面试题:String a = “ab”; String b = “a” + “b”; a == b 是否相等

面试考察点

考察目的: 考察对JVM基础知识的理解,涉及到常量池、JVM运行时数据区等。

考察范围: 工作2到5年。

背景知识

要回答这个问题,需要搞明白两个最基本的问题

  1. String a=“ab”,在JVM中发生了什么?
  2. String b=“a”+“b”,底层是如何实现?

JVM的运行时数据

首先,我们一起来复习一下JVM的运行时数据区。

为了让大家有一个全局的视角,我从类加载,到JVM运行时数据区的整体结构画出来,如下图所示。

对于每一个区域的作用,在我之前的面试系列文章中有详细说明,这里就不做复述了。

image-20211106144143909

在上图中,我们需要重点关注几个类容:

  1. 字符串常量池
  2. 封装类常量池
  3. 运行时常量池
  4. JIT编译器

这些内容都和本次面试题有非常大的关联关系,这里对于常量池部分的内容,先保留一个疑问,先跟随我来学习一下JVM中的常量池。

JVM中都有哪些常量池

大家经常会听到各种常量池,但是又不知道这些常量池到底存储在哪里,因此会有很多的疑问:JVM中到底有哪些常量池?

JVM中的常量池可以分成以下几类:

  1. Class文件常量池
  2. 全局字符串常量池
  3. 运行时常量池

Class文件常量池

每个Class文件的字节码中都有一个常量池,里面主要存放编译器生成的各种字面量和符号引用。为了更直观的理解,我们编写下面这个程序。

public class StringExample {private int value = 1;public final static int fs=101;public static void main(String[] args) {String a="ab";String b="a"+"b";String c=a+b;}
}

上述程序编译后,通过javap -v StringExample.class查看该类的字节码文件,截取部分内容如下。

Constant pool:#1 = Methodref          #9.#32         // java/lang/Object."<init>":()V#2 = Fieldref           #8.#33         // org/example/cl07/StringExample.value:I#3 = String             #34            // ab#4 = Class              #35            // java/lang/StringBuilder#5 = Methodref          #4.#32         // java/lang/StringBuilder."<init>":()V#6 = Methodref          #4.#36         // java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StrvalueingBuilder;#7 = Methodref          #4.#37         // java/lang/StringBuilder.toString:()Ljava/lang/String;#8 = Class              #38            // org/example/cl07/StringExample#9 = Class              #39            // java/lang/Object#10 = Utf8               value#11 = Utf8               I#12 = Utf8               fs#13 = Utf8               ConstantValue#14 = Integer            101#15 = Utf8               <init>#16 = Utf8               ()V#17 = Utf8               Code#18 = Utf8               LineNumberTable#19 = Utf8               LocalVariableTable#20 = Utf8               this#21 = Utf8               Lorg/example/cl07/StringExample;#22 = Utf8               main#23 = Utf8               ([Ljava/lang/String;)V#24 = Utf8               args#25 = Utf8               [Ljava/lang/String;#26 = Utf8               a#27 = Utf8               Ljava/lang/String;#28 = Utf8               b#29 = Utf8               c#30 = Utf8               SourceFile#31 = Utf8               StringExample.java#32 = NameAndType        #15:#16        // "<init>":()V#33 = NameAndType        #10:#11        // value:I#34 = Utf8               ab#35 = Utf8               java/lang/StringBuilder#36 = NameAndType        #40:#41        // append:(Ljava/lang/String;)Ljava/lang/StringBuilder;#37 = NameAndType        #42:#43        // toString:()Ljava/lang/String;#38 = Utf8               org/example/cl07/StringExample#39 = Utf8               java/lang/Object#40 = Utf8               append#41 = Utf8               (Ljava/lang/String;)Ljava/lang/StringBuilder;#42 = Utf8               toString#43 = Utf8               ()Ljava/lang/String;

我们关注一下Constant pool描述的部分,表示Class文件的常量池。在该常量池中主要存放两类常量。

  1. 字面量。
  2. 符号引用。

字面量

  • 字面量,给基本类型变量赋值的方式就叫做字面量或者字面值。 比如:String a=“b” ,这里“b”就是字符串字面量,同样类推还有整数字面值、浮点类型字面量、字符字面量。

