始: 慢开始算法的思路是当主机开始发送数据时,如果立即把大量数据字节注入到网络,那么可能会引起网络阻塞,因为现在还不知道网络的符合情况。经验表明,较好的方法是先探测一下,即由小到大逐渐增大发送窗口,也就是由小到大逐渐增大拥塞窗口数值。cwnd 初始值为 1,每经过一个传播轮次,cwnd 加倍。
  • 拥塞避免: 拥塞避免算法的思路是让拥塞窗口 cwnd 缓慢增大,即每经过一个往返时间 RTT 就把发送放的 cwnd 加 1.
  • 快重传与快恢复: 在 TCP/IP 中,快速重传和恢复(fast retransmit and recovery,FRR)是一种拥塞控制算法,它能快速恢复丢失的数据包。没有 FRR,如果数据包丢失了,TCP 将会使用定时器来要求传输暂停。在暂停的这段时间内,没有新的或复制的数据包被发送。有了 FRR,如果接收机接收到一个不按顺序的数据段,它会立即给发送机发送一个重复确认。如果发送机接收到三个重复确认,它会假定确认件指出的数据段丢失了,并立即重传这些丢失的数据段。有了 FRR,就不会因为重传时要求的暂停被耽误。  当有单独的数据包丢失时,快速重传和恢复(FRR)能最有效地工作。当有多个数据信息包在某一段很短的时间内丢失时,它则不能很有效地工作。

五 在浏览器中输入 url 地址 ->> 显示主页的过程(面试常客)

百度好像最喜欢问这个问题。

打开一个网页,整个过程会使用哪些协议?

图解(图片来源:《图解 HTTP》):

在这里插入图片描述

上图有一个错误,请注意,是 OSPF 不是 OPSF。 OSPF(Open Shortest Path First,ospf)开放最短路径优先协议, 是由 Internet 工程任务组开发的路由选择协议

总体来说分为以下几个过程:

  1. DNS 解析
  2. TCP 连接
  3. 发送 HTTP 请求
  4. 服务器处理请求并返回 HTTP 报文
  5. 浏览器解析渲染页面
  6. 连接结束

在这里插入图片描述

具体可以参考下面这篇文章:

  • https://segmentfault.com/a/1190000006879700

六 状态码

在这里插入图片描述

七 各种协议与 HTTP 协议之间的关系

一般面试官会通过这样的问题来考察你对计算机网络知识体系的理解。

在这里插入图片描述

八 HTTP 长连接, 短连接

HTTP/1.0 中默认使用短连接。也就是说,客户端和服务器每进行一次 HTTP 操作,就建立一次连接,任务结束就中断连接。

而从 HTTP/1.1 起,默认使用长连接,用以保持连接特性。使用长连接的 HTTP 协议,会在响应头加入这行代码:

Connection:keep-alive

在使用长连接的情况下,当一个网页打开完成后,客户端和服务器之间用于传输 HTTP 数据的 TCP 连接不会关闭,客户端再次访问这个服务器时,会继续使用这一条已经建立的连接。Keep-Alive 不会永久保持连接,它有一个保持时间,可以在不同的服务器软件(如 Apache)中设定这个时间。实现长连接需要客户端和服务端都支持长连接。

HTTP 协议的长连接和短连接,实质上是 TCP 协议的长连接和短连接。

九 HTTP 是不保存状态的协议, 如何保存用户状态?

HTTP 是一种不保存状态,即无状态(stateless)协议。也就是说 HTTP 协议自身不对请求和响应之间的通信状态进行保存。那么我们保存用户状态呢?

Session 机制的存在就是为了解决这个问题,Session 的主要作用就是通过服务端记录用户的状态

典型的场景是购物车,当你要添加商品到购物车的时候,系统不知道是哪个用户操作的,因为 HTTP 协议是无状态的。服务端给特定的用户创建特定的 Session 之后就可以标识这个用户并且跟踪这个用户了(一般情况下,服务器会在一定时间内保存这个 Session,过了时间限制,就会销毁这个 Session)。

在服务端保存 Session 的方法很多,最常用的就是内存和数据库(比如是使用内存数据库 redis 保存)。既然 Session 存放在服务器端,那么我们如何实现 Session 跟踪呢?大部分情况下,我们都是通过在 Cookie 中附加一个 Session ID 来方式来跟踪。

Cookie 被禁用怎么办?

