tcp 粘包 和 TCP_NODELAY 学习icon-default.png?t=M0H8https://www.cnblogs.com/zhangkele/p/9494280.html

TCP通信粘包问题分析和解决 

在socket网络程序中,TCP和UDP分别是面向连接和非面向连接的。因此TCP的socket编程,收发两端(客户端和服务器端)都要有成对的socket,因此,发送端为了将多个发往接收端的包,更有效的发到对方,使用了优化方法(Nagle算法),将多次间隔较小、数据量小的数据,合并成一个大的数据块,然后进行封包。这样,接收端,就难于分辨出来了,必须提供科学的拆包机制。

对于UDP,不会使用块的合并优化算法,这样,实际上目前认为,是由于UDP支持的是一对多的模式,所以接收端的skbuff(套接字缓冲区)采用了链式结构来记录每一个到达的UDP包,在每个UDP包中就有了消息头(消息来源地址,端口等信息),这样,对于接收端来说,就容易进行区分处理了。所以UDP不会出现粘包问题。

====================================================================

在介绍TCP之前先普及下两个相关的概念,长连接和短连接。

1.长连接

Client方与Server方先建立通讯连接,连接建立后 不断开, 然后再进行报文发送和接收。

2.短连接

Client方与Server每进行一次报文收发交易时才进行通讯连接,交易完毕后立即断开连接。此种方式常用于一点对多点通讯,比如多个Client连接一个Server.

TCP协议简介

作为一个面向连接的传输层协议,TCP的目标是为用户提供可靠的端到端连接,保证信息有序无误的传输。它除了提供基本的数据传输功能外,还为保证可靠性采用了数据编号、校验和计算、数据确认等一系列措施。

它对传送的每个数据字节都进行编号,并请求接收方回传确认信息(ACK)。发送方如果在规定的时间内没有收到数据确认,就重传该数据。

(1)     数据编号使接收方能够处理数据的失序和重复问题。

(2)     数据误码问题通过在每个传输的数据段中增加校验和予以解决,接收方在接收到数据后检查校验和,若校验和有误,则丢弃该有误码的数据段,并要求发送方重传。

(3)     流量控制也是保证可靠性的一个重要措施,若无流控,可能会因接收缓冲区溢出而丢失大量数据,导致许多重传,造成网络拥塞恶性循环。

(4)     TCP采用可变窗口进行流量控制,由接收方控制发送方发送的数据量。

TCP为用户提供了高可靠性的网络传输服务,但可靠性保障措施也影响了传输效率。因此,在实际工程应用中,只有关键数据的传输才采用TCP,而普通数据的传输一般采用高效率的UDP。

保护消息边界和流

那么什么是保护消息边界和流呢?

保护消息边界,就是指传输协议把数据当作一条独立的消息在网上传输,接收端只能接收独立的消息。也就是说存在保护消息边界,接收端一次只能接收发送端发出的一个数据包。

而面向流则是指无保护消息保护边界的,如果发送端连续发送数据,接收端有可能在一次接收动作中,会接收两个或者更多的数据包。

例如,我们连续发送三个数据包,大小分别是2k,4k ,8k,这三个数据包,都已经到达了接收端的网络堆栈中,如果使用UDP协议,不管我们使用多大的接收缓冲区去接收数据,我们必须有三次接收动作,才能够把所有的数据包接收完.

而使用TCP协议,我们只要把接收的缓冲区大小设置在14k以上,我们就能够一次把所有的数据包接收下来,只需要有一次接收动作。

 

注意:

这就是因为UDP协议的保护消息边界使得每一个消息都是独立的。而流传输却把数据当作一串数据流,他不认为数据是一个一个的消息。所以有很多人在使用tcp协议通讯的时候,并不清楚tcp是基于流的传输,当连续发送数据的时候,他们时常会认识tcp会丢包。其实不然,因为当他们使用的缓冲区足够大时,他们有可能会一次接收到两个甚至更多的数据包,而很多人往往会忽视这一点,只解析检查了第一个数据包,而已经接收的其他数据包却被忽略了。所以大家如果要作这类的网络编程的时候,必须要注意这一点。

 

结论:

(1)TCP为了保证可靠传输,尽量减少额外开销(每次发包都要验证),因此采用了流式传输,面向流的传输,相对于面向消息的传输,可以减少发送包的数量,从而减少了额外开销。但是,对于数据传输频繁的程序来讲,使用TCP可能会容易粘包。当然,对接收端的程序来讲,如果机器负荷很重,也会在接收缓冲里粘包。这样,就需要接收端额外拆包,增加了工作量。因此,这个特别适合的是数据要求可靠传输,但是不需要太频繁传输的场合(两次操作间隔100ms,具体是由TCP等待发送间隔决定的,取决于内核中的socket的写法)

(2)UDP,由于面向的是消息传输,它把所有接收到的消息都挂接到缓冲区的接受队列中,因此,它对于数据的提取分离就更加方便,但是,它没有粘包机制,因此,当发送数据量较小的时候,就会发生数据包有效载荷较小的情况,也会增加多次发送的系统发送开销(系统调用,写硬件等)和接收开销。因此,应该最好设置一个比较合适的数据包的包长,来进行UDP数据的发送。(UDP最大载荷为1472,因此最好能每次传输接近这个数的数据量,这特别适合于视频,音频等大块数据的发送,同时,通过减少握手来保证流媒体的实时性

