在这里插入图片描述



目录

  • 进制转换
    • 1、进制定义
    • 2、各进制间的转换方法
      • 2.1 二进制转其他进制
      • 2.2 十进制转其他进制
      • 2.3 八进制转其他进制
      • 2.4 十六进制转其他进制
  • 信息单位
    • 1、单位定义
    • 2、换算公式
  • 数据校验
    • 1、奇偶校验
  • 多媒体基础参数
    • 1、参数定义
    • 2、计算公式
  • HTTP
    • HTTP特性
      • 请求报文
      • POST 提交
      • 响应报文
    • Cookie 和 Session的区别
  • HTTPS
    • 1、加密算法
    • 2、SSL
    • 3、TLS
    • 4、证书与证书链
  • OSI七层模型
  • IP基础
    • 1、IP地址
    • 2、IP地址分类
    • 3、无分类地址CIDR
    • 4、小知识
  • IPv6
  • 网络拓扑
    • 星型结构
    • 总线型结构
    • 环型结构
    • 网状结构
    • 树型结构
  • 域名解析
    • 1、域名规则
    • 2、域名解析类型
    • 3、泛域名解析
  • 常用网络命令和端口
    • 1、常用网络命令
    • 2、常用网络端口
  • 数据结构常识
    • 数组(Array)
    • 栈(Stack)
    • 队列(Queue)
    • 链表(Linked List)
    • 树(Tree)
    • 堆(Heap)
    • 图(Graph)
    • 散列表(Hash)
  • 算法常识
    • 1、查找算法
      • 顺序查找
      • 二分查找
    • 2、排序算法
      • 冒泡排序
      • 选择排序



进制转换

1、进制定义

二进制:是指在数学和数字电路中以2为基数的记数系统,二进制只有0和1两个数字符号,其运算规律是逢2进1,例如101101。

八进制:一种以8为基数的计数法,采用0,1,2,3,4,5,6,7这八个数字符号,其运算规律是逢8进1,例如77。

十进制:一种以10为基数的计数法,采用0,1,2,3,4,5,6,7,8,9这十个数字符号,其运算规律是逢10进1,例如88。

十六进制:一种以16为基数的计数法,采用0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F这十六个数字和字母符号,其运算规律是逢16进1,例如9527。



2、各进制间的转换方法

2.1 二进制转其他进制

二进制转十进制: 采用位置计数法,其位权是以2为底的幂,顺序从右到左,从0开始计数。

例如二进制数1011(二进制) = 1 * 23 + 0 * 22 + 1 * 21 + 1 * 20 = 11(十进制)。

图1:二进制转十进制的位权法

二进制转八进制: 采用三合一法,即从二进制的小数点为分界点,向左(或向右)每三位取成一位来计算,不足三位的前面补0

例如:10110011B = (0)10 110 011 = 263(八进制)。

图2:二进制转八进制的合位法

二进制转十六进制: 采用四合一法,即从二进制的小数点为分界点,向左(或向右)每四位取成一位来计算,不足四位的前面补0

例如:10110011B = 1011 0011 = B3(十六进制)。

图3:二进制转十六进制的合位法


2.2 十进制转其他进制

  • 十进制转二进制
    整数采用“除2倒取余”,小数采用“乘2取整”。
    例如十进制数135转换成二进制时,将135除以2,得余数,直到不能整除,然后再将余数从下至上倒取,结果为10000111(二进制)。

  • 十进制转八进制
    和转二进制的方法类似,整数采用“除8倒取余”,小数采用“乘8取整”。
    例如十进制数10转换成二进制时,将10除以8,得余数,直到不能整除,然后再将余数从下至上倒取,结果为12(八进制)。

  • 十进制转十六进制
    思路和转二进制、八进制一样,十进制数25转换成十六进制时,结果为19(十六进制)。


2.3 八进制转其他进制

  • 八进制转二进制:和二进制转八进制的方法相反,采用三合一法,例如:263(八进制) = 010 110 011(二进制)。

  • 八进制转十进制:和二进制转十进制的方法一样,采用位置计数法,其位权是以8为底的幂,顺序从右到左,从0开始计数。例如八进制数26(八进制) = 2 * 81 + 6 * 80 = 22(十进制)。

图4:八进制转十进制的位权法

  • 八进制转十六进制:不能直接转换,需要先转成二进制,再将二进制转成十六进制。

2.4 十六进制转其他进制

  • 十六进制转二进制:和二进制转十六进制的方法相反,采用四合一法,例如:B3(十六进制) = 1011 0011 = 10110011(二进制)。

  • 十六进制转八进制:不能直接转换,需要先转成二进制,再将二进制转成八进制。

  • 十六进制转十进制:和二进制转十进制的方法一样,采用位置计数法,其位权是以16为底的幂,顺序从右到左,从0开始计数。例如十六进制数26(十六进制) = 2 * 161 + 6 * 160 = 38(十进制)。

图5:十六进制转十进制的位权法




信息单位

在计算机内部,信息都是釆用二进制的形式存储、运算、处理和传输的。信息的存储和传输是以位(bit)、字节(Byte)、千字节(Kilo Byte)、兆字节(Mega Byte)等计量标准为单位的。


1、单位定义

存储单位: 存储在计算机硬盘或内存中的信息容量标准,最小计量单位是“”(bit,比特),一个比特位表示一个二进制的0或1在计算机中所占用的存储空间

传输单位: 在计算机网络中称为带宽,宽带传输速率的单位为bps,bps是bit per second的缩写,表示每秒钟传输多少比特位信息(很多人都会把这里的bit误以为是Byte,也就是错把位当成字节),例如:带宽的单位是10Mb/s,这里其实指的是每秒传输10兆位,而不是10兆字节数据,因此将位数需要除以8换算成字节数,也就是每秒传输1.25兆字节,即10Mbit/s = 1.25MByte/s



2、换算公式

  • 1字节Byte)= 8位(bit)
  • 1KB(Kilo Byte,千字节)= 1024B(Byte)
  • 1MB(Mega Byte,兆字节)= 1024KB
  • 1GB(Giga Byte,吉字节)= 1024MB
  • 1TB(Tera Byte,太字节)= 1024GB
  • 1PB(Peta Byte,拍字节)= 1024TB
  • 1EB(Exa Byte,艾字节)= 1024PB
  • 1ZB(Zeta Byte,泽字节)= 1024EB
  • 1YB(Yotta Byte,尧字节)= 1024ZB
  • 1BB(Bronto Byte,珀字节)= 1024YB
  • 1NB(Nona Byte,诺字节)= 1024BB
  • 1DB(Dogga Byte,刀字节)= 1024NB



数据校验

数据在传输的过程中,会受到各种干扰的影响,如脉冲干扰,随机噪声干扰和人为干扰等,这会使数据产生差错。为了能够控制、减少甚至消除传输过程中的差错,就必须采用有效的措施来控制差错的产生。