最常用的就是利用 URL 重写把 Session ID 直接附加在 URL 路径的后面。

在这里插入图片描述

十 Cookie 的作用是什么? 和 Session 有什么区别?

Cookie 和 Session 都是用来跟踪浏览器用户身份的会话方式,但是两者的应用场景不太一样。

Cookie 一般用来保存用户信息

比如

① 我们在 Cookie 中保存已经登录过的用户信息,下次访问网站的时候页面可以自动帮你把登录的一些基本信息给填了;

② 一般的网站都会有保持登录,也就是说下次你再访问网站的时候就不需要重新登录了,这是因为用户登录的时候我们可以存放了一个 Token 在 Cookie 中,下次登录的时候只需要根据 Token 值来查找用户即可(为了安全考虑,重新登录一般要将 Token 重写);

③ 登录一次网站后访问网站其他页面不需要重新登录。Session 的主要作用就是通过服务端记录用户的状态。 典型的场景是购物车,当你要添加商品到购物车的时候,系统不知道是哪个用户操作的,因为 HTTP 协议是无状态的。服务端给特定的用户创建特定的 Session 之后就可以标识这个用户并且跟踪这个用户了

Cookie 数据保存在客户端(浏览器端),Session 数据保存在服务器端。

Cookie 存储在客户端中,而 Session 存储在服务器上,相对来说 Session 安全性更高。如果要在 Cookie 中存储一些敏感信息,不要直接写入 Cookie 中,最好能将 Cookie 信息加密,然后使用到的时候再去服务器端解密。

在这里插入图片描述

十一 HTTP 1.0 和 HTTP 1.1 的主要区别是什么?

HTTP1.0 最早在网页中使用是在 1996 年,那个时候只是使用一些较为简单的网页上和网络请求上,而 HTTP1.1 则在 1999 年才开始广泛应用于现在的各大浏览器网络请求中,同时 HTTP1.1 也是当前使用最为广泛的 HTTP 协议。

主要区别主要体现在:

  1. 长连接 : 在 HTTP/1.0 中,默认使用的是短连接,也就是说每次请求都要重新建立一次连接。HTTP 是基于 TCP/IP 协议的,每一次建立或者断开连接都需要三次握手四次挥手的开销,如果每次请求都要这样的话,开销会比较大。因此最好能维持一个长连接,可以用个长连接来发多个请求。HTTP 1.1 起,默认使用长连接 ,默认开启 Connection: keep-alive。 HTTP/1.1 的持续连接有非流水线方式和流水线方式 。流水线方式是客户在收到 HTTP 的响应报文之前就能接着发送新的请求报文。与之相对应的非流水线方式是客户在收到前一个响应后才能发送下一个请求。
  2. 错误状态响应码 :在 HTTP1.1 中新增了 24 个错误状态响应码,如 409(Conflict)表示请求的资源与资源的当前状态发生冲突;410(Gone)表示服务器上的某个资源被永久性的删除。
  3. 缓存处理 :在 HTTP1.0 中主要使用 header 里的 If-Modified-Since,Expires 来做为缓存判断的标准,HTTP1.1 则引入了更多的缓存控制策略例如 Entity tag,If-Unmodified-Since, If-Match, If-None-Match 等更多可供选择的缓存头来控制缓存策略。
  4. 带宽优化及网络连接的使用 :HTTP1.0 中,存在一些浪费带宽的现象,例如客户端只是需要某个对象的一部分,而服务器却将整个对象送过来了,并且不支持断点续传功能,HTTP1.1 则在请求头引入了 range 头域,它允许只请求资源的某个部分,即返回码是 206(Partial Content),这样就方便了开发者自由的选择以便于充分利用带宽和连接。

十二 URI 和 URL 的区别是什么?

  • URI(Uniform Resource Identifier) 是统一资源标志符,可以唯一标识一个资源。
  • URL(Uniform Resource Locator) 是统一资源定位符,可以提供该资源的路径。它是一种具体的 URI,即 URL 可以用来标识一个资源,而且还指明了如何 locate 这个资源。

==URI 的作用像身份证号一样,URL 的作用更像家庭住址一样。==URL 是一种具体的 URI,它不仅唯一标识资源,而且还提供了定位该资源的信息。

十三 HTTP 和 HTTPS 的区别?