====================================================================

粘包问题分析与对策

TCP粘包是指发送方发送的若干包数据到接收方接收时粘成一包,从接收缓冲区看,后一包数据的头紧接着前一包数据的尾。

出现粘包现象的原因是多方面的,它既可能由发送方造成,也可能由接收方造成。

什么时候需要考虑粘包问题

1如果利用tcp每次发送数据,就与对方建立连接,然后双方发送完一段数据后,就关闭连接,这样就不会出现粘包问题(因为只有一种包结构,类似于http协议)。

关闭连接主要是要双方都发送close连接(参考tcp关闭协议)。如:A需要发送一段字符串给B,那么A与B建立连接,然后发送双方都默认好的协议字符如"hello give me sth abour yourself",然后B收到报文后,就将缓冲区数据接收,然后关闭连接,这样粘包问题不用考虑到,因为大家都知道是发送一段字符。

2如果发送数据无结构,如文件传输,这样发送方只管发送,接收方只管接收存储就ok,也不用考虑粘包

3如果双方建立连接,需要在连接后一段时间内发送不同结构数据,如连接后,有好几种结构:

1)"hellogive me sth abour yourself"

2)"Don'tgive me sth abour yourself"

那这样的话,如果发送方连续发送这个两个包出去,接收方一次接收可能会是"hellogive me sth abour yourselfDon't give me sth abour yourself"这样接收方就傻了,到底是要干嘛?

不知道,因为协议没有规定这么诡异的字符串,所以要处理把它分包,怎么分也需要双方组织一个比较好的包结构,所以一般可能会在头加一个数据长度之类的包,以确保接收。

粘包出现原因

简单得说,在流传输中出现,UDP不会出现粘包,因为它有消息边界(参考Windows网络编程)

1 发送端需要等缓冲区满才发送出去,造成粘包 =====》(nagle算法的存在   该算法就是为解决网络中小包太多  合并大包来提升网络传输效率的算法   )

2 接收方不及时接收缓冲区的包,造成多个包接收

具体点:

(1)发送方引起的粘包是由TCP协议本身造成的,TCP为提高传输效率,发送方往往要收集到足够多的数据后才发送一包数据。若连续几次发送的数据都很少,通常TCP会根据优化算法把这些数据合成一包后一次发送出去,这样接收方就收到了粘包数据。

(2)接收方引起的粘包是由于接收方用户进程不及时接收数据,从而导致粘包现象。这是因为接收方先把收到的数据放在系统接收缓冲区,用户进程从该缓冲区取数据,若下一包数据到达时前一包数据尚未被用户进程取走,则下一包数据放到系统接收缓冲区时就接到前一包数据之后,而用户进程根据预先设定的缓冲区大小从系统接收缓冲区取数据,这样就一次取到了多包数据。

粘包情况有两种,一种是粘在一起的包都是完整的数据包,另一种情况是粘在一起的包有不完整的包。

不是所有的粘包现象都需要处理,若传输的数据为不带结构的连续流数据(如文件传输),则不必把粘连的包分开(简称分包)。但在实际工程应用中,传输的数据一般为带结构的数据,这时就需要做分包处理。

在处理定长结构数据的粘包问题时,分包算法比较简单;在处理不定长结构数据的粘包问题时,分包算法就比较复杂。特别是粘在一起的包有不完整的包的粘包情况,由于一包数据内容被分在了两个连续的接收包中,处理起来难度较大。实际工程应用中应尽量避免出现粘包现象。

为了避免粘包现象,可采取以下几种措施:

(1)对于发送方引起的粘包现象,用户可通过编程设置来避免,TCP提供了强制数据立即传送的操作指令push,TCP软件收到该操作指令后,就立即将本段数据发送出去,而不必等待发送缓冲区满;

(2)对于接收方引起的粘包,则可通过优化程序设计、精简接收进程工作量、提高接收进程优先级等措施,使其及时接收数据,从而尽量避免出现粘包现象;

(3)由接收方控制,将一包数据按结构字段,人为控制分多次接收,然后合并,通过这种手段来避免粘包。

以上提到的三种措施,都有其不足之处。

(1)第一种编程设置方法虽然可以避免发送方引起的粘包,但它关闭了优化算法,降低了网络发送效率,影响应用程序的性能,一般不建议使用。

(2)第二种方法只能减少出现粘包的可能性,但并不能完全避免粘包,当发送频率较高时,或由于网络突发可能使某个时间段数据包到达接收方较快,接收方还是有可能来不及接收,从而导致粘包。

(3)第三种方法虽然避免了粘包,但应用程序的效率较低,对实时应用的场合不适合。

一种比较周全的对策是:接收方创建一预处理线程,对接收到的数据包进行预处理,将粘连的包分开。对这种方法我们进行了实验,证明是高效可行的。

具体可以参考:TCP连接时CSocket粘包问题的解决方法_寂寞是国,我是王。-CSDN博客_c++ socket 粘包

 

TCP无保护消息边界的解决

针对这个问题,一般有3种解决方案:

(1)发送固定长度的消息  =====          (定长包)

(2)把消息的尺寸与消息一块发送    ====    (结构体包  包头包含包的大小)

(3)使用特殊标记来区分消息间隔      =====  ( ‘\n’ 标记)

其解决方法具体解决可以参考:TCP和UDP的"保护消息边界" (经典)_zhangxinrun的专栏-CSDN博客_消息边界

====================================================================

网络通讯的封包和拆包

对于基于TCP开发的通讯程序,有个很重要的问题需要解决,就是封包和拆包。

为什么基于TCP的通讯程序需要进行封包和拆包

TCP是个"流"协议,所谓流,就是没有界限的一串数据,大家可以想想河里的流水,是连成一片的,其间是没有分界线的。

但一般通讯程序开发是需要定义一个个相互独立的数据包的,比如用于登陆的数据包,用于注销的数据包。由于TCP"流"的特性以及网络状况,在进行数据传输时会出现以下几种情况。

假设我们连续调用两次send分别发送两段数据data1和data2,在接收端有以下几种接收情况(当然不止这几种情况,这里只列出了有代表性的情况).