1、奇偶校验

根据传输的二进制数据和奇偶校验位中“1”的个数进行校验

如果连同校验位中“1”的个数是奇数,就是奇校验;反之,就是偶校验

图1:奇偶校验原理

技术特点: 简单,可以检测出错误,但无法确切地知道哪里有错,也无法修改,只能要求重传

适用场景: 应用广泛,但不适宜在信号噪声较多的环境中传输




多媒体基础参数

所谓多媒体(Multimedia)指的是多种媒体的综合,一般包括图像、声音和视频等形式或者它们的组合。可以通过基础参数来衡量多媒体文件质量的好坏。


1、参数定义

比特率: 音视频、图像都可以采用这个指标,它指的是规定时间内传输的比特数,单位是bps(bit per second),比特率越高,数据传输的速度就越快,流媒体的播放质量就越好(音视频越清晰),所需带宽也越大,比特率有时候也和码率混为一谈,但码率的单位一般是kbps(千位每秒)。

采样率: 专用于音频多媒体,也称为采样速度或者采样频率,它定义了每秒从连续信号中提取并组成离散信号的采样个数,单位为赫兹(Hz) 。采样率的意义在于将模拟信号转换成数字信号时的采样频率,也就是单位时间内采样多少个点,常用的采样率为44.1KHz。

采样位深: 也被称为采样精度,单位为Bit,常见的位深有16Bit和24Bit,它其实就是每个采样样本中信息的比特数



2、计算公式

视频码率计算公式(kbps,千位每秒) = 文件大小(KB,千字节)* 8 / 秒数

音频码率计算公式(kbps,千位每秒) = 采样率 × 采样位深 × 通道数




HTTP

超文本传输协议(Hyper Text Transfer Protocol,HTTP)是一个简单的请求-响应协议,它通常运行在TCP之上。它指定了客户端可以给服务器发送什么样的消息以及能够得到什么样的响应。这个简单的模型是早期Web应用得以普及的重要保障,可以说没有HTTP协议,就没有今天丰富多彩、繁荣兴旺的互联网。


HTTP特性

  • HTTP 协议构建于 TCP/IP 协议之上,是一个应用层协议,默认端口号是 80

  • HTTP 是无连接无状态的


请求报文

HTTP 协议是以 ASCII 码传输,建立在 TCP/IP 协议之上的应用层规范。规范把 HTTP 请求分为三个部分:状态行、请求头、消息主体。类似于下面这样:

<method> <request-URL> <version>
<headers><entity-body>

HTTP 定义了与服务器交互的不同方法,最基本的方法有4种,分别是GETPOSTPUTDELETE

URL全称是资源描述符,我们可以这样认为:一个URL地址,它用于描述一个网络上的资源,而 HTTP 中的GET,POST,PUT,DELETE就对应着对这个资源的 查,增,改,删 4个操作。

  1. GET 用于信息获取,而且应该是安全的 和 幂等的。

    所谓安全的意味着该操作用于获取信息而非修改信息。换句话说,GET 请求一般不应产生副作用。就是说,它仅仅是获取资源信息,就像数据库查询一样,不会修改,增加数据,不会影响资源的状态。

    幂等的意味着对同一 URL 的多个请求应该返回同样的结果。

    GET 请求报文示例:

     GET /books/?sex=man&name=Professional HTTP/1.1Host: www.example.comUser-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6)Gecko/20050225 Firefox/1.0.1Connection: Keep-Alive
    
  2. POST 表示可能修改变服务器上的资源的请求。

     POST / HTTP/1.1Host: www.example.comUser-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6)Gecko/20050225 Firefox/1.0.1Content-Type: application/x-www-form-urlencodedContent-Length: 40Connection: Keep-Alivesex=man&name=Professional  
    
  3. 注意:

  • GET 可提交的数据量受到URL长度的限制,HTTP 协议规范没有对 URL 长度进行限制。这个限制是特定的浏览器及服务器对它的限制

  • 理论上讲,POST 是没有大小限制的,HTTP 协议规范也没有进行大小限制,出于安全考虑,服务器软件在实现时会做一定限制

  • 参考上面的报文示例,可以发现 GET 和 POST 数据内容是一模一样的,只是位置不同,一个在 URL 里,一个在 HTTP 包的包体里



POST 提交

HTTP 协议中规定 POST 提交的数据必须在 body 部分中,但是协议中没有规定数据使用哪种编码方式或者数据格式。实际上,开发者完全可以自己决定消息主体的格式,只要最后发送的 HTTP 请求满足上面的格式就可以。

但是,数据发送出去,还要服务端解析成功才有意义。一般服务端语言如 PHP、Python 等,以及它们的 framework,都内置了自动解析常见数据格式的功能。服务端通常是根据请求头(headers)中的 Content-Type 字段来获知请求中的消息主体是用何种方式编码,再对主体进行解析。所以说到 POST 提交数据方案,包含了 Content-Type 和消息主体编码方式两部分。下面就正式开始介绍它们:

  • application/x-www-form-urlencoded

这是最常见的 POST 数据提交方式。浏览器的原生 <form> 表单,如果不设置 enctype 属性,那么最终就会以 application/x-www-form-urlencoded 方式提交数据。上个小节当中的例子便是使用了这种提交方式。可以看到 body 当中的内容和 GET 请求是完全相同的。

  • multipart/form-data

这又是一个常见的 POST 数据提交的方式。我们使用表单上传文件时,必须让 <form> 表单的 enctype 等于 multipart/form-data 。直接来看一个请求示例:

POST http://www.example.com HTTP/1.1
Content-Type:multipart/form-data; boundary=----WebKitFormBoundaryrGKCBY7qhFd3TrwA------WebKitFormBoundaryrGKCBY7qhFd3TrwA
Content-Disposition: form-data; name="text"title
------WebKitFormBoundaryrGKCBY7qhFd3TrwA
Content-Disposition: form-data; name="file"; filename="chrome.png"
Content-Type: image/pngPNG ... content of chrome.png ...
------WebKitFormBoundaryrGKCBY7qhFd3TrwA--

这个例子稍微复杂点。首先生成了一个 boundary 用于分割不同的字段,为了避免与正文内容重复,boundary 很长很复杂。然后 Content-Type 里指明了数据是以 multipart/form-data 来编码,本次请求的 boundary 是什么内容。消息主体里按照字段个数又分为多个结构类似的部分,每部分都是以 --boundary 开始,紧接着是内容描述信息,然后是回车,最后是字段具体内容(文本或二进制)。如果传输的是文件,还要包含文件名和文件类型信息。消息主体最后以 --boundary-- 标示结束。

这种方式一般用来上传文件,各大服务端语言对它也有着良好的支持。

上面提到的这两种 POST 数据的方式,都是浏览器原生支持的,而且现阶段标准中原生 <form> 表单也只支持这两种方式(通过 <form> 元素的 enctype 属性指定,默认为 application/x-www-form-urlencoded 。其实 enctype 还支持 text/plain,不过用得非常少)。

随着越来越多的 Web 站点,尤其是 WebApp,全部使用 Ajax 进行数据交互之后,我们完全可以定义新的数据提交方式,例如 application/jsontext/xml ,乃至 application/x-protobuf 这种二进制格式,只要服务器可以根据 Content-TypeContent-Encoding 正确地解析出请求,都是没有问题的。



响应报文

HTTP 响应与 HTTP 请求相似,HTTP响应也由3个部分构成,分别是:

  • 状态行
  • 响应头(Response Header)
  • 响应正文

状态行由协议版本、数字形式的状态代码、及相应的状态描述,各元素之间以空格分隔。

常见的状态码有如下几种:

  • 200 OK 客户端请求成功
  • 301 Moved Permanently 请求永久重定向
  • 302 Moved Temporarily 请求临时重定向
  • 304 Not Modified 文件未修改,可以直接使用缓存的文件。
  • 400 Bad Request 由于客户端请求有语法错误,不能被服务器所理解。
  • 401 Unauthorized 请求未经授权。这个状态代码必须和WWW-Authenticate报头域一起使用
  • 403 Forbidden 服务器收到请求,但是拒绝提供服务。服务器通常会在响应正文中给出不提供服务的原因
  • 404 Not Found 请求的资源不存在,例如,输入了错误的URL
  • 500 Internal Server Error 服务器发生不可预期的错误,导致无法完成客户端的请求。
  • 503 Service Unavailable 服务器当前不能够处理客户端的请求,在一段时间之后,服务器可能会恢复正常。

下面是一个HTTP响应的例子:

HTTP/1.1 200 OKServer:Apache Tomcat/5.0.12
Date:Mon,6Oct2003 13:23:42 GMT
Content-Length:112<html>...