    在上述代码中,字面量常量的字节码为:

    #3 = String             #34            // ab
    #26 = Utf8               a
    #34 = Utf8               ab
    
  • final修饰的成员变量、静态变量、实例变量、局部变量,比如:

      #11 = Utf8               I#12 = Utf8               fs#13 = Utf8               ConstantValue#14 = Integer            101
    

从上面的字节码来看,字面量和final修饰的属性是保存在常量池中,这些存在于常量池的字面量,指得是数据的值,比如ab101

对于基本数据类型,比如private int value=1,在常量池中只保留了他的字段描述符(I)字段名称(value),它的字面量不会存在与常量池。

  #10 = Utf8               value#11 = Utf8               I

另外,对于String c=a+b;c这个属性的值也没有保存到常量池,因为在编译期间,ab的值时不确定的。

#29 = Utf8               c
#35 = Utf8               java/lang/StringBuilder
#36 = NameAndType        #40:#41        // append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
#37 = NameAndType        #42:#43        // toString:()Ljava/lang/String;
#39 = Utf8               java/lang/Object
#40 = Utf8               append
#41 = Utf8               (Ljava/lang/String;)Ljava/lang/StringBuilder;

如果,我们把代码修改成下面这种形式

public static void main(String[] args) {final String a="ab";final String b="a"+"b";String c=a+b;
}

重新生成字节码之后,可以看到字节码发生了变化,c这个属性的值abab也保存到了常量池中。

#26 = Utf8               c
#27 = Utf8               SourceFile
#28 = Utf8               StringExample.java
#29 = NameAndType        #12:#13        // "<init>":()V
#30 = NameAndType        #7:#8          // value:I
#31 = Utf8               ab
#32 = Utf8               abab

符号引用

符号引用主要设涉及编译原理方面的概念,包括下面三类常量:

  1. 类和接口的全限定名(Full Qualified Name),也就是Ljava/lang/String;,主要用于在运行时解析得到类的直接引用。

      #23 = Utf8               ([Ljava/lang/String;)V#25 = Utf8               [Ljava/lang/String;#27 = Utf8               Ljava/lang/String;
    
  2. 字段的名称和描述符(Descriptor),字段也就是类或者接口中声明的变量,包括类级别变量(static)实例级的变量

    #1 = Methodref          #9.#32         // java/lang/Object."<init>":()V
    #2 = Fieldref           #8.#33         // org/example/cl07/StringExample.value:I
    #3 = String             #34            // ab
    #4 = Class              #35            // java/lang/StringBuilder
    #5 = Methodref          #4.#32         // java/lang/StringBuilder."<init>":()V
    #6 = Methodref          #4.#36         // java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StrvalueingBuilder;
    #7 = Methodref          #4.#37         // java/lang/StringBuilder.toString:()Ljava/lang/String;
    #8 = Class              #38            // org/example/cl07/StringExample#24 = Utf8               args
    #26 = Utf8               a
    #28 = Utf8               b
    #29 = Utf8               c
    
  3. 方法的名称和描述符,方法的描述类似于JNI动态注册时的“方法签名”,也就是参数类型+返回值类型,比如下面的这种字节码,表示main方法和String返回类型。

      #19 = Utf8               main#20 = Utf8               ([Ljava/lang/String;)V
    

小结:在Class文件中,存在着一些不会发生变化的东西,比如一个类的名字、类的字段名字/所属数据类型、方法名称/返回类型/参数名、常量、字面量等。这些在JVM解释执行程序的时候非常重要,所以编译器将源代码编译成class文件之后,会用一部分字节分类存储这些不变的代码,而这些字节我们就称为常量池。

运行时常量池

运行时常量池是每一个类或者接口的常量池(Constant Pool)的运行时的表现形式。

我们知道,一个类的加载过程,会经过:加载连接(验证、准备、解析)初始化的过程,而在类加载这个阶段,需要做以下几件事情:

  1. 通过一个类的全类限定名获取此类的二进制字节流。

  2. 在堆内存生成一个java.lang.Class对象,代表加载这个类,做为这个类的入口。

  3. class字节流的静态存储结构转化成方法区(元空间)的运行时数据结构。

而其中第三点,将class字节流代表的静态储存结构转化为方法区的运行时数据结构这个过程,就包含了class文件常量池进入运行时常量池的过程。

所以,运行时常量池的作用是存储class文件常量池中的符号信息,在类的解析阶段会把这些符号引用转换成直接引用(实例对象的内存地址),翻译出来的直接引用也是存储在运行时常量池中。class文件常量池的大部分数据会被加载到运行时常量池。

image-20211106202558917

运行时常量池保存在方法区(JDK1.8元空间)中,它是全局共享的,不同的类共用一个运行时常量池。

另外,运行时常量池具有动态性的特征,它的内容并不是全部来源与编译后的class文件,在运行时也可以通过代码生成常量并放入运行时常量池。比如String.intern()方法。

字符串常量池

字符串常量池,简单来说就是专门针对String类型设计的常量池。

字符串常量池的常用创建方式有两种。

String a="Hello";
String b=new String("Mic");
  1. a这个变量,是在编译期间就已经确定的,会进入到字符串常量池。

  2. b这个变量,是通过new关键字实例化,new是创建一个对象实例并初始化该实例,因此这个字符串对象是在运行时才能确定的,创建的实例在堆空间上。

字符串常量池存储在堆内存空间中,创建形式如下图所示。

image-20211106235703069

当使用String a=“Hello”这种方式创建字符串对象时,JVM首先会先检查该字符串对象是否存在与字符串常量池中,如果存在,则直接返回常量池中该字符串的引用。否则,会在常量池中创建一个新的字符串,并返回常量池中该字符串的引用。(这种方式可以减少同一个字符串被重复创建,节约内存,这也是享元模式的体现)。

如下图所示,如果再通过String c=“Hello”创建一个字符串,发现常量池已经存在了Hello这个字符串,则直接把该字符串的引用返回即可。(String里面的享元模式设计)

image-20211107001801733

当使用String b=new String(“Mic”)这种方式创建字符串对象时,由于String本身的不可变性(后续分析),因此在JVM编译过程中,会把Mic放入到Class文件的常量池中,在类加载时,会在字符串常量池中创建Mic这个字符串。接着使用new关键字,在堆内存中创建一个String对象并指向常量池中Mic字符串的引用。

如下图所示,如果再通过new String(“Mic”)创建一个字符串对象,此时由于字符串常量池已经存在Mic,所以只需要在堆内存中创建一个String对象即可。

image-20211107002344014

简单总结一下:JVM之所以单独设计字符串常量池,是JVM为了提高性能以及减少内存开销的一些优化:

  1. String对象作为Java语言中重要的数据类型,是内存中占据空间最大的一个对象。高效地使用字符串,可以提升系统的整体性能。
  2. 创建字符串常量时,首先检查字符串常量池是否存在该字符串,如果有,则直接返回该引用实例,不存在,则实例化该字符串放入常量池中。

字符串常量池是JVM所维护的一个字符串实例的引用表,在HotSpot VM中,它是一个叫做StringTable的全局表。在字符串常量池中维护的是字符串实例的引用,底层C++实现就是一个Hashtable。这些被维护的引用所指的字符串实例,被称作”被驻留的字符串”或”interned string”或通常所说的”进入了字符串常量池的字符串”!

封装类常量池

除了字符串常量池,Java的基本类型的封装类大部分也都实现了常量池。包括Byte,Short,Integer,Long,Character,Boolean

注意,浮点数据类型Float,Double是没有常量池的。

封装类的常量池是在各自内部类中实现的,比如IntegerCache(Integer的内部类)。要注意的是,这些常量池是有范围的:

  • Byte,Short,Integer,Long : [-128~127]
  • Character : [0~127]
  • Boolean : [True, False]

测试代码如下:

public static void main(String[] args) {Character a=129;Character b=129;Character c=120;Character d=120;System.out.println(a==b);System.out.println(c==d);System.out.println("...integer...");Integer i=100;Integer n=100;Integer t=290;Integer e=290;System.out.println(i==n);System.out.println(t==e);
}

运行结果:

false
true
...integer...
true
false

封装类的常量池,其实就是在各个封装类里面自己实现的缓存实例(并不是JVM虚拟机层面的实现),如在Integer中,存在IntegerCache,提前缓存了-128~127之间的数据实例。意味着这个区间内的数据,都采用同样的数据对象。这也是为什么上面的程序中,通过==判断得到的结果为true