A.先接收到data1,然后接收到data2.

B.先接收到data1的部分数据,然后接收到data1余下的部分以及data2的全部.

C.先接收到了data1的全部数据和data2的部分数据,然后接收到了data2的余下的数据.

D.一次性接收到了data1和data2的全部数据.

对于A这种情况正是我们需要的,不再做讨论.对于B,C,D的情况就是大家经常说的"粘包",就需要我们把接收到的数据进行拆包,拆成一个个独立的数据包,为了拆包就必须在发送端进行封包。

另:对于UDP来说就不存在拆包的问题,因为UDP是个"数据包"协议,也就是两段数据间是有界限的,在接收端要么接收不到数据要么就是接收一个完整的一段数据,不会少接收也不会多接收。

为什么会出现B.C.D的情况   这样的 粘包情况呢?      两种可能====   个人觉得还有 其他情况   以后 再看    

1.由Nagle算法造成的发送端的粘包:Nagle算法是一种改善网络传输效率的算法.

简单的说,当我们提交一段数据给TCP发送时,TCP并不立刻发送此段数据,而是等待一小段时间,看看在等待期间是否还有要发送的数据,

若有则会一次把这两段数据发送出去.这是对Nagle算法一个简单的解释,详细的请看相关书籍. C和D的情况就有可能是Nagle算法造成的.

2.接收端接收不及时造成的接收端粘包:TCP会把接收到的数据存在自己的缓冲区中,然后通知应用层取数据.当应用层由于某些原因不能及时的把TCP的数据取出来,就会造成TCP缓冲区中存放了几段数据.

 

怎样封包和拆包

最初遇到"粘包"的问题时,我是通过在两次send之间调用sleep来休眠一小段时间来解决。这个解决方法的缺点是显而易见的,使传输效率大大降低,而且也并不可靠。

后来就是通过应答的方式来解决,尽管在大多数时候是可行的,但是不能解决B的那种情况,而且采用应答方式增加了通讯量,加重了网络负荷. 再后来就是对数据包进行封包和拆包的操作。

封包

封包就是给一段数据加上包头,这样一来数据包就分为包头和包体两部分内容了(以后讲过滤非法包时封包会加入"包尾"内容)。

包头其实上是个大小固定的结构体,其中有个结构体成员变量表示包体的长度,这是个很重要的变量,其他的结构体成员可根据需要自己定义。

根据包头长度固定以及包头中含有包体长度的变量就能正确的拆分出一个完整的数据包。

 

拆包

对于拆包目前我最常用的是以下两种方式:

(1)动态缓冲区暂存方式。之所以说缓冲区是动态的是因为当需要缓冲的数据长度超出缓冲区的长度时会增大缓冲区长度。

大概过程描述如下:

A,为每一个连接动态分配一个缓冲区,同时把此缓冲区和SOCKET关联,常用的是通过结构体关联.

B,当接收到数据时首先把此段数据存放在缓冲区中.

C,判断缓存区中的数据长度是否够一个包头的长度,如不够,则不进行拆包操作.

D,根据包头数据解析出里面代表包体长度的变量.

E,判断缓存区中除包头外的数据长度是否够一个包体的长度,如不够,则不进行拆包操作.

F,取出整个数据包.这里的"取"的意思是不光从缓冲区中拷贝出数据包,而且要把此数据包从缓存区中删除掉.删除的办法就是把此包后面的数据移动到缓冲区的起始地址.

这种方法有两个缺点.

1) 为每个连接动态分配一个缓冲区增大了内存的使用.

2) 有三个地方需要拷贝数据,一个地方是把数据存放在缓冲区,一个地方是把完整的数据包从缓冲区取出来,一个地方是把数据包从缓冲区中删除.第二种拆包的方法会解决和完善这些缺点.

前面提到过这种方法的缺点.下面给出一个改进办法, 即采用环形缓冲.但是这种改进方法还是不能解决第一个缺点以及第一个数据拷贝,只能解决第三个地方的数据拷贝(这个地方是拷贝数据最多的地方).第2种拆包方式会解决这两个问题.

环形缓冲实现方案是定义两个指针,分别指向有效数据的头和尾.在存放数据和删除数据时只是进行头尾指针的移动.

(2)利用底层的缓冲区来进行拆包

由于TCP也维护了一个缓冲区,所以我们完全可以利用TCP的缓冲区来缓存我们的数据,这样一来就不需要为每一个连接分配一个缓冲区了。另一方面我们知道recv或者wsarecv都有一个参数,用来表示我们要接收多长长度的数据。利用这两个条件我们就可以对第一种方法进行优化。

对于阻塞SOCKET来说,我们可以利用一个循环来接收包头长度的数据,然后解析出代表包体长度的那个变量,再用一个循环来接收包体长度的数据。

编程实现见:(经典)tcp粘包分析_zhangxinrun的专栏-CSDN博客_tcp粘包


这个问题产生于编程中遇到的几个问题:

1、使用TCP的Socket发送数据的时候,会出现发送出错,WSAEWOULDBLOCK,在TCP中不是会保证发送的数据能够安全的到达接收端的吗?也有窗口机制去防止发送速度过快,为什么还会出错呢?

2、TCP协议,在使用Socket发送数据的时候,每次发送一个包,接收端是完整的接受到一个包还是怎么样?如果是每发一个包,就接受一个包,为什么还会出现粘包问题,具体是怎么运行的?

3、关于Send,是不是只有在非阻塞状态下才会出现实际发送的比指定发送的小?在阻塞状态下会不会出现实际发送的比指定发送的小,就是说只能出现要么全发送,要么不发送?在非阻塞状态下,如果之发送了一些数据,要怎么处理,调用了Send函数后,发现返回值比指定的要小,具体要怎么做?