端口HTTP 的 URL 由“http://”起始且默认使用端口80,

HTTPS的URL由“https://”起始且默认使用端口443

安全性和资源消耗: HTTP 协议运行在 TCP 之上,所有传输的内容都是明文,客户端和服务器端都无法验证对方的身份

**HTTPS 是运行在 SSL/TLS 之上的 HTTP 协议,SSL/TLS 运行在 TCP 之上。**所有传输的内容都经过加密,加密采用对称加密,但对称加密的密钥用服务器方的证书进行了非对称加密。

所以说,HTTP 安全性没有 HTTPS 高,但是 HTTPS 比 HTTP 耗费更多服务器资源。

  • 对称加密:密钥只有一个,加密解密为同一个密码,且加解密速度快,典型的对称加密算法有 DES、AES 等;
  • 非对称加密:密钥成对出现(且根据公钥无法推知私钥,根据私钥也无法推知公钥),加密解密使用不同密钥(公钥加密需要私钥解密,私钥加密需要公钥解密),相对对称加密速度较慢,典型的非对称加密算法有 RSA、DSA 等。

1. HTTPS中的TLS

SSL:(Secure Socket Layer) 安全套接层,于 1994 年由网景公司设计,并于 1995 年发布了 3.0 版本
TLS:(Transport Layer Security)传输层安全性协议,是 IETF 在 SSL3.0 的基础上设计的协议

2. 从网络协议的角度理解 HTTPS

在这里插入图片描述

HTTP:HyperText Transfer Protocol 超文本传输协议
HTTPS:Hypertext Transfer Protocol Secure 超文本传输安全协议
TLS:位于 HTTP 和 TCP 之间的协议,其内部有 TLS握手协议、TLS记录协议
HTTPS 经由 HTTP 进行通信,但利用 TLS 来保证安全,即

HTTPS = HTTP + TLS

3.2.3. 数字签名

消息认证码的缺点在于无法防止否认,因为共享秘钥被 client、server 两端拥有,server 可以伪造 client 发送给自己的消息(自己给自己发送消息),为了解决这个问题,我们需要它们有各自的秘钥不被第二个知晓(这样也解决了共享秘钥的配送问题)
在这里插入图片描述

数字签名和消息认证码都不是为了加密
可以将单向散列函数获取散列值的过程理解为使用 md5 摘要算法获取摘要的过程

使用自己的私钥对自己所认可的消息生成一个该消息专属的签名,这就是数字签名,表明我承认该消息来自自己
注意:私钥用于加签,公钥用于解签,每个人都可以解签,查看消息的归属人

3.2.4. 公钥密码

公钥密码也叫非对称密码,由公钥和私钥组成,它最开始是为了解决秘钥的配送传输安全问题,即,我们不配送私钥,只配送公钥,私钥由本人保管
它与数字签名相反,公钥密码的私钥用于解密、公钥用于加密,每个人都可以用别人的公钥加密,但只有对应的私钥才能解开密文
client:明文 + 公钥 = 密文
server:密文 + 私钥 = 明文
注意:公钥用于加密,私钥用于解密,只有私钥的归属者,才能查看消息的真正内容

3.2.5. 证书

证书:全称公钥证书(Public-Key Certificate, PKC),里面保存着归属者的基本信息,以及证书过期时间、归属者的公钥,并由认证机构(Certification Authority, CA)施加数字签名,表明,某个认证机构认定该公钥的确属于此人

想象这个场景:你想在支付宝页面交易,你需要支付宝的公钥进行加密通信,于是你从百度上搜索关键字“支付宝公钥”,你获得了支什宝的公钥,这个时候,支什宝通过中间人攻击,让你访问到了他们支什宝的页面,最后你在这个支什宝页面完美的使用了支什宝的公钥完成了与支什宝的交易
在这里插入图片描述

在上面的场景中,你可以理解支付宝证书就是由支付宝的公钥、和给支付宝颁发证书的企业的数字签名组成
任何人都可以给自己或别人的公钥添加自己的数字签名,表明:我拿我的尊严担保,我的公钥/别人的公钥是真的,至于信不信那是另一回事了

3.2.6. 密码小结

密码作用组成
消息认证码确认消息的完整、并对消息的来源认证共享秘钥+消息的散列值
数字签名对消息的散列值签名公钥+私钥+消息的散列值
公钥密码解决秘钥的配送问题公钥+私钥+消息
证书解决公钥的归属问题公钥密码中的公钥+数字签名