Cookie 和 Session的区别

1、存取方式的不同

Cookie中只能保管ASCII字符串,假如需求存取Unicode字符或者二进制数据,需求先进行编码。Cookie中也不能直接存取Java对象。若要存储略微复杂的信息,运用Cookie是比拟艰难的。而Session中能够存取任何类型的数据,包括而不限于String、Integer、List、Map等。Session中也能够直接保管Java Bean乃至任何Java类,对象等,运用起来十分便当。能够把Session看做是一个Java容器类。

2、隐私策略的不同

Cookie存储在客户端阅读器中,对客户端是可见的,客户端的一些程序可能会窥探、复制以至修正Cookie中的内容。而Session存储在服务器上,对客户端是透明的,不存在敏感信息泄露的风险。假如选用Cookie,比较好的方法是,敏感的信息如账号密码等尽量不要写到Cookie中。最好是像Google、Baidu那样将Cookie信息加密,提交到服务器后再进行解密,保证Cookie中的信息只要本人能读得懂。而假如选择Session就省事多了,反正是放在服务器上,Session里任何隐私都能够有效的保护。

3、有效期上的不同

使用过Google的人都晓得,假如登录过Google,则Google的登录信息长期有效。用户不用每次访问都重新登录,Google会持久地记载该用户的登录信息。要到达这种效果,运用Cookie会是比较好的选择。只需要设置Cookie的过期时间属性为一个很大很大的数字。由于Session依赖于名为JSESSIONID的Cookie,而Cookie JSESSIONID的过期时间默许为–1,只需关闭了阅读器该Session就会失效,因而Session不能完成信息永世有效的效果。运用URL地址重写也不能完成。而且假如设置Session的超时时间过长,服务器累计的Session就会越多,越容易招致内存溢出。

4、服务器压力的不同

Session是保管在服务器端的,每个用户都会产生一个Session。假如并发访问的用户十分多,会产生十分多的Session,耗费大量的内存。因而像Google、Baidu、Sina这样并发访问量极高的网站,是不太可能运用Session来追踪客户会话的。而Cookie保管在客户端,不占用服务器资源。假如并发阅读的用户十分多,Cookie是很好的选择。关于Google、Baidu、Sina来说,Cookie或许是唯一的选择。

5、浏览器支持的不同

Cookie是需要客户端浏览器支持的。假如客户端禁用了Cookie,或者不支持Cookie,则会话跟踪会失效。关于WAP上的应用,常规的Cookie就派不上用场了。假如客户端浏览器不支持Cookie,需要运用Session以及URL地址重写。需要注意的是一切的用到Session程序的URL都要进行URL地址重写,否则Session会话跟踪还会失效。关于WAP应用来说,Session+URL地址重写或许是它唯一的选择。假如客户端支持Cookie,则Cookie既能够设为本浏览器窗口以及子窗口内有效(把过期时间设为–1),也能够设为一切阅读器窗口内有效(把过期时间设为某个大于0的整数)。但Session只能在本阅读器窗口以及其子窗口内有效。假如两个浏览器窗口互不相干,它们将运用两个不同的Session。(IE8下不同窗口Session相干)

6、跨域支持上的不同

Cookie支持跨域名访问,例如将domain属性设置为“.biaodianfu.com”,则以“.biaodianfu.com”为后缀的一切域名均能够访问该Cookie。跨域名Cookie如今被普遍用在网络中,例如Google、Baidu、Sina等。而Session则不会支持跨域名访问。Session仅在他所在的域名内有效。仅运用Cookie或者仅运用Session可能完成不了理想的效果。这时应该尝试一下同时运用Cookie与Session。Cookie与Session的搭配运用在实践项目中会完成很多意想不到的效果。


总结

Session 是在服务端保存的一个数据结构,用来跟踪用户的状态,这个数据可以保存在集群、数据库、文件中;

Cookie 是客户端保存用户信息的一种机制,用来记录用户的一些信息,也是实现Session的一种方式。




HTTPS

HTTPS(全称是Hyper Text Transfer Protocol over SecureSocket Layer)是身披SSL/TLS外壳的HTTP。它在HTTP之上利用SSL/TLS建立安全的信道,加密数据传输。


1、加密算法

对称加密: 加密与解密用同一套密钥,如DES、3DES和AES等

非对称加密: 加密和解密所使用的密钥不同,如RSA、DSA等

不可逆加密: 明文加密后无法通过解密来复原,如MD5、SHA等



2、SSL

全称Secure Sockets Layer安全套接字协议,因为HTTP是用明文来传输数据的,传输内容可能会被偷窥(嗅探)和篡改,SSL的出现就是用来解决信息安全问题的,当前版本为3.0。

它位于TCP/IP协议与各种应用层协议之间,自身又分为两层: SSL记录协议(SSL Record Protocol)和SSL握手协议(SSL Handshake Protocol)。

在这里插入图片描述

在这里插入图片描述



3、TLS

全称Transport Layer Security,传输层协议,它是在SSL3.0基础上设计的,相当于SSL的后续版本,它的目标是让SSL更安全。

在这里插入图片描述



4、证书与证书链

大学读完之后有毕业证书,并且这个证书可以在学信网查询

专业上有注会、CCIE、律师证等,可以在国家职业认证机构或委托机构的网站上查到

公司注册之后,营业执照信息也可以在天眼查或企查查上找到

证书的作用

  • 过往经历的证明
  • 第三方信用担保
  • 唯一合法性检验

在这里插入图片描述

在这里插入图片描述




OSI七层模型

OSI的全称是Open System Interconnection(开放系统互联),是一个定义得较为完备的协议规范。它最大的意义在于解决了不同网络之间的互联互通问题,并且清晰地定义了不同网络层次之间的边界和职责。


应用层(Application Layer)
是OSI参考模型的最高层,它是用户、应用程序和网络之间的接口,它直接向用户提供服务,替用户在网络上完成各种工作。

表示层(Presentation Layer)
是OSI参考模型的第六层,它对来自应用层的指令和数据进行解释,对各种语法赋予相应的含义,它主要功能是处理用户信息的表示问题,例如数据编码、数据格式转换和加解密等。

会话层(Session Layer)
是OSI参考模型的第五层,它的主要任务是为两个实体的表示层提供建立和使用连接的方法(不同实体之间表示层的连接称为会话),组织和协调两个会话进程之间的通信,并对数据交换进行管理。