4、最后一个问题,就是TCP/IP协议和Socket是什么关系?是指具体的实现上,Socket是TCP/IP的实现?那么为什么会出现使用TCP协议的Socket会发送出错。


这个问题第1个回答:

1应该是你的缓冲区不够大,

2 tcp是流,没有界限.也就没所谓的包.

3阻塞也会出现这种现象,出现后继续发送没发送出去的.

4tcp是协议,socket是一种接口,没必然联系.错误取决于你使用接口的问题,跟tcp没关系.


这个问题第2个回答:

1、应该不是缓冲区大小问题,我试过设置缓冲区大小,不过这里有个问题,就是就算我把缓冲区设置成几G,也返回成功,不过实际上怎么可能设置那么大

3、出现没发送完的时候要手动发送吧,有没有具体的代码实现?

4、当选择TCP的Socket发送数据的时候,TCP中的窗口机制不是能防止发送速度过快的吗?为什么Socket在出现了WSAEWOULDBLOCK后没有处理?


这个问题第3个回答:

1.在使用非阻塞模式的情况下,如果系统发送缓冲区已满,并示及时发送到对端,就会产生该错误,继续重试即可。

3.如果没有发完就继续发送后续部分即可。


这个问题第4个回答:

1、使用非阻塞模式时,如果当前操作不能立即完成则会返回失败,错误码是WSAEWOULDBLOCK,这是正常的,程序可以先执行其它任务,过一段时间后再重试该操作。

2、发送与接收不是一一对应的,TCP会把各次发送的数据重新组合,可能合并也可能拆分,但发送次序是不变的。

3、在各种情况下都要根据send的返回值来确定发送了多少数据,没有发送完就再接着发。

4、socket是Windows提供网络编程接口,TCP/IP是网络传输协议,使用socket是可以使用多种协议,其中包括TCP/IP。


这个问题第5个回答:

发送的过程是:发送到缓冲区和从缓冲区发送到网络上

WSAEWOULDBLOCK和粘包都是出现在发送到缓冲区这个过程的


=====================================================================

 TCP_NODELAY 作用  就是解决     Nagle算法带来的 延迟问题  40ms

Nagle:

假如需要频繁的发送一些小包数据,比如说1个字节,以IPv4为例的话,则每个包都要附带40字节的头,也就是说,总计41个字节的数据里,其中只有1个字节是我们需要的数据。

为了解决这个问题,出现了Nagle算法。它规定:如果包的大小满足MSS,那么可以立即发送,否则数据会被放到缓冲区,等到已经发送的包被确认了之后才能继续发送。

通过这样的规定,可以降低网络里小包的数量,从而提升网络性能

        如果开启了这个算法 (默认),则协议栈会累积数据直到以下两个条件之一满足的时候才真正发送出 去:

  1. 积累的数据量到达最大的 TCP Segment Size    == 即MSS
  2. 收到了一个 Ack

TCP Delayed Acknoledgement 也是为了类似的目的被设计出来的,它的作用就 是延迟 Ack 包的发送,使得协议栈有机会合并多个 Ack,提高网络性能。

如果一个 TCP 连接的一端启用了 Nagle‘s Algorithm,而另一端启用了 TCP Delayed Ack,而发送的数据包又比较小,

则可能会出现这样的情况:发送端在等 待接收端对上一个packet 的 Ack 才发送当前的 packet,而接收端则正好延迟了 此 Ack 的发送,那么这个正要被发送的 packet 就会同样被延迟。

当然 Delayed Ack 是有个超时机制的,而默认的超时正好就是 40ms。

现代的 TCP/IP 协议栈实现,默认几乎都启用了这两个功能,你可能会想,按我 上面的说法,     当协议报文很小的时候,岂不每次都会触发这个延迟问题?

事实不 是那样的。      仅当协议的交互是发送端连续发送两个 packet,然后立刻 read 的 时候才会出现问题。(即 write --- write --- read)

                                               为什么只有 Write-Write-Read 时才会出问题

维基百科上的有一段伪代码来介绍 Nagle’s Algorithm:

if there is new data to sendif the window size >= MSS and available data is >= MSSsend complete MSS segment nowelseif there is unconfirmed data still in the pipeenqueue data in the buffer until an acknowledge is receivedelsesend data immediatelyend ifend if
end if

可以看到,当待发送的数据比 MSS 小的时候(外层的 else 分支),还要再判断 时候还有未确认的数据。只有当管道里还有未确认数据的时候才会进入缓冲区, 等待 Ack。

所以发送端发送的第一个 write 是不会被缓冲起来,而是立刻发送的(进入内层 的else 分支),这时接收端收到对应的数据,但它还期待更多数据才进行处理, 所以不会往回发送数据,因此也没机会把 Ack 给带回去,根据Delayed Ack 机制, 这个 Ack 会被 Hold 住。这时发送端发送第二个包,而队列里还有未确认的数据 包,所以进入了内层 if 的 then 分支,这个 packet 会被缓冲起来。此时,发 送端在等待接收端的 Ack;接收端则在 Delay 这个 Ack,所以都在等待,直到接 收端 Deplayed Ack 超时(40ms),此 Ack 被发送回去,发送端缓冲的这个 packet 才会被真正送到接收端,从而继续下去。

   开启 TCP_NODELAY   解决上面的问题

简单地说,这个选项的作用就是禁用 Nagle’s Algorithm,禁止后当然就不会有它引起的一系列问题了。在 UNIX C 里使用setsockopt 可以做到:

static void _set_tcp_nodelay(int fd) {int enable = 1;setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (void*)&enable, sizeof(enable));
}