这种设计其实就是享元模式的应用。

private static class IntegerCache {static final int low = -128;static final int high;static final Integer cache[];static {// high value may be configured by propertyint h = 127;String integerCacheHighPropValue =sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");if (integerCacheHighPropValue != null) {try {int i = parseInt(integerCacheHighPropValue);i = Math.max(i, 127);// Maximum array size is Integer.MAX_VALUEh = Math.min(i, Integer.MAX_VALUE - (-low) -1);} catch( NumberFormatException nfe) {// If the property cannot be parsed into an int, ignore it.}}high = h;cache = new Integer[(high - low) + 1];int j = low;for(int k = 0; k < cache.length; k++)cache[k] = new Integer(j++);// range [-128, 127] must be interned (JLS7 5.1.7)assert IntegerCache.high >= 127;}private IntegerCache() {}
}

封装类常量池的设计初衷其实String相同,也是针对频繁使用的数据区间进行缓存,避免频繁创建对象的内存开销。

关于字符串常量池的问题探索

在上述常量池中,关于String字符串常量池的设计,还有很多问题需要探索:

  1. 如果常量池中已经存在某个字符串常量,后续定义相同字符串的字面量时,是如何指向同一个字符串常量的引用?也就是下面这段代码的断言结果是true

    String a="Mic";
    String b="Mic";
    assert(a==b); //true
    
  2. 字符串常量池的容量到底有多大?

  3. 为什么要设计针对字符串单独设计一个常量池?

为什么要设计针对字符串单独设计一个常量池?

首先,我们来看一下String的定义。

public final class Stringimplements java.io.Serializable, Comparable<String>, CharSequence {/** The value is used for character storage. */private final char value[];/** Cache the hash code for the string */private int hash; // Default to 0
}

从上述源码中可以发现。

  1. String这个类是被final修饰的,代表该类无法被继承。
  2. String这个类的成员属性value[]也是被final修饰,代表该成员属性不可被修改。

因此String具有不可变的特性,也就是说String一旦被创建,就无法更改。这么设计的好处有几个。

  1. 方便实现字符串常量池: 在Java中,由于会大量的使用String常量,如果每一次声明一个String都创建一个String对象,那将会造成极大的空间资源的浪费。Java提出了String pool的概念,在堆中开辟一块存储空间String pool,当初始化一个String变量时,如果该字符串已经存在了,就不会去创建一个新的字符串变量,而是会返回已经存在了的字符串的引用。如果字符串是可变的,某一个字符串变量改变了其值,那么其指向的变量的值也会改变,String pool将不能够实现!
  2. 线程安全性,在并发场景下,多个线程同时读一个资源,是安全的,不会引发竞争,但对资源进行写操作时是不安全的,不可变对象不能被写,所以保证了多线程的安全。
  3. 保证 hash 属性值不会频繁变更。确保了唯一性,使得类似HashMap容器才能实现相应的key-value缓存功能,于是在创建对象时其hashcode就可以放心的缓存了,不需要重新计算。这也就是Map喜欢将String作为Key的原因,处理速度要快过其它的键对象。所以HashMap中的键往往都使用String。

注意,由于String的不可变性可以方便实现字符串常量池这一点很重要,这时实现字符串常量池的前提。

字符串常量池,其实就是享元模式的设计,它和在JDK中提供的IntegerCache、以及Character等封装对象的缓存设计类似,只是String是JVM层面的实现。

字符串的分配,和其他的对象分配一样,耗费高昂的时间与空间代价。JVM为了提高性能和减少内存开销,在实例化字符串常量的时候进行了一些优化。为 了减少在JVM中创建的字符串的数量,字符串类维护了一个字符串池,每当代码创建字符串常量时,JVM会首先检查字符串常量池。如果字符串已经存在池中, 就返回池中的实例引用。如果字符串不在池中,就会实例化一个字符串并放到池中。Java能够进行这样的优化是因为字符串是不可变的,可以不用担心数据冲突 进行共享。

我们把字符串常量池当成是一个缓存,通过双引号定义一个字符串常量时,首先从字符串常量池中去查找,找到了就直接返回该字符串常量池的引用,否则就创建一个新的字符串常量放在常量池中。

常量池有多大呢?