传输层(Transport Layer)
是OSI参考模型的第四层。该层的主要任务是向用户提供可靠的端到端的差错和流量控制,保证报文的正确传输,同时向高层屏蔽下层数据通信的细节。

网络层(Network Layer)
是OSI参考模型的第三层,它是最复杂的一层,也是通信子网的最高一层。它在下两层的基础上向上层提供服务。它的主要任务是通过路由选择算法,为报文或分组选择最合适的路径。该层控制数据链路层与传输层之间的信息转发,建立、维持和终止网络的连接。

数据链路层(Data Link Layer)
是OSI参考模型的第二层,它负责建立和管理节点间的链路。同时通过各种控制协议,将有差错的物理信道变为无差错的、能可靠传输数据帧的数据链路。

物理层(Physical Layer)
是OSI参考模型的第一层,也是最底层。它的主要功能是利用传输介质为数据链路层提供物理连接,实现比特流的透明传输。它使数据链路层不必考虑网络的具体传输介质是什么。“比特流的透明传输”表示经实际电路传送后的比特流没有发生变化,对传送的比特流来说,这个电路好像是看不见的。

发送电子邮件示意图
在这里插入图片描述
接收电子邮件示意图
在这里插入图片描述

各层级常用协议
在这里插入图片描述




IP基础

IP是Internet Protocol(网际协议)的缩写,是整个TCP/IP协议族的核心,也是构成互联网的基础,可以说,只要计算机在网络中存在,就一定会有能够找得到它的IP地址。IP主要包含三方面的内容:IP编址方案分组封装格式分组转发规则。本任务所涉及的仅仅是IP编址方案。


1、IP地址

IP位于网络层,作用是主机间的通信,负责在没有直连的两个网络之间传输通信数据,而MAC位于数据链路层,作用是实现两个设备之间的直连通信

IP和MAC的区别
在这里插入图片描述

IP地址(IPv4)由32位二进制数表示,在计算机中是以二进制的方式处理的,人类为了方便记忆而采用了点分十进制的标记方式:也就是将32位二进制的IP地址以每8位为一组,共分为4组,组之间用“.”隔开,再将每组转换成十进制数表示

也就是说,IP地址的最大值就是2^32 = 4294967296

IPv4的表示方法
在这里插入图片描述



2、IP地址分类

互联网诞生之初,IP地址显得很充裕,因此计算机科学家们设计了分类地址。他们把IP地址分为五种类型:A、B、C、D、E。

A、B、C、D、E五类IP地址
在这里插入图片描述

类别IP地址范围最大主机数
A0.0.0.0 ~ 127.255.255.25516777214
B128.0.0.0 ~ 191.255.255.25565534
C192.0.0.0 ~ 223.255.255.255254

为什么要有网络号? 因为除了需要定位某台具体的计算机,还需要定位某个网络。网络号和主机号的关系,就好比楼栋和住户的关系,也就是**「网络号:主机号 == 楼栋号:住户」**。

最大主机数 = 2^主机号的位数 - 2, 例如C类IP地址的主机号位数为8,那么C类IP地址的最大主机数 = 28 - 2 = 254。之所以要减2,是因为有两个IP是特殊的,分别是主机号全为1和主机号全为0。

最大主机数要排除全0和全1的主机号
在这里插入图片描述



3、无分类地址CIDR

不再有A、B、C、D、E等分类的概念,而是仅仅将32位的IP地址划分成两部分:网络号 + 主机号,形式为:a.b.c.d/x其中/x表示前x位属于网络号,范围是0~32。例如10.100.122.2/24,通过CIDR也可以得到子网掩码

CIDR无分类地址
在这里插入图片描述



4、小知识

在A、B、C三类地址中,分别都有一个保留地址。

  • A类: 10.0.0.0 ~ 10.255.255.255

  • B类: 172.16.0.0 ~ 172.31.255.255

  • C类: 192.168.0.0 ~ 192.168.255.255

也就是说,这三组地址是私有网络地址,在互联网上是用不了的

本机IP、127.0.0.1和localhost 他们之间的区别

  • 本机IP: 确切地说是本机物理网卡的IP地址,它发送和接收数据会受到防火墙和网卡的限制

  • 127.0.0.1: 这是一个环回地址,也是一个特殊的网络接口,从它发出的任何数据包都不会出现在网络中,它发送和接收数据也会受到防火墙和网卡的限制

  • localhost: 它是一个域名,过去它指向127.0.0.1这个IP地址,现在它同时还指向IPv6地址:[::1] ,它发送和接收数据不会受防火墙和网卡的限制




IPv6

在IPv4诞生的时代,是无法预见今日互联网的繁荣程度的,因此很多设计问题在发展的过程中也逐渐暴露出来,例如分类不合理,可用的公网IP地址总数量太少等等。在此情况下,出现了IPv6。IPv6是英文“Internet Protocol Version 6”(互联网协议第6版)的缩写,是互联网工程任务组(IETF) 设计的用于替代IPv4的下一代IP协议,其地址数量号称可以为全世界的每一粒沙子编上一个地址。


冒分十六进制表示法: 格式为X:X:X:X:X:X:X:X,每个X表示地址中的16个二进制位(或者十六进制数
例如:ABCD:EF01:2345:6789:ABCD:EF01:2345:6789,这种表示法中,X中的前导0是可以省略的。

0位压缩表示法: 如果一个IPv6地址中间包含很长的一段0,就可以把连续的一段0压缩为“::”。但这种形式“::”只能出现一次

内嵌IPv4表示法: 为了和IPv4兼容,IPv4地址可以嵌入IPv6地址中,此时地址格式为:X:X:X:X:X:X:d.d.d.d ,前96位采用冒分十六进制表示,而最后32位则使用IPv4的点分十进制表示,例如:::192.168.0.1。




网络拓扑

互联网是一个广义上的概念,它泛指的是一切通过网络连接在一起的计算机集合。所以,如果只是观察局部,比如某一家公司的网络的话,那么就不能再说这家公司的网络就是“互联网”了。那么,对于每家公司来说,网络具体又是如何构成的呢?这就是网络拓扑结构要解决的问题。如同数据结构是按照某种形式组织数据一样,网络拓扑结构指的也是按照某种形式将不同的物理计算机连接在一起。

星型结构

指各计算机以星型方式连接成网
网络有中央节点,其他结点(工作站、服务器)都与中央节点直接相连,这种结构以中央结点为中心,因此又称为集中式网络。它具有结构简单、便于管理、控制简单、网络延迟时间小、传输误差低等特点。但缺点也是明显的:可靠性较低、资源共享能力较差、线路利用率低。
在这里插入图片描述


总线型结构

是指各工作站和服务器均挂在一条总线上,各工作站地位平等,无中心节点控制,它结构简单、可扩充性好、安装容易,但维护困难。

在这里插入图片描述


环型结构

由网络中若干结点通过通信链路首尾相连形成一个闭合的环,这种结构使公共传输电缆组成环状,数据在环路中沿着一个方向在各个节点间传输,信息从一个节点传到另一个节点。它实时性强、传输控制容易,但维护困难,可靠性不高。