补充学习   补充学习

TCP/IP协议中针对TCP默认开启了Nagle算法。Nagle算法通过减少需要传输的数据包,来优化网络。在内核实现中,数据包的发送和接受会先做缓存,分别对应于写缓存和读缓存。

启动TCP_NODELAY,就意味着禁用了Nagle算法允许小包的发送。对于延时敏感型,同时数据传输量比较小的应用,开启TCP_NODELAY选项无疑是一个正确的选择。

比如,对于SSH会话,用户在远程敲击键盘发出指令的速度相对于网络带宽能力来说,绝对不是在一个量级上的,所以数据传输非常少;而又要求用户的输入能够及时获得返回,有较低的延时。

如果开启了Nagle算法,就很可能出现频繁的延时,导致用户体验极差。当然,你也可以选择在应用层进行buffer,比如使用java中的buffered stream,尽可能地将大包写入到内核的写缓存进行发送;vectored I/O(writev接口)也是个不错的选择。

 

对于关闭TCP_NODELAY,则是应用了Nagle算法。数据只有在写缓存中累积到一定量之后,才会被发送出去,这样明显提高了网络利用率(实际传输数据payload与协议头的比例大大提高)。

但是这由不可避免地增加了延时;与TCP delayed ack这个特性结合,这个问题会更加显著,延时基本在40ms左右。  当然这个问题只有在连续进行两次写操作的时候,才会暴露出来。
 

连续进行多次对小数据包的写操作,然后进行读操作,本身就不是一个好的网络编程模式;在应用层就应该进行优化。
 

对于既要求       低延时,又有大量小数据传输,还同时想提高网络利用率的应用,大概只能用UDP自己在应用层来实现可靠性保证了。好像企鹅家就是这么干的。

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

TCP/IP协议中,无论发送多少数据,总是要在数据前面加上协议头,同时,对方接收到数据,也需要发送ACK表示确认。为了尽可能的利用网络带宽,TCP总是希望尽可能的发送足够大的数据。(一个连接会设置MSS参数,因此,TCP/IP希望每次都能够以MSS尺寸的数据块来发送数据)。

Nagle算法就是为了尽可能发送大块数据,避免网络中充斥着许多小数据块。

Nagle算法的基本定义是任意时刻,最多只能有一个未被确认的小段。 所谓“小段”,指的是小于MSS尺寸的数据块,所谓“未被确认”,是指一个数据块发送出去后,没有收到对方发送的ACK确认该数据已收到。

举个例子,比如之前的blog中的实验,一开始client端调用socket的write操作将一个int型数据(称为A块)写入到网络中,由于此时连接是空闲的(也就是说还没有未被确认的小段),因此这个int型数据会被马上发送到server端,接着,client端又调用write操作写入‘/r/n’(简称B块),这个时候,A块的ACK没有返回,所以可以认为已经存在了一个未被确认的小段,所以B块没有立即被发送,一直等待A块的ACK收到(大概40ms之后),B块才被发送。整个过程如图所示:

                                                                                                                     

这里还隐藏了一个问题,就是A块数据的ACK为什么40ms之后才收到?这是因为TCP/IP中不仅仅有nagle算法,还有一个ACK延迟机制 。当Server端收到数据之后,它并不会马上向client端发送ACK,而是会将ACK的发送延迟一段时间(假设为t),它希望在t时间内server端会向client端发送应答数据,这样ACK就能够和应答数据一起发送,就像是应答数据捎带着ACK过去。在我之前的时间中,t大概就是40ms。这就解释了为什么'/r/n'(B块)总是在A块之后40ms才发出。

如果你觉着nagle算法太捣乱了,那么可以通过设置TCP_NODELAY将其禁用 。当然,更合理的方案还是应该使用一次大数据的写操作,而不是多次小数据的写操作。

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. L3-003 社交集群 (30 分)(并查集)

    当你在社交网络平台注册时,一般总是被要求填写你的个人兴趣爱好,以便找到具有相同兴趣爱好的潜在的朋友。一个“社交集群”是指部分兴趣爱好相同的人的集合。你需要找出所有的社交集群。 输入格式: 输入在第一行给出一个正整数 N&#xff0…...

    2024/4/14 10:18:37
  2. echarts雷达图类目下显示值

    initRadar() {let chartDom this.$refs.radar;let myChart echarts.init(chartDom);let i -1;// 获取数据let arr1 [75, 1.50, 87, 84, 98.3]let option {legend: {show: true,data: ["Allocated Budget", "Actual Spending"],},radar: {center: [&qu…...

    2024/4/27 22:53:10
  3. 853. 有边数限制的最短路

    853. 有边数限制的最短路 给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。 请你求出从 1 号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 1 号点走到 n 号点,输出 impossible。 注意&#xf…...

    2024/4/28 0:09:40
  4. css中的盒模型属性

    外边距属性(margin) 使用场景:想要设置间距,且间距对于盒子来说是外面的时候用; 单独设置margin-top外上边距margin-bottom外下边距margin-left外左边距margin-right外右边距简写设置margin:20px;一个值表示四个方向都是20pxmarg…...

    2024/4/28 3:12:22
  5. QtApplets-MyLog

    QtApplets-MyLog ​ 今天是离职倒计时第二天,今天打算自己搞一个简单的日志系统,把程序运行时产生的日志存在数据库中。数据库还是使用简单的Sqlite数据库。 文章目录QtApplets-MyLog1 创建日志文件夹2 打开数据库3 获取Qt输出消息4 在主程序中劫持Qt消…...

    2024/4/14 10:18:17
  6. Facebook广告投放有哪些比较好的策略?