我想大家一定和我一样好奇,常量池到底能存储多少个常量?

前面我们说过,常量池本质上是一个hash表,这个hash表示不可动态扩容的。也就意味着极有可能出现单个 bucket 中的链表很长,导致性能降低。

在JDK1.8中,这个hash表的固定Bucket数量是60013个,我们可以通过下面这个参数配置指定数量

-XX:StringTableSize=N

可以增加下面这个虚拟机参数,来打印常量池的数据。

-XX:+PrintStringTableStatistics

增加参数后,运行下面这段代码。

public class StringExample {private int value = 1;public final static int fs=101;public static void main(String[] args) {final String a="ab";final String b="a"+"b";String c=a+b;}
}

在JVM退出时,会打印常量池的使用情况如下:

SymbolTable statistics:
Number of buckets       :     20011 =    160088 bytes, avg   8.000
Number of entries       :     12192 =    292608 bytes, avg  24.000
Number of literals      :     12192 =    470416 bytes, avg  38.584
Total footprint         :           =    923112 bytes
Average bucket size     :     0.609
Variance of bucket size :     0.613
Std. dev. of bucket size:     0.783
Maximum bucket size     :         6
StringTable statistics:
Number of buckets       :     60013 =    480104 bytes, avg   8.000
Number of entries       :       889 =     21336 bytes, avg  24.000
Number of literals      :       889 =     59984 bytes, avg  67.474
Total footprint         :           =    561424 bytes
Average bucket size     :     0.015
Variance of bucket size :     0.015
Std. dev. of bucket size:     0.122
Maximum bucket size     :         2

可以看到字符串常量池的总大小是60013,其中字面量是889

字面量是什么时候进入到字符串常量池的

字符串字面量,和其他基本类型的字面量或常量不同,并不会在类加载中的解析(resolve) 阶段填充并驻留在字符串常量池中,而是以特殊的形式存储在 运行时常量池(Run-Time Constant Pool) 中。而是只有当此字符串字面量被调用时(如对其执行ldc字节码指令,将其添加到栈顶),HotSpot VM才会对其进行resolve,为其在字符串常量池中创建对应的String实例。

具体来说,应该是在执行ldc指令时(该指令表示int、float或String型常量从常量池推送至栈顶)

在JDK1.8的HotSpot VM中,这种未真正解析(resolve)的String字面量,被称为pseudo-string,以JVM_CONSTANT_String的形式存放在运行时常量池中,此时并未为其创建String实例。

在编译期,字符串字面量以"CONSTANT_String_info"+"CONSTANT_Utf8_info"的形式存放在class文件的 常量池(Constant Pool) 中;

在类加载之后,字符串字面量以"JVM_CONSTANT_UnresolvedString(JDK1.7)"或者"JVM_CONSTANT_String(JDK1.8)"的形式存放在 运行时常量池(Run-time Constant Pool) 中;

在首次使用某个字符串字面量时,字符串字面量以真正的String对象的方式存放在 字符串常量池(String Pool) 中。

通过下面这段代码可以证明。

public static void main(String[] args) {String a =new String(new char[]{'a','b','c'});String b = a.intern();System.out.println(a == b);String x =new String("def");String y = x.intern();System.out.println(x == y);
}

使用new char[]{‘a’,’b’,’c’}构建的字符串,并没有在编译的时候使用常量池,而是在调用a.intern()时,将abc保存到常量池并返回该常量池的引用。

intern()方法

在Integer中的valueOf方法中,我们可以看到,如果传递的值i是在IntegerCache.lowIntegerCache.high范围以内,则直接从IntegerCache.cache中返回缓存的实例对象。

public static Integer valueOf(int i) {if (i >= IntegerCache.low && i <= IntegerCache.high)return IntegerCache.cache[i + (-IntegerCache.low)];return new Integer(i);
}

那么,在String类型中,既然存在字符串常量池,那么有没有方法能够实现类似于IntegerCache的功能呢?