在这里插入图片描述


网状结构

它是指每台设备之间均有点到点的链路连接,这种连接不经济,只有每个站点都要频繁发送信息时才使用这种方法。它的安装也比较复杂,但系统可靠性高,容错能力强。有时也称为分布式结构。

在这里插入图片描述


树型结构

这是一种分级的集中控制式网络,与星型相比,它的通信线路总长度短,成本较低、节点易于扩充、寻找路径方便,但除了叶节点及其相连的线路外,任一节点或其相连的线路故障都会使系统受到影响。

在这里插入图片描述




域名解析

在互联网上有成千上万台计算机,为了能准确地访问其中某台计算机上的服务,在OSI七层模型的网络层中,通过IP地址来唯一标记每台主机在网络里的位置,比如:39.106.226.142。但是这些纯数字的IP地址太难记了,因而就出现了域名(比如csdn.net)这样便于人类记忆的地址符号。这相当于现实世界中城市的名称,如武汉市,IP地址则相当于邮局内部的编码,如420000,而域名解析就是将域名转换为IP地址的过程。

1、域名规则

英文域名只能由26个英文字母、0~9十个数字以及“-”连字符号混合而成(除了“-”不能是第一个字符),不支持使用空格及一些特殊字符,比如!?/;:@#$%^~_=+,*<>等。

英文域名不区分大小写,也可以是纯英文和数字域名,对于中文域名而言,则必须含有中文字符。

域名级数是从右至左按照“.”分隔的部分确定的,有几个“.”就是几级,一般情况下,域名最好不超过五级,例如a.com是一级域名,而a.b.com则是二级域名。

每一级域名长度的限制是63个字符,域名总长度则不能超过253个字符

常见的通用顶级域名为:.biz .com .edu .gov .info .int .mil .name .net .org。

国家顶级域名参照ISO 3166-1中的双字母代码生成,例如中国大陆为.cn,中国香港为.hk,中国台湾为.tw,美国为.us。

通用域名可以组合国家域名,标明所在地区(只要域名管理机构允许),例如.gov.cn。


2、域名解析类型

A记录解析
A记录就是Address记录,是用来指定域名对应的IP地址,通常是将网站服务指向服务器地址,例如将域名www.csdn.net指向39.106.226.142这个IP地址,就是一个典型的A记录解析。

CNAME记录解析
如果服务器的地址发生变动,光靠A记录就不行了。这时候就需要用到CNAME,它又叫别名解析,例如域名www.csdn.net,真实的IP地址为39.106.226.142,对应的CNAME可能是abc.csdnweb.com,也就是允许多个域名对应服务器的主机名,这样即使服务器的IP地址发生变更,也不用更改解析记录,域名解析会自动依据主机名更新IP地址。如果A记录解析和CNAME记录解析并存,那么A记录解析将优先生效。

MX记录解析
邮件交换记录,这种记录解析用于将以域名为结尾的电子邮件指向对应的邮件服务器,例如用户所用的邮件以csdn.net为结尾,那么就需要在域名管理中添加该域名的MX记录来处理所有以@csdn.net为结尾的邮件。


3、泛域名解析

是指将某一类域名解析到同一个IP地址,以通配符的方式实现,例如将*.csdn.net的泛域名指向IP地址39.106.226.142时,那么a.csdn.net、b.csdn.net等所有以csdn.net结尾的域名都会指向39.106.226.142这个IP。




常用网络命令和端口

工程师天天使用计算机做软件开发,有时候出了问题需要确定到底是自己的问题,还是网络的问题。所以学习并了解一些常见的计算机命令和开发中常用的端口,对开发工作会有很多实际的帮助。


1、常用网络命令

ping命令

这是在开发中使用频率极高的一个命令,主要用于确定网络的连通性,例如很多刚刚安装操作系统的计算机,第一件事就是先看看是否能联网,所以往往执行的第一条命令就是ping命令。它的格式是:ping 主机名/域名/IP地址。

在这里插入图片描述

ipconfig/ifconfig命令

当使用不带任何参数选项ipconfig/ifconfig命令时,显示每个已经配置了的接口的IP地址、子网掩码和缺省网关值。其中在Windows中使用的是ipconfig,而在Mac或Linux系统中,使用的是ifconfig。

在这里插入图片描述


netstat命令
能够显示活动的TCP连接、计算机侦听的端口、以太网统计信息、IP路由表、IPv4以及IPv6统计信息,通过它可以了解网络当前的状态。

在这里插入图片描述

2、常用网络端口

TCPUDP段结构中端口范围在0~65535之间

  • 端口号小于256的是常用端口,服务器一般都是通过常用端口号来识别的。

  • 任何TCP/IP实现所提供的服务都用0~1023之间的端口号。

  • 1024~49151端口号是被注册的端口号,可以由用户自由使用,也是被IANA指定为特殊服务使用,从49152~65535是动态或私有端口号(以上并不是强制的)。

端口服务/协议说明端口
21FTPFTP服务器所开放的端口,用于上传、下载21
22SSHSSH连接22
23Telnet远程登录服务23
25SMTPSMTP服务器所开放的端口,用于发送邮件25
80HTTPHTTP协议默认端口号80
110POP3邮局协议端口号110
161SNMP网络管理协议端口号161
443HTTPSHTTPS协议默认端口号443
8080WWW代理一般的网站服务会开放此端口8080



数据结构常识

更多内容: 我对八种常见数据结构的理解

数据结构是计算机存储、组织数据的方式,它研究的是如何构造复杂软件系统的根基,它的核心内涵是分解与抽象,并得到软件开发过程中需要用到的逻辑结构。用简单直白的话来说,就是同样的数据,在某些场景下,用数组会比用链表好,而在另一些场景下,可能用栈(一种可以实现「后进先出」的线性表)就是最合理的了。


数组(Array)

它是将具有相同类型的若干数据组织在一起的集合,这是一种最基本而且也是一种最经常使用的数据结构。

在这里插入图片描述


栈(Stack)

一种特殊的线性表,只能在一个表的固定端进行数据节点的插入和删除操作,栈正是一种按照后进先出(LIFO)的原则来存储数据的数据结构。

在这里插入图片描述


队列(Queue)

队列和栈类似,但不同的是,它是在一端执行入队操作,另一端进行出队操作

在这里插入图片描述


链表(Linked List)

它和数组一样,也是一组数据的集合,但和数组不一样的是,它并不是一组连续的数据集合,而是通过指针连接在一起的。

在这里插入图片描述


树(Tree)

这是一种典型的非线性结构,之所以叫做“树”,是因为它的结构看起来就像一颗倒过来的树,它只有一个根结点,但可以有多个后继节点

在这里插入图片描述


堆(Heap)

它是一种特殊的树型结构,它的特点是根结点的值是所有节点中最大或者最小的,而且根结点的子节点也是一个堆结构。

最小堆
在这里插入图片描述
最大堆
在这里插入图片描述


图(Graph)

也是一种非线性数据结构,在图结构中,数据节点称为顶点顶点之间的连线称为边

有向图
在这里插入图片描述

无向图
在这里插入图片描述

散列表(Hash)

这种数据结构来源于散列函数,它的思想是如果存在x,那么就必然有一个唯一的存储位置f(x)可以找到x,这样通过数学函数就直接计算出x的存储位置而不用在进行比较、查找以后才知道。