    Facebook广告的算法随时都在变,那有哪些好的广告策略,才能让Facebook广告投放的效果更加突出呢? 需要让用户感到有趣并且有认同感 Facebook广告怎样才算做得好呢? 有一个方式是最容易判断广告好坏的,你可以通过广告的…...

    2024/4/14 10:18:12
  7. 复现CVE-2018-2628(WebLogic反序列化)

    一、漏洞介绍 Weblogic Server中的RMI 通信使用T3协议在Weblogic Server和其它Java程序(客户端或者其它Weblogic Server实例)之间传输数据, 服务器实例会跟踪连接到应用程序的每个Java虚拟机(JVM)中, 并创建T3协议通信连接, 将流…...

    2024/4/28 0:37:37
  8. 根据权重随机选择

    需求: 从一定数量中的歌曲中随机选择300首歌曲进行推荐,每首歌设置权重要提高某些歌曲的命中率。 思想: 假如n首歌曲总权重是total,将[1,total]范围内所有整数分成n个部分,每首歌占一个闭区间。如:歌曲songs{a,b,c…...

    2024/4/27 22:43:26
  9. 【交流学习】厦门大学到福州大禹电子交流超声波水下通讯技术

    超声波水下通讯机可用于海洋环境监测、潜水娱乐、施工作业、两栖作战、水下无人潜航器等水下通讯网络建立以及许多军事方面应用。 2022年1月6日,厦门大学到福州大禹电子交流超声波水下通讯与超声波多普勒应用技术,这次交流学习让大家受益匪浅。...

    2024/4/14 10:19:08
  10. 【用vue的transition-group实现列表循环】

    用vue的transition-group实现列表循环 类似于从底部进入上部消失的效果 1.页面代码 <div class"party-table"><div class"head"><p class"col">小区党支部</p><p class"col">参与时间</p><…...

    2024/4/14 10:19:28
  11. spring源码--09--IOC高级特性--BeanPostProcessor后置处理器的实现

    spring源码–09–IOC高级特性–BeanPostProcessor后置处理器的实现 1、BeanPostProcessor 后置处理器是一个监听器&#xff0c;可以监听容器触发的Bean声明周期事件。 后置处理器向容器注册以后&#xff0c;容器中管理的Bean就具备了接收IoC容器事件回调的能力。 BeanPostPro…...

    2024/4/16 16:38:12
  12. 七天玩转Redis | Day1 Redis认识与环境配置

    文章目录一、Redis是啥&#xff1f;小概念&#xff1a;关系型数据库与非关系型数据库的区别Redis主要使用场景二、基于Windows环境安装Redis三、Redis常用命令1&#xff09;启动Redis客户端2) Redis常用命令解析一、Redis是啥&#xff1f; Redis是一个非关系型数据库&#xff…...

    2024/4/14 10:19:28
  13. meta在web推广的大作用及其在html中的语法,android插件化开发前景

    7、强制页面在当前窗口中以独立页面显示&#xff0c;可以防止自己的网页被别人当作一个frame页调用&#xff1b; 8、和设定进入和离开页面时的特殊效果&#xff0c;这个功能即FrontPage中的“格式/网页过渡”&#xff0c;不过所加的页面不能够是一个frame页面。 例: 网络技术…...

    2024/4/27 21:51:39
  14. 深入解析java虚拟机:垃圾回收,最大并发标记清除垃圾回收器

    CMS GC 回收策略 CMS GC的全称是最大并发标记清除垃圾回收器&#xff08;Mostly Mark andSweep Garbage Collector&#xff09;&#xff0c;可以使用-XX:UseConcMarkSweepGC开启。CMS GC的新生代清理仍然使用与Parallel GC类似的方式&#xff0c;即开启多个线程一起清理&…...

    2024/4/14 10:19:18
  15. com.alibaba.fastjson.JSONException: autoType is not support. com.data4truth.

    解决bug&#xff0c;记录一下。 当时List<T>或是Map<String,T>,T为自己封装的实体类&#xff0c;会报这个错 我的解决办法&#xff1a; 加了这个ParserConfig.getGlobalInstance().setAutoTypeSupport(true);就好了 ParserConfig.getGlobalInstance().setAutoTy…...

    2024/4/19 11:39:49
  16. QT 模态和非模态对话框

    QT 模态和非模态对话框 基本概念&#xff1a; 模态对话框&#xff1a; 不允许对其它窗口进行操作&#xff0c;阻塞 非模态对话框&#xff1a; 运行对其它窗口进行操作 由于非模态时其它窗口也可以进行操作&#xff0c;需要创建在堆区&#xff0c;使用new 头文件&#xff1a; …...

    2024/4/7 15:25:07
  17. svn中switch(sw)命令的帮助信息解释

    输入switch命令后&#xff1a; rootform1-desktop:codes# svn switch --help switch (sw): 更新工作副本至不同的 URL。 用法: 1、switch URL[PEGREV] [PATH] 2、switch --relocate FROM TO [PATH...] 1、更新工作副本&#xff0c;切换到同一版本库中的新 U…...

    2024/4/16 22:01:17
  18. springboot2.x集成ureport2.2.9搭建报表引擎

    springboot2.x集成ureport2.2.9搭建报表引擎1、创建springboot项目&#xff0c;修改pom.xml添加相关依赖2、增加src/main/resources/context.properties3、修改src/main/resources/application.yml4、增加com.wongoing.config.ReportConfig.java配置类5、增加com.wongoing.conf…...

    2024/4/14 10:19:08
  19. C.Division(差分)

    C.Division(差分) 预处理并差分之后&#xff0c;就是要求差分数组为0。 区间[l,r][l,r][l,r]减1就是difl−1,difr11dif_l-1,dif_{r1}1difl​−1,difr1​1。 考虑对于当前点iii&#xff0c;如果i−k>0i-k>0i−k>0 且difi−k>0dif_{i-k}>0difi−k​>0 &…...