数字签名:————》证明XXX来源于我们

公钥密码:用于加密

3.3. TLS 使用的密码技术

  1. 伪随机数生成器:秘钥生成随机性,更难被猜测
  2. 对称密码:对称密码使用的秘钥就是由伪随机数生成,相较于非对称密码,效率更高
  3. 消息认证码:保证消息信息的完整性、以及验证消息信息的来源
  4. 公钥密码:证书技术使用的就是公钥密码
  5. 数字签名:验证证书的签名,确定由真实的某个 CA 颁发
  6. 证书:解决公钥的真实归属问题,降低中间人攻击概率

3.4. TLS 总结

TLS 是一系列密码工具的框架,作为框架,它也是非常的灵活,体现在每个工具套件它都可以替换,即:客户端与服务端之间协商密码套件,从而更难的被攻破,例如使用不同方式的对称密码,或者公钥密码、数字签名生成方式、单向散列函数技术的替换等

| 对消息的散列值签名 | 公钥+私钥+消息的散列值 |
| 公钥密码 | 解决秘钥的配送问题 | 公钥+私钥+消息 |
| 证书 | 解决公钥的归属问题 | 公钥密码中的公钥+数字签名 |

数字签名:————》证明XXX来源于我们

公钥密码:用于加密

3.3. TLS 使用的密码技术

  1. 伪随机数生成器:秘钥生成随机性,更难被猜测
  2. 对称密码:对称密码使用的秘钥就是由伪随机数生成,相较于非对称密码,效率更高
  3. 消息认证码:保证消息信息的完整性、以及验证消息信息的来源
  4. 公钥密码:证书技术使用的就是公钥密码
  5. 数字签名:验证证书的签名,确定由真实的某个 CA 颁发
  6. 证书:解决公钥的真实归属问题,降低中间人攻击概率

3.4. TLS 总结

TLS 是一系列密码工具的框架,作为框架,它也是非常的灵活,体现在每个工具套件它都可以替换,即:客户端与服务端之间协商密码套件,从而更难的被攻破,例如使用不同方式的对称密码,或者公钥密码、数字签名生成方式、单向散列函数技术的替换等

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. Redis面试题总结(2022版)

    Redis面试题总结(2022版) 本文是 Java 面试总结系列的第二篇文章,该专栏将整理和梳理笔者作为 Java 后端程序猿在日常工作以及面试中遇到的实际问题,通过这些问题的系统学习,也帮助笔者顺利拿到阿里、字节、华为、快手…...

    2024/4/30 21:31:23
  2. nodejs自带的npm执行install失败

    最近重装了系统,在配置环境的时候下载了最新版本的nodejs安装并配置环境。在项目中执行npm install命令时 执行到某一步的报错提示./deasync command failed。经过一系列的尝试,最终卸载了罪行版本,安装了一个较老的版本解决了问题。...

    2024/4/30 16:23:08
  3. 2022-2028全球食品级不锈钢行业调研及趋势分析报告

    据恒州诚思调研统计,2021年全球食品级不锈钢市场规模约 亿元,2017-2021年年复合增长率CAGR约为%,预计未来将持续保持平稳增长的态势,到2028年市场规模将接近 亿元,未来六年CAGR为 %。 本文调研和分析全球食品级不锈钢发…...

    2024/4/30 21:44:16
  4. 【系统分析师】2022选择题上午考点

    章节知识点分数计算机组成与结构数据的表示、校验码、计算机硬件组成、指令系统、体系结构、存储系统、安全性和可靠性6系统配置与性能评价性能指标、阿姆达尔解决方案、性能评价方法1操作系统只是进程管理、存储管理、文件管理、设备管理、微内核操作系统6数据库技术基础三级模…...

    2024/4/30 20:01:18
  5. 市场调研-第三方数据平台市场现状及未来发展趋势

    本文研究全球及中国市场第三方数据平台现状及未来发展趋势,侧重分析全球及中国市场的主要企业,同时对比北美、欧洲、中国、日本、东南亚和印度等地区的现状及未来发展趋势。 根据QYR(恒州博智)的统计及预测,2021年全球…...

    2024/4/30 19:29:28
  6. 市场调研-防伪标签市场现状及未来发展趋势

    根据QYR(恒州博智)的统计及预测,2021年全球防伪标签市场销售额达到了 亿美元,预计2028年将达到 亿美元,年复合增长率(CAGR)为 %(2022-2028)。地区层面来看,中…...