在这里插入图片描述




算法常识

算法(Algorithm)是对方案的一种描述,对于计算机来说,它是一系列解决问题的计算步骤。算法的意义在于,在各种不同的解决方法之中,找到那个效率最高的


1、查找算法

顺序查找

它的基本思想就是从第一个元素开始,按顺序遍历待查找序列,直到找出给定目标或者查找失败,其过程如下图所示。

顺序查找初始状态
在这里插入图片描述

指针逐步向右移动,逐一比较每个元素
在这里插入图片描述

逐一查找,直到完成匹配
在这里插入图片描述


二分查找

又叫折半查找,它要求列表必须是有序的。它的原理是每次都把待比较元素A和列表中间的元素B进行比较,如果A小于B,那么A再和位于B前半部分的元素进行比较,并且再次选择中间元素进行比较,直到比较完所有元素为止。

二分查找初次比较:中间元素为7
在这里插入图片描述

第二次比较:目标元素小于7,7的后半部分抛弃,直接从前半部分开始
在这里插入图片描述

第三次比较:目标元素大于3,3的前半部分抛弃,直接从后半部分开始,直接得到最后一个元素6,就是要查找的目标元素
在这里插入图片描述



2、排序算法

更多内容: 十大经典排序算法的总结


冒泡排序

它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小(大)的元素会经由交换慢慢“浮”到数列的顶端。

冒泡排序初始阶段
在这里插入图片描述

按倒序排列,那么交换i和j的位置,并且两者的位置继续前移
在这里插入图片描述

实现1和6的交换,直到完成第一遍排序
在这里插入图片描述

完成第一遍排序之后,再次回到起始位置,再将刚才的过程执行一遍,直到所有元素都按要求实现排序
在这里插入图片描述

选择排序

是一种简单直观的排序算法。它的工作原理是:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

先将i放在第一个,然后在后续元素中找是否还有比它更小的
在这里插入图片描述

发现没有比1更小的元素,再从第二个开始往后寻找最小的元素
在这里插入图片描述

发现2比3小,交换2和3的位置,然后继续比较后面的元素,依次执行,直到完成所有元素的比较与排序
在这里插入图片描述




查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. html是什么的理解

    文章中我说两部分&#xff0c;1部分官方解释 2部分说说自己理解。 官方标准解释&#xff1a; HTML的全称为HyperText Markup Language&#xff0c;也就是超文本标记语 言。HTML文本是由HTML命令组成的描述性文本&#xff0c;HTML命令可以说 明文字、图形、动画、声音、表格、超…...

    2024/5/5 9:43:41
  2. JavaScript 的内置对象

    目录 一、Number 1. isFinite() 2. isInteger() 3. isNaN() 4. parseFloat() 5. parseInt() 二、String 1. indexOf() 2. replace() 3. search() 4. concat() 5. split() 6. slice() 7. substr() 8. substring() 9. includes() 三、Array 1. join() 2. pus…...

    2024/5/5 7:36:21
  3. Leetcode(力扣)超高频题讲解(一)

    高频题(一) 文章目录高频题(一)一、反转链表(206)1. 双指针迭代2. 递归二、无重复字符的最长字串(3)三、LRU缓存机制(146)1. 题目描述2. LRU算法的介绍3. 数据结构的选择4. 代码实现四、数组中的第k个最大元素(215)1. 快排变形2. 大顶堆五、K个一组翻转链表(25)六、两数之和(1)…...

    2024/5/5 14:51:20
  4. Git基础笔记

    1.版本控制 用于管理多人协同开发项目的技术 常见的版本控制器&#xff1a; git svn ​ 版本控制分为三类 分别为本地版本控制 集中版本控制 分布式版本控制 ​ 本地版本控制 记录文件每次的更新&#xff0c;可以对每个版本做一个快照&#xff0c;或是记录补丁文件&#x…...

    2024/4/20 17:50:18
  5. AlarmEmitter.addListener 无反应

    问题场景 在reactnative&Android项目中&#xff0c;建立了event监听&#xff0c;在Java层快速发送很多个event&#xff0c;导致监听器直接无反应 问题分析&#xff1a; 1.降低event反馈次数及频率后&#xff0c;监听器反应正常 2.怀疑&#xff1a;1.监听器无法接受高频次…...

    2024/5/5 6:57:50
  6. C++矩阵类

    矩阵类的要求&#xff1a; 设计一个二维矩阵类成员变量为double*类型&#xff0c;用来存储矩阵中的元素写出赋值运算符重载(包括&#xff0c;-&#xff0c;*)&#xff0c;拷贝构造函数和构造函数实现矩阵的转置操作实现矩阵的逆求解实现矩阵的行列式运算矩阵的加减乘操作利用&…...

    2024/4/16 6:19:29
  7. sizeof()求数组长度

    求数组长度 首先要知道一点 数组名就是数组首元素的地址 但是&#xff0c;有两个例外 sizeof(数组名) 数组名表示整个数组&#xff0c;计算的是整个数组的大小 &数组名 数组名表示整个数组&#xff0c;取出的是整个数组的地址 对于一维数组arr[] 确定数组长度&#x…...

    2024/4/17 7:57:16
  8. Redis查询缓存与延时双删的实际应用(Golang)

    Redis查询缓存与延时双删的实际应用(Golang) 有个小项目&#xff0c;需要弄个树型单词分类&#xff0c;虽然客户那边访问量不大&#xff0c;崩是不可能崩的。但是数据量大了以后&#xff0c;每次打开这个页面都要等个一两秒&#xff0c;属实有点难受。就想着用缓存来装这颗树。…...

    2024/4/18 13:13:48
  9. DRG 与 ICD10 编码相关论文阅读分享

    DRG 与 ICD10 编码相关论文阅读分享 相关概念 关于DRG 疾病诊断相关分组&#xff08;Diagnosis-Related Groups&#xff0c;DRG&#xff09;诞生于上世纪60 年代末的美国。上世纪80 年代&#xff0c;美国率先将DRG 用于医疗保险定额支付&#xff0c;现今多数发达国家社会医疗…...

    2024/4/7 15:30:20
  10. 干了六年Android开发现在裸辞失业了,再过2个月就30了,该怎么继续生活

    首先介绍一下主人公的情况。目前所在的是一家小的创业公司&#xff0c;待了3年多&#xff0c;薪资一般吧&#xff0c;之前在一家中型上市企业也干了三年&#xff0c;因为想涨薪所以跳到现在这家小公司。 就在年前&#xff0c;公司年终总结&#xff0c;公司老板会和各组负责人找…...

    2024/4/5 4:39:58
  11. 带你手把手讲解一个复杂动效的自定义绘制,搞懂开源框架设计思想真的这么重要吗

    开始拆解 1、绘制区域是一个心形 2、波浪从最下面开始&#xff0c; 逐渐用绿色填充了整个心形 3、中间有文字内容“ 一条大灰狼”,并且在波浪增长的过程中&#xff0c;文字存在一段时间的上下两部分 颜色不同的状态. 本案例用到的知识点&#xff1a; 1、 canvas.clipPath 画布裁…...

    2024/4/14 10:00:25
  12. Spark基本概念

    Spark核心组件 Driver 将用户程序转化为作业&#xff08;job&#xff09;在Executor之间调度任务(task)跟踪Executor的执行情况通过UI展示查询运行情况Executor Spark Executor是集群中工作节点&#xff08;Worker&#xff09;中的一个JVM进程&#xff0c;负责在 Spark 作业…...