    2024/4/18 15:06:19
  20. C入门学习(第二天)

    一、如何开始学一门新的语言&#xff1a; 学习程序最快也是最好的办法就是&#xff1a;过、抄、仿、改、调、看、练、创、悟。 1、过&#xff1a; 学习一门新的语言&#xff0c;第一步就是把它所涉及的基础知识大体过一点&#xff0c;不求深解&#xff0c;只求了解——第一遍…...

    2024/4/14 10:19:08

最新文章

  1. Linux计划任务书以及定时任务的编写

    一、程序可以通过两种方式执行&#xff1a; 手动执行利用调度任务&#xff0c;依据一定的条件自动执行 自动执行可通过一下两个命令来实现: &#xff08;1&#xff09;At &#xff08;单一工作调度&#xff09; &#xff08;2&#xff09;Cron &#xff08;循环工作调度&a…...

    2024/4/28 4:32:36
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. Linux从入门到精通 --- 2.基本命令入门

    文章目录 第二章&#xff1a;2.1 Linux的目录结构2.1.1 路径描述方式 2.2 Linux命令入门2.2.1 Linux命令基础格式2.2.2 ls命令2.2.3 ls命令的参数和选项2.2.4 ls命令选项的组合使用 2.3 目录切换相关命令2.3.1 cd切换工作目录2.3.2 pwd查看当前工作目录2.4 相对路径、绝对路径和…...

    2024/4/25 22:53:12
  4. centos7 安装 postgresql

    进入地址&#xff1a;https://yum.postgresql.org/repopackages.php 鼠标放置红色框内&#xff0c;右击拷贝地址 yum install 拷贝的地址 例如&#xff1a;yum install https://download.postgresql.org/pub/repos/yum/reporpms/EL-7-x86_64/pgdg-redhat-repo-latest.noarch…...

    2024/4/26 8:47:11
  5. 【外汇早评】美通胀数据走低,美元调整

    原标题:【外汇早评】美通胀数据走低,美元调整昨日美国方面公布了新一期的核心PCE物价指数数据,同比增长1.6%,低于前值和预期值的1.7%,距离美联储的通胀目标2%继续走低,通胀压力较低,且此前美国一季度GDP初值中的消费部分下滑明显,因此市场对美联储后续更可能降息的政策…...

    2024/4/26 18:09:39
  6. 【原油贵金属周评】原油多头拥挤,价格调整

    原标题:【原油贵金属周评】原油多头拥挤,价格调整本周国际劳动节,我们喜迎四天假期,但是整个金融市场确实流动性充沛,大事频发,各个商品波动剧烈。美国方面,在本周四凌晨公布5月份的利率决议和新闻发布会,维持联邦基金利率在2.25%-2.50%不变,符合市场预期。同时美联储…...

    2024/4/28 3:28:32
  7. 【外汇周评】靓丽非农不及疲软通胀影响

    原标题:【外汇周评】靓丽非农不及疲软通胀影响在刚结束的周五,美国方面公布了新一期的非农就业数据,大幅好于前值和预期,新增就业重新回到20万以上。具体数据: 美国4月非农就业人口变动 26.3万人,预期 19万人,前值 19.6万人。 美国4月失业率 3.6%,预期 3.8%,前值 3…...

    2024/4/26 23:05:52
  8. 【原油贵金属早评】库存继续增加,油价收跌

    原标题:【原油贵金属早评】库存继续增加,油价收跌周三清晨公布美国当周API原油库存数据,上周原油库存增加281万桶至4.692亿桶,增幅超过预期的74.4万桶。且有消息人士称,沙特阿美据悉将于6月向亚洲炼油厂额外出售更多原油,印度炼油商预计将每日获得至多20万桶的额外原油供…...

    2024/4/27 4:00:35
  9. 【外汇早评】日本央行会议纪要不改日元强势

    原标题:【外汇早评】日本央行会议纪要不改日元强势近两日日元大幅走强与近期市场风险情绪上升,避险资金回流日元有关,也与前一段时间的美日贸易谈判给日本缓冲期,日本方面对汇率问题也避免继续贬值有关。虽然今日早间日本央行公布的利率会议纪要仍然是支持宽松政策,但这符…...

    2024/4/27 17:58:04
  10. 【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响

    原标题:【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响近日伊朗局势升温,导致市场担忧影响原油供给,油价试图反弹。此时OPEC表态稳定市场。据消息人士透露,沙特6月石油出口料将低于700万桶/日,沙特已经收到石油消费国提出的6月份扩大出口的“适度要求”,沙特将满…...

    2024/4/27 14:22:49
  11. 【外汇早评】美欲与伊朗重谈协议

    原标题:【外汇早评】美欲与伊朗重谈协议美国对伊朗的制裁遭到伊朗的抗议,昨日伊朗方面提出将部分退出伊核协议。而此行为又遭到欧洲方面对伊朗的谴责和警告,伊朗外长昨日回应称,欧洲国家履行它们的义务,伊核协议就能保证存续。据传闻伊朗的导弹已经对准了以色列和美国的航…...

    2024/4/28 1:28:33
  12. 【原油贵金属早评】波动率飙升,市场情绪动荡

    原标题:【原油贵金属早评】波动率飙升,市场情绪动荡因中美贸易谈判不安情绪影响,金融市场各资产品种出现明显的波动。随着美国与中方开启第十一轮谈判之际,美国按照既定计划向中国2000亿商品征收25%的关税,市场情绪有所平复,已经开始接受这一事实。虽然波动率-恐慌指数VI…...