    2024/4/13 2:23:03
  7. windows搭建xshell和xftp环境,远程Liunx系统及传输文件

    一、Linux系统下操作 1、安装ssh 在终端输入指令: sudo apt-get install openssh-server (实际只执行apt-get install ssh 也就可以了) 2、查看是否已启动 在终端输入指令: sudo ps -e |grep ssh 有sshd,说明ssh服务已经启动。 如果没有启动&am…...

    2024/4/17 10:35:29
  8. 2022-2028全球皮带张力测量仪行业调研及趋势分析报告

    据恒州诚思调研统计,2021年全球皮带张力测量仪市场规模约 亿元,2017-2021年年复合增长率CAGR约为%,预计未来将持续保持平稳增长的态势,到2028年市场规模将接近 亿元,未来六年CAGR为 %。 本文调研和分析全球皮带张力测量…...

    2024/4/30 18:34:37
  9. 2022-2028全球及中国假肢行业研究及十四五规划分析报告

    【报告篇幅】:96 【报告图表数】:135 【报告出版时间】:2021年12月 报告摘要 2021年全球假肢市场规模大约为6.4亿元(人民币,预计2028年将达到19亿元,2022-2028期间年复合增长率(CAGR为16.5%。…...

    2024/4/30 16:28:30
  10. 行业报告:氢气液化器市场现状及未来发展趋势

    2021年全球氢气液化器市场销售额达到了 亿美元,预计2028年将达到 亿美元,年复合增长率(CAGR)为 %(2022-2028)。地区层面来看,中国市场在过去几年变化较快,2021年市场规模为 百万美元…...

    2024/4/30 16:45:49
  11. 2022-2028全球食品级不锈钢清洗剂行业调研及趋势分析报告

    据恒州诚思调研统计,2021年全球食品级不锈钢清洗剂市场规模约 亿元,2017-2021年年复合增长率CAGR约为%,预计未来将持续保持平稳增长的态势,到2028年市场规模将接近 亿元,未来六年CAGR为 %。 本文调研和分析全球食品级不…...

    2024/4/30 20:14:53
  12. CSS入门: css介绍与基础选择器

    CSS的介绍 CSS的中文名称: 层叠样式表 CSS的作用: 给页面中的HTML标签设置样式 CSS的语法规则: <style> ​ p { ​ color: red; } </style>p 是选择器, color是属性名, red是属性值 CSS常见属性: css常见属性作业color文字颜色font-size字体大小background…...

    2024/4/13 2:22:58
  13. java学习笔记(一)

    第一个程序HelloWorld public class Welcome{public static void main(String[] args){ //argument的缩写System.out.println("hello");}/*注释 大小写敏感 编译javac生成class文件*/ }标识符、字符集 //标识符以字母下划线 $开头 public class Welcome{public st…...

    2024/4/13 2:22:58
  14. MA1 轻轻松松学统计分析(下)

    分析&#xff1a;从蚕豆实验到6年销售数据 第二天&#xff0c;孩子乖乖地来找我&#xff0c;他说&#xff1a;“爸爸&#xff0c;今天我跟老师说了你的工作是做统计分析&#xff0c;老师听到后就发给我一些高年级的生物实验数据&#xff0c;希望帮他做些分析&#xff0c;看看两…...

    2024/4/30 20:04:53
  15. 盗窃金额多少就能够立案判刑

    依据《刑法》规定&#xff0c;窃公私财物&#xff0c;数额较大的&#xff0c;或者多次盗窃、入户盗窃、携带凶器盗窃、扒窃的&#xff0c;就会构成盗窃罪&#xff0c;可以方案追究刑事责任。而盗窃罪数额较大的标准是一千元至三千元以上。关于盗窃金额多少就能够立案判刑的问题…...

    2024/4/19 9:14:23
  16. PAT 乙级 1019 数字黑洞 (20 分)

    给定任一个各位数字不完全相同的 4 位正整数&#xff0c;如果我们先把 4 个数字按非递增排序&#xff0c;再按非递减排序&#xff0c;然后用第 1 个数字减第 2 个数字&#xff0c;将得到一个新的数字。一直重复这样做&#xff0c;我们很快会停在有“数字黑洞”之称的 6174&…...