    2024/4/14 10:00:50
  13. Spring01-简介

    1. 简介 spring理念&#xff1a;是现有的技术更加容易使用&#xff0c;本身是一个大杂烩。 SSH&#xff1a;Struct2 Spring HibernateSSM: SpringMVC Spring Mybatis 官网&#xff1a; https://spring.io/projects/spring-framework#overview 官方下载&#xff1a; htt…...

    2024/4/14 10:00:50
  14. PLC系统的选型技巧

    在PLC系统设计时&#xff0c;首先应确定系统方案&#xff0c;下一步工作就是PLC的设计选型。选择PLC&#xff0c;主要是确定PLC的生产厂家和PLC的具体型号。对于系统方案要求有分布式系统、远程I/O系统&#xff0c;还需要考虑网络化通讯的要求。那么具体应该如何选择PLC呢? 1、…...

    2024/4/23 14:50:11
  15. 赵小楼《天道》《遥远的救世主》深度解析(77)叶、冯、刘三人用了丁元英,就用了他的一切,没有能力的时候还谈什么缘,攀缘没有对错,起码得先活着

    本文是《天道》解读系列按《遥远的救世主》小说情节深度解析的第77集&#xff0c;解读完后会按《天道》电视剧不同于小说部分的情节再补充解读&#xff0c;然后会出专题解读系列&#xff0c;整体共约160集以上。 关注赵小楼&#xff0c;与10000人一起重读天道&#xff0c;学习…...

    2024/4/14 10:00:50
  16. 【一】、初识微服务和SpringCloud

    微服务架构与SpringCould 1.了解微服务架构 微服务&#xff1a;系统架构上的一种设计风格微服务的主旨&#xff1a;是将一个原本独立的系统拆分成多个小型服务&#xff0c;这些小型服务都在各自独立的进程中运行&#xff0c;服务之间一般通过Http的RESTful API进行通信协作 小…...

    2024/4/14 10:00:50
  17. 82.网络安全渗透测试—[SQL注入篇21]—Oracle+JSP-pipe.receive_message延时注入

    我认为&#xff0c;无论是学习安全还是从事安全的人&#xff0c;多多少少都有些许的情怀和使命感&#xff01;&#xff01;&#xff01; 文章目录一、OracleJSP 延时注入1、简介2、注入技巧二、pipe.receive_message 延时注入示例1、判断是否存在注入2、猜解长度并逐个猜解字符…...

    2024/4/14 10:00:20
  18. 从头开始写STM32F103C8T6驱动库(三)——编写GPIO驱动

    系列文章目录 Github开源地址 从头开始写STM32F103C8T6驱动库&#xff08;一&#xff09;——STM32CubeMX创建并调整工程结构 从头开始写STM32F103C8T6驱动库&#xff08;二&#xff09;——编写系统初始化程序&#xff0c;配置时钟树 从头开始写STM32F103C8T6驱动库&#xff…...

    2024/4/18 4:06:14
  19. 机器学习基础(二)

    机器学习基础实验报告 实验二&#xff1a; 一、实验目的 学习Gluon基础语法学习如何使用MXNet提供的Gluon接口更方便地实现线性回归的训练学习通过使用训练集图像训练多层神经网络模型&#xff0c;并利用该模型在测试集上预测手写数字类别&#xff0c;输出分类准确率&#x…...

    2024/4/20 11:28:58
  20. GitLab配置maven Repository仓库使用

    目前没有看到简单介绍gitlab当maven存储库的资料。于是整理了一篇&#xff0c;方便有需要的朋友少走弯路。 1.在gitlab创建一个新的安卓项目&#xff0c;在项目中选择“设置”-“仓库”-“部署令牌”-填入相关信息-创建部署令牌 填完之后会生成 &#xff0c;token令牌**&#…...

    2024/4/17 20:48:30

最新文章

  1. C语言数组介绍

    文章目录 一、数组的概念二、一维数组1.一维数组的创建2.一维数组的初始化3.数组的类型4.一维数组的使用5.一维数组在内存中的存储6.sizeof计算数组元素个数 三、二维数组1.二维数组的概念2.二维数组的创建3.二维数组的初始化4.二维数组的使用5.二维数组的输入和输出6.二维数组…...

    2024/5/5 15:32:50
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. 【Godot4自学手册】第三十五节摇杆控制开门

    本节主要实现&#xff0c;在地宫墙壁上安装一扇门&#xff0c;在核实安装一个开门的摇杆&#xff0c;攻击摇杆&#xff0c;打开这扇门&#xff0c;但是只能攻击一次&#xff0c;效果如下&#xff1a; 一、添加完善节点 切换到underground场景&#xff0c;先将TileMap修改一下…...

    2024/5/3 8:55:49
  4. 设计模式:组合模式

    定义 组合模式(Composite Pattern)是一种结构型设计模式,它允许你将对象组合成树形结构来表示“部分-整体”的层次结构。组合模式使得客户端可以统一对待单个对象和组合对象。 应用场景 组合模式适用于以下场景: 表达对象的部分-整体层次结构:当你想要表示对象的部分-整…...

    2024/5/3 22:02:39
  5. 【外汇早评】美通胀数据走低,美元调整

    原标题:【外汇早评】美通胀数据走低,美元调整昨日美国方面公布了新一期的核心PCE物价指数数据,同比增长1.6%,低于前值和预期值的1.7%,距离美联储的通胀目标2%继续走低,通胀压力较低,且此前美国一季度GDP初值中的消费部分下滑明显,因此市场对美联储后续更可能降息的政策…...

    2024/5/4 23:54:56
  6. 【原油贵金属周评】原油多头拥挤,价格调整

    原标题:【原油贵金属周评】原油多头拥挤,价格调整本周国际劳动节,我们喜迎四天假期,但是整个金融市场确实流动性充沛,大事频发,各个商品波动剧烈。美国方面,在本周四凌晨公布5月份的利率决议和新闻发布会,维持联邦基金利率在2.25%-2.50%不变,符合市场预期。同时美联储…...

    2024/5/4 23:54:56
  7. 【外汇周评】靓丽非农不及疲软通胀影响

    原标题:【外汇周评】靓丽非农不及疲软通胀影响在刚结束的周五,美国方面公布了新一期的非农就业数据,大幅好于前值和预期,新增就业重新回到20万以上。具体数据: 美国4月非农就业人口变动 26.3万人,预期 19万人,前值 19.6万人。 美国4月失业率 3.6%,预期 3.8%,前值 3…...

    2024/5/4 23:54:56
  8. 【原油贵金属早评】库存继续增加,油价收跌

    原标题:【原油贵金属早评】库存继续增加,油价收跌周三清晨公布美国当周API原油库存数据,上周原油库存增加281万桶至4.692亿桶,增幅超过预期的74.4万桶。且有消息人士称,沙特阿美据悉将于6月向亚洲炼油厂额外出售更多原油,印度炼油商预计将每日获得至多20万桶的额外原油供…...