    2024/4/27 9:01:45
  13. 【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试

    原标题:【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试美国和伊朗的局势继续升温,市场风险情绪上升,避险黄金有向上突破阻力的迹象。原油方面稍显平稳,近期美国和OPEC加大供给及市场需求回落的影响,伊朗局势并未推升油价走强。近期中美贸易谈判摩擦再度升级,美国对中…...

    2024/4/27 17:59:30
  14. 【原油贵金属早评】市场情绪继续恶化,黄金上破

    原标题:【原油贵金属早评】市场情绪继续恶化,黄金上破周初中国针对于美国加征关税的进行的反制措施引发市场情绪的大幅波动,人民币汇率出现大幅的贬值动能,金融市场受到非常明显的冲击。尤其是波动率起来之后,对于股市的表现尤其不安。隔夜美国股市出现明显的下行走势,这…...

    2024/4/25 18:39:16
  15. 【外汇早评】美伊僵持,风险情绪继续升温

    原标题:【外汇早评】美伊僵持,风险情绪继续升温昨日沙特两艘油轮再次发生爆炸事件,导致波斯湾局势进一步恶化,市场担忧美伊可能会出现摩擦生火,避险品种获得支撑,黄金和日元大幅走强。美指受中美贸易问题影响而在低位震荡。继5月12日,四艘商船在阿联酋领海附近的阿曼湾、…...

    2024/4/28 1:34:08
  16. 【原油贵金属早评】贸易冲突导致需求低迷,油价弱势

    原标题:【原油贵金属早评】贸易冲突导致需求低迷,油价弱势近日虽然伊朗局势升温,中东地区几起油船被袭击事件影响,但油价并未走高,而是出于调整结构中。由于市场预期局势失控的可能性较低,而中美贸易问题导致的全球经济衰退风险更大,需求会持续低迷,因此油价调整压力较…...

    2024/4/26 19:03:37
  17. 氧生福地 玩美北湖(上)——为时光守候两千年

    原标题:氧生福地 玩美北湖(上)——为时光守候两千年一次说走就走的旅行,只有一张高铁票的距离~ 所以,湖南郴州,我来了~ 从广州南站出发,一个半小时就到达郴州西站了。在动车上,同时改票的南风兄和我居然被分到了一个车厢,所以一路非常愉快地聊了过来。 挺好,最起…...

    2024/4/28 1:22:35
  18. 氧生福地 玩美北湖(中)——永春梯田里的美与鲜

    原标题:氧生福地 玩美北湖(中)——永春梯田里的美与鲜一觉醒来,因为大家太爱“美”照,在柳毅山庄去寻找龙女而错过了早餐时间。近十点,向导坏坏还是带着饥肠辘辘的我们去吃郴州最富有盛名的“鱼头粉”。说这是“十二分推荐”,到郴州必吃的美食之一。 哇塞!那个味美香甜…...

    2024/4/25 18:39:14
  19. 氧生福地 玩美北湖(下)——奔跑吧骚年!

    原标题:氧生福地 玩美北湖(下)——奔跑吧骚年!让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 啊……啊……啊 两…...

    2024/4/26 23:04:58
  20. 扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!

    原标题:扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!扒开伪装医用面膜,翻六倍价格宰客!当行业里的某一品项火爆了,就会有很多商家蹭热度,装逼忽悠,最近火爆朋友圈的医用面膜,被沾上了污点,到底怎么回事呢? “比普通面膜安全、效果好!痘痘、痘印、敏感肌都能用…...

    2024/4/27 23:24:42
  21. 「发现」铁皮石斛仙草之神奇功效用于医用面膜

    原标题:「发现」铁皮石斛仙草之神奇功效用于医用面膜丽彦妆铁皮石斛医用面膜|石斛多糖无菌修护补水贴19大优势: 1、铁皮石斛:自唐宋以来,一直被列为皇室贡品,铁皮石斛生于海拔1600米的悬崖峭壁之上,繁殖力差,产量极低,所以古代仅供皇室、贵族享用 2、铁皮石斛自古民间…...

    2024/4/25 18:39:00
  22. 丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者

    原标题:丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者【公司简介】 广州华彬企业隶属香港华彬集团有限公司,专注美业21年,其旗下品牌: 「圣茵美」私密荷尔蒙抗衰,产后修复 「圣仪轩」私密荷尔蒙抗衰,产后修复 「花茵莳」私密荷尔蒙抗衰,产后修复 「丽彦妆」专注医学护…...

    2024/4/26 19:46:12
  23. 广州械字号面膜生产厂家OEM/ODM4项须知!

    原标题:广州械字号面膜生产厂家OEM/ODM4项须知!广州械字号面膜生产厂家OEM/ODM流程及注意事项解读: 械字号医用面膜,其实在我国并没有严格的定义,通常我们说的医美面膜指的应该是一种「医用敷料」,也就是说,医用面膜其实算作「医疗器械」的一种,又称「医用冷敷贴」。 …...

    2024/4/27 11:43:08
  24. 械字号医用眼膜缓解用眼过度到底有无作用?

    原标题:械字号医用眼膜缓解用眼过度到底有无作用?医用眼膜/械字号眼膜/医用冷敷眼贴 凝胶层为亲水高分子材料,含70%以上的水分。体表皮肤温度传导到本产品的凝胶层,热量被凝胶内水分子吸收,通过水分的蒸发带走大量的热量,可迅速地降低体表皮肤局部温度,减轻局部皮肤的灼…...

    2024/4/27 8:32:30
  25. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  26. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  27. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  28. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  29. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  30. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  31. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  32. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  33. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  34. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  35. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  36. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  37. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  38. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  39. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  40. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  41. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  42. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  43. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  44. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57