    2024/4/13 2:23:13
  17. “一品四境”学JAVA——书籍推荐/路径规划

    “一品四境”学JAVA——书籍推荐/路径规划1、金刚境&#xff08;入门级书籍&#xff09;2、指玄境&#xff08;进阶级书籍&#xff09;3、天象境&#xff08;精通级书籍&#xff09;4、陆地神仙境&#xff08;大师级书籍&#xff09;天不生我李淳罡&#xff0c;剑道万古如长夜。…...

    2024/4/18 0:44:16
  18. GEE系列:第8单元 Google 地球引擎中的时间序列分析【时间序列】

    第 8 单元&#xff1a;Google 地球引擎中的时间序列分析 1简介 在本模块中&#xff0c;我们将讨论以下概念&#xff1a; 处理海洋的遥感图像。 从图像时间序列创建视频。 GEE 中的时间序列分析。 向图形用户界面添加基本元素。 2背景 深水地平线漏油事件被认为是有史以来最大…...

    2024/4/13 2:23:53
  19. 全球面部除皱美容仪行业发展趋势及竞争策略研究报告

    【报告篇幅】&#xff1a;168 【报告图表数】&#xff1a;206 据恒州诚思调研统计&#xff0c;2021年全球面部除皱美容仪市场规模约 亿元&#xff0c;2017-2021年年复合增长率CAGR约为%&#xff0c;预计未来将持续保持平稳增长的态势&#xff0c;到2028年市场规模将接近 亿元&a…...

    2024/4/13 2:22:38
  20. Kotlin语法手册(三)

    Kotlin语法手册&#xff08;三&#xff09; 在使用kotlin时&#xff0c;由于掌握的不够牢靠&#xff0c;好多时候也还是Java编程的习惯&#xff0c;浪费了kotlin提供的语言特性&#xff0c;方便性&#xff0c;间接性&#xff0c;在阅读一些Android开源库的时候&#xff0c;由于…...

    2024/4/20 16:37:04

最新文章

  1. JavaScript转换和校验数字

    本节我们使用的案例还是继续之前的银行家应用程序&#xff0c;只不过我们呢增加了两个账号&#xff0c;代码如下&#xff1a; const account1 {owner: Jonas Schmedtmann,movements: [200, 455.23, -306.5, 25000, -642.21, -133.9, 79.97, 1300],interestRate: 1.2, // %pin…...

    2024/4/30 23:58:37
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. matlab 轨迹生成函数

    文章目录 jtrajctrajmstrajmtrajtpolylspbtrinterp用例参考链接jtraj 计算两个构型之间的关节空间轨迹 [q, qd, qdd] = jtraj(q0, qf, m)是关节空间轨迹q(MxN),其中关节坐标从q0(1xN)变化到qf(1xN)。使用五次(5阶)多项式,并默认速度和加速度为零边界条件。假设时间以m步从0…...

    2024/4/30 10:27:49
  4. Linux——gdb

    gdb调试 (1)debug版本: 在编译阶段会加入某些调试信息; 调试信息是在编译的过程中加入到中间文件.o文件的; gcc -c main.c -g:生成包含调试信息的中间文件 gcc -o main main.o 一步执行:gcc -o main main.c -g (1) (2)release版本: 发行版本,没有调试信息; gcc默认生成relea…...

    2024/4/30 2:57:56
  5. Databend 开源周报第 138 期

    Databend 是一款现代云数仓。专为弹性和高效设计&#xff0c;为您的大规模分析需求保驾护航。自由且开源。即刻体验云服务&#xff1a;https://app.databend.cn 。 Whats On In Databend 探索 Databend 本周新进展&#xff0c;遇到更贴近你心意的 Databend 。 支持多表插入 …...

    2024/4/30 1:46:24
  6. 【外汇早评】美通胀数据走低,美元调整

    原标题:【外汇早评】美通胀数据走低,美元调整昨日美国方面公布了新一期的核心PCE物价指数数据,同比增长1.6%,低于前值和预期值的1.7%,距离美联储的通胀目标2%继续走低,通胀压力较低,且此前美国一季度GDP初值中的消费部分下滑明显,因此市场对美联储后续更可能降息的政策…...

    2024/4/29 23:16:47
  7. 【原油贵金属周评】原油多头拥挤,价格调整

    原标题:【原油贵金属周评】原油多头拥挤,价格调整本周国际劳动节,我们喜迎四天假期,但是整个金融市场确实流动性充沛,大事频发,各个商品波动剧烈。美国方面,在本周四凌晨公布5月份的利率决议和新闻发布会,维持联邦基金利率在2.25%-2.50%不变,符合市场预期。同时美联储…...