    2024/5/4 23:55:17
  9. 【外汇早评】日本央行会议纪要不改日元强势

    原标题:【外汇早评】日本央行会议纪要不改日元强势近两日日元大幅走强与近期市场风险情绪上升,避险资金回流日元有关,也与前一段时间的美日贸易谈判给日本缓冲期,日本方面对汇率问题也避免继续贬值有关。虽然今日早间日本央行公布的利率会议纪要仍然是支持宽松政策,但这符…...

    2024/5/4 23:54:56
  10. 【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响

    原标题:【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响近日伊朗局势升温,导致市场担忧影响原油供给,油价试图反弹。此时OPEC表态稳定市场。据消息人士透露,沙特6月石油出口料将低于700万桶/日,沙特已经收到石油消费国提出的6月份扩大出口的“适度要求”,沙特将满…...

    2024/5/4 23:55:05
  11. 【外汇早评】美欲与伊朗重谈协议

    原标题:【外汇早评】美欲与伊朗重谈协议美国对伊朗的制裁遭到伊朗的抗议,昨日伊朗方面提出将部分退出伊核协议。而此行为又遭到欧洲方面对伊朗的谴责和警告,伊朗外长昨日回应称,欧洲国家履行它们的义务,伊核协议就能保证存续。据传闻伊朗的导弹已经对准了以色列和美国的航…...

    2024/5/4 23:54:56
  12. 【原油贵金属早评】波动率飙升,市场情绪动荡

    原标题:【原油贵金属早评】波动率飙升,市场情绪动荡因中美贸易谈判不安情绪影响,金融市场各资产品种出现明显的波动。随着美国与中方开启第十一轮谈判之际,美国按照既定计划向中国2000亿商品征收25%的关税,市场情绪有所平复,已经开始接受这一事实。虽然波动率-恐慌指数VI…...

    2024/5/4 23:55:16
  13. 【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试

    原标题:【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试美国和伊朗的局势继续升温,市场风险情绪上升,避险黄金有向上突破阻力的迹象。原油方面稍显平稳,近期美国和OPEC加大供给及市场需求回落的影响,伊朗局势并未推升油价走强。近期中美贸易谈判摩擦再度升级,美国对中…...

    2024/5/4 23:54:56
  14. 【原油贵金属早评】市场情绪继续恶化,黄金上破

    原标题:【原油贵金属早评】市场情绪继续恶化,黄金上破周初中国针对于美国加征关税的进行的反制措施引发市场情绪的大幅波动,人民币汇率出现大幅的贬值动能,金融市场受到非常明显的冲击。尤其是波动率起来之后,对于股市的表现尤其不安。隔夜美国股市出现明显的下行走势,这…...

    2024/5/4 18:20:48
  15. 【外汇早评】美伊僵持,风险情绪继续升温

    原标题:【外汇早评】美伊僵持,风险情绪继续升温昨日沙特两艘油轮再次发生爆炸事件,导致波斯湾局势进一步恶化,市场担忧美伊可能会出现摩擦生火,避险品种获得支撑,黄金和日元大幅走强。美指受中美贸易问题影响而在低位震荡。继5月12日,四艘商船在阿联酋领海附近的阿曼湾、…...

    2024/5/4 23:54:56
  16. 【原油贵金属早评】贸易冲突导致需求低迷,油价弱势

    原标题:【原油贵金属早评】贸易冲突导致需求低迷,油价弱势近日虽然伊朗局势升温,中东地区几起油船被袭击事件影响,但油价并未走高,而是出于调整结构中。由于市场预期局势失控的可能性较低,而中美贸易问题导致的全球经济衰退风险更大,需求会持续低迷,因此油价调整压力较…...

    2024/5/4 23:55:17
  17. 氧生福地 玩美北湖(上)——为时光守候两千年

    原标题:氧生福地 玩美北湖(上)——为时光守候两千年一次说走就走的旅行,只有一张高铁票的距离~ 所以,湖南郴州,我来了~ 从广州南站出发,一个半小时就到达郴州西站了。在动车上,同时改票的南风兄和我居然被分到了一个车厢,所以一路非常愉快地聊了过来。 挺好,最起…...

    2024/5/4 23:55:06
  18. 氧生福地 玩美北湖(中)——永春梯田里的美与鲜

    原标题:氧生福地 玩美北湖(中)——永春梯田里的美与鲜一觉醒来,因为大家太爱“美”照,在柳毅山庄去寻找龙女而错过了早餐时间。近十点,向导坏坏还是带着饥肠辘辘的我们去吃郴州最富有盛名的“鱼头粉”。说这是“十二分推荐”,到郴州必吃的美食之一。 哇塞!那个味美香甜…...

    2024/5/4 23:54:56
  19. 氧生福地 玩美北湖(下)——奔跑吧骚年!

    原标题:氧生福地 玩美北湖(下)——奔跑吧骚年!让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 啊……啊……啊 两…...

    2024/5/4 23:55:06
  20. 扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!

    原标题:扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!扒开伪装医用面膜,翻六倍价格宰客!当行业里的某一品项火爆了,就会有很多商家蹭热度,装逼忽悠,最近火爆朋友圈的医用面膜,被沾上了污点,到底怎么回事呢? “比普通面膜安全、效果好!痘痘、痘印、敏感肌都能用…...

    2024/5/5 8:13:33
  21. 「发现」铁皮石斛仙草之神奇功效用于医用面膜

    原标题:「发现」铁皮石斛仙草之神奇功效用于医用面膜丽彦妆铁皮石斛医用面膜|石斛多糖无菌修护补水贴19大优势: 1、铁皮石斛:自唐宋以来,一直被列为皇室贡品,铁皮石斛生于海拔1600米的悬崖峭壁之上,繁殖力差,产量极低,所以古代仅供皇室、贵族享用 2、铁皮石斛自古民间…...

    2024/5/4 23:55:16
  22. 丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者

    原标题:丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者【公司简介】 广州华彬企业隶属香港华彬集团有限公司,专注美业21年,其旗下品牌: 「圣茵美」私密荷尔蒙抗衰,产后修复 「圣仪轩」私密荷尔蒙抗衰,产后修复 「花茵莳」私密荷尔蒙抗衰,产后修复 「丽彦妆」专注医学护…...

    2024/5/4 23:54:58
  23. 广州械字号面膜生产厂家OEM/ODM4项须知!

    原标题:广州械字号面膜生产厂家OEM/ODM4项须知!广州械字号面膜生产厂家OEM/ODM流程及注意事项解读: 械字号医用面膜,其实在我国并没有严格的定义,通常我们说的医美面膜指的应该是一种「医用敷料」,也就是说,医用面膜其实算作「医疗器械」的一种,又称「医用冷敷贴」。 …...

    2024/5/4 23:55:01
  24. 械字号医用眼膜缓解用眼过度到底有无作用?

    原标题:械字号医用眼膜缓解用眼过度到底有无作用?医用眼膜/械字号眼膜/医用冷敷眼贴 凝胶层为亲水高分子材料,含70%以上的水分。体表皮肤温度传导到本产品的凝胶层,热量被凝胶内水分子吸收,通过水分的蒸发带走大量的热量,可迅速地降低体表皮肤局部温度,减轻局部皮肤的灼…...

    2024/5/4 23:54:56
  25. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  26. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  27. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  28. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  29. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  30. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  31. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  32. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  33. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  34. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  35. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  36. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  37. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  38. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  39. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  40. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  41. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  42. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  43. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  44. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57