    2024/4/30 18:14:14
  8. 【外汇周评】靓丽非农不及疲软通胀影响

    原标题:【外汇周评】靓丽非农不及疲软通胀影响在刚结束的周五,美国方面公布了新一期的非农就业数据,大幅好于前值和预期,新增就业重新回到20万以上。具体数据: 美国4月非农就业人口变动 26.3万人,预期 19万人,前值 19.6万人。 美国4月失业率 3.6%,预期 3.8%,前值 3…...

    2024/4/29 2:29:43
  9. 【原油贵金属早评】库存继续增加,油价收跌

    原标题:【原油贵金属早评】库存继续增加,油价收跌周三清晨公布美国当周API原油库存数据,上周原油库存增加281万桶至4.692亿桶,增幅超过预期的74.4万桶。且有消息人士称,沙特阿美据悉将于6月向亚洲炼油厂额外出售更多原油,印度炼油商预计将每日获得至多20万桶的额外原油供…...

    2024/4/30 18:21:48
  10. 【外汇早评】日本央行会议纪要不改日元强势

    原标题:【外汇早评】日本央行会议纪要不改日元强势近两日日元大幅走强与近期市场风险情绪上升,避险资金回流日元有关,也与前一段时间的美日贸易谈判给日本缓冲期,日本方面对汇率问题也避免继续贬值有关。虽然今日早间日本央行公布的利率会议纪要仍然是支持宽松政策,但这符…...

    2024/4/27 17:58:04
  11. 【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响

    原标题:【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响近日伊朗局势升温,导致市场担忧影响原油供给,油价试图反弹。此时OPEC表态稳定市场。据消息人士透露,沙特6月石油出口料将低于700万桶/日,沙特已经收到石油消费国提出的6月份扩大出口的“适度要求”,沙特将满…...

    2024/4/27 14:22:49
  12. 【外汇早评】美欲与伊朗重谈协议

    原标题:【外汇早评】美欲与伊朗重谈协议美国对伊朗的制裁遭到伊朗的抗议,昨日伊朗方面提出将部分退出伊核协议。而此行为又遭到欧洲方面对伊朗的谴责和警告,伊朗外长昨日回应称,欧洲国家履行它们的义务,伊核协议就能保证存续。据传闻伊朗的导弹已经对准了以色列和美国的航…...

    2024/4/28 1:28:33
  13. 【原油贵金属早评】波动率飙升,市场情绪动荡

    原标题:【原油贵金属早评】波动率飙升,市场情绪动荡因中美贸易谈判不安情绪影响,金融市场各资产品种出现明显的波动。随着美国与中方开启第十一轮谈判之际,美国按照既定计划向中国2000亿商品征收25%的关税,市场情绪有所平复,已经开始接受这一事实。虽然波动率-恐慌指数VI…...

    2024/4/30 9:43:09
  14. 【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试

    原标题:【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试美国和伊朗的局势继续升温,市场风险情绪上升,避险黄金有向上突破阻力的迹象。原油方面稍显平稳,近期美国和OPEC加大供给及市场需求回落的影响,伊朗局势并未推升油价走强。近期中美贸易谈判摩擦再度升级,美国对中…...

    2024/4/27 17:59:30
  15. 【原油贵金属早评】市场情绪继续恶化,黄金上破

    原标题:【原油贵金属早评】市场情绪继续恶化,黄金上破周初中国针对于美国加征关税的进行的反制措施引发市场情绪的大幅波动,人民币汇率出现大幅的贬值动能,金融市场受到非常明显的冲击。尤其是波动率起来之后,对于股市的表现尤其不安。隔夜美国股市出现明显的下行走势,这…...

    2024/4/25 18:39:16
  16. 【外汇早评】美伊僵持,风险情绪继续升温

    原标题:【外汇早评】美伊僵持,风险情绪继续升温昨日沙特两艘油轮再次发生爆炸事件,导致波斯湾局势进一步恶化,市场担忧美伊可能会出现摩擦生火,避险品种获得支撑,黄金和日元大幅走强。美指受中美贸易问题影响而在低位震荡。继5月12日,四艘商船在阿联酋领海附近的阿曼湾、…...

    2024/4/28 1:34:08
  17. 【原油贵金属早评】贸易冲突导致需求低迷,油价弱势

    原标题:【原油贵金属早评】贸易冲突导致需求低迷,油价弱势近日虽然伊朗局势升温,中东地区几起油船被袭击事件影响,但油价并未走高,而是出于调整结构中。由于市场预期局势失控的可能性较低,而中美贸易问题导致的全球经济衰退风险更大,需求会持续低迷,因此油价调整压力较…...

    2024/4/26 19:03:37
  18. 氧生福地 玩美北湖(上)——为时光守候两千年

    原标题:氧生福地 玩美北湖(上)——为时光守候两千年一次说走就走的旅行,只有一张高铁票的距离~ 所以,湖南郴州,我来了~ 从广州南站出发,一个半小时就到达郴州西站了。在动车上,同时改票的南风兄和我居然被分到了一个车厢,所以一路非常愉快地聊了过来。 挺好,最起…...

    2024/4/29 20:46:55
  19. 氧生福地 玩美北湖(中)——永春梯田里的美与鲜

    原标题:氧生福地 玩美北湖(中)——永春梯田里的美与鲜一觉醒来,因为大家太爱“美”照,在柳毅山庄去寻找龙女而错过了早餐时间。近十点,向导坏坏还是带着饥肠辘辘的我们去吃郴州最富有盛名的“鱼头粉”。说这是“十二分推荐”,到郴州必吃的美食之一。 哇塞!那个味美香甜…...

    2024/4/30 22:21:04
  20. 氧生福地 玩美北湖(下)——奔跑吧骚年!

    原标题:氧生福地 玩美北湖(下)——奔跑吧骚年!让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 啊……啊……啊 两…...

    2024/4/26 23:04:58
  21. 扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!

    原标题:扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!扒开伪装医用面膜,翻六倍价格宰客!当行业里的某一品项火爆了,就会有很多商家蹭热度,装逼忽悠,最近火爆朋友圈的医用面膜,被沾上了污点,到底怎么回事呢? “比普通面膜安全、效果好!痘痘、痘印、敏感肌都能用…...

    2024/4/27 23:24:42
  22. 「发现」铁皮石斛仙草之神奇功效用于医用面膜

    原标题:「发现」铁皮石斛仙草之神奇功效用于医用面膜丽彦妆铁皮石斛医用面膜|石斛多糖无菌修护补水贴19大优势: 1、铁皮石斛:自唐宋以来,一直被列为皇室贡品,铁皮石斛生于海拔1600米的悬崖峭壁之上,繁殖力差,产量极低,所以古代仅供皇室、贵族享用 2、铁皮石斛自古民间…...

    2024/4/28 5:48:52
  23. 丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者

    原标题:丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者【公司简介】 广州华彬企业隶属香港华彬集团有限公司,专注美业21年,其旗下品牌: 「圣茵美」私密荷尔蒙抗衰,产后修复 「圣仪轩」私密荷尔蒙抗衰,产后修复 「花茵莳」私密荷尔蒙抗衰,产后修复 「丽彦妆」专注医学护…...

    2024/4/30 9:42:22
  24. 广州械字号面膜生产厂家OEM/ODM4项须知!

    原标题:广州械字号面膜生产厂家OEM/ODM4项须知!广州械字号面膜生产厂家OEM/ODM流程及注意事项解读: 械字号医用面膜,其实在我国并没有严格的定义,通常我们说的医美面膜指的应该是一种「医用敷料」,也就是说,医用面膜其实算作「医疗器械」的一种,又称「医用冷敷贴」。 …...

    2024/4/30 9:43:22
  25. 械字号医用眼膜缓解用眼过度到底有无作用?

    原标题:械字号医用眼膜缓解用眼过度到底有无作用?医用眼膜/械字号眼膜/医用冷敷眼贴 凝胶层为亲水高分子材料,含70%以上的水分。体表皮肤温度传导到本产品的凝胶层,热量被凝胶内水分子吸收,通过水分的蒸发带走大量的热量,可迅速地降低体表皮肤局部温度,减轻局部皮肤的灼…...

    2024/4/30 9:42:49
  26. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  27. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  28. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  29. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  30. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  31. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  32. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  33. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  34. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  35. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  36. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  37. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  38. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  39. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  40. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  41. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  42. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  43. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  44. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  45. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57