答案是:intern()方法。由于字符串池是虚拟机层面的技术,所以在String的类定义中并没有类似IntegerCache这样的对象池,String类中提及缓存/池的概念只有intern() 这个方法。

/*** Returns a canonical representation for the string object.* <p>* A pool of strings, initially empty, is maintained privately by the* class {@code String}.* <p>* When the intern method is invoked, if the pool already contains a* string equal to this {@code String} object as determined by* the {@link #equals(Object)} method, then the string from the pool is* returned. Otherwise, this {@code String} object is added to the* pool and a reference to this {@code String} object is returned.* <p>* It follows that for any two strings {@code s} and {@code t},* {@code s.intern() == t.intern()} is {@code true}* if and only if {@code s.equals(t)} is {@code true}.* <p>* All literal strings and string-valued constant expressions are* interned. String literals are defined in section 3.10.5 of the* <cite>The Java&trade; Language Specification</cite>.** @return  a string that has the same contents as this string, but is*          guaranteed to be from a pool of unique strings.*/
public native String intern();

这个方法的作用是:去拿String的内容去Stringtable里查表,如果存在,则返回引用,不存在,就把该对象的"引用"保存在Stringtable表里

比如下面这段程序:

public static void main(String[] args) {String str = new String("Hello World");String str1=str.intern();String str2 = "Hello World";System.out.print(str1 == str2);
}

运行的结果为:true。

实现逻辑如下图所示,str1通过调用str.intern()去常量池表中获取Hello World字符串的引用,接着str2通过字面量的形式声明一个字符串常量,由于此时Hello World已经存在于字符串常量池中,所以同样返回该字符串常量Hello World的引用,使得str1str2具有相同的引用地址,从而运行结果为true

image-20211107151916196

总结:intern方法会从字符串常量池中查询当前字符串是否存在:

  • 若不存在就会将当前字符串放入常量池中,并返回当地字符串地址引用。
  • 如果存在就返回字符串常量池那个字符串地址。

注意,所有字符串字面量在初始化时,会默认调用intern()方法。

这段程序,之所以a==b,是因为声明a时,会通过intern()方法去字符串常量池中查找是否存在字符串Hello,由于不存在,则会创建一个。同理,变量b也同样如此,所以b在声明时,发现字符常量池中已经存在Hello的字符串常量,所以直接返回该字符串常量的引用。

public static void main(String[] args) {String a="Hello";String b="Hello";
}

OK,学习到这里,是不是感觉自己懂了?我出一道题目来考考大家,下面这段程序的运行结果是什么?

public static void main(String[] args) {String a =new String(new char[]{'a','b','c'});String b = a.intern();System.out.println(a == b);String x =new String("def");String y = x.intern();System.out.println(x == y);
}

正确答案是:

true
false

第二个输出为false还可以理解,因为new String(“def”)会做两件事:

  1. 在字符串常量池中创建一个字符串def
  2. new关键字创建一个实例对象string,并指向字符串常量池def的引用。

x.intern(),是从字符串常量池获取def的引用,他们的指向地址不同,我后面的内容还会详细解释。

第一个输出结果为true是为啥捏?

JDK文档中关于intern()方法的说明:当调用intern方法时,如果常量池(内置在 JVM 中的)中已经包含相同的字符串,则返回池中的字符串。否则,将此String对象添加到池中,并返回对该String对象的引用。

在构建String a的时候,使用new char[]{‘a’,’b’,’c’}初始化字符串时(不会自动调用intern(),字符串采用懒加载方式进入到常量池),并没有在字符串常量池中构建abc这个字符串实例。所以当调用a.intern()方法时,会把该String对象添加到字符常量池中,并返回对该String对象的引用,所以ab指向的引用地址是同一个。

问题回答

面试题:String a = “ab”; String b = “a” + “b”; a == b 是否相等

回答a==b是相等的,原因如下:

  1. 变量ab都是常量字符串,其中b这个变量,在编译时,由于不存在可变化的因素,所以编译器会直接把变量b赋值为ab(这个是属于编译器优化范畴,也就是编译之后,b会保存到Class常量池中的字面量)。
  2. 对于字符串常量,初始化a时, 会在字符串常量池中创建一个字符串ab并返回该字符串常量池的引用。
  3. 对于变量b,赋值ab时,首先从字符串常量池中查找是否存在相同的字符串,如果存在,则返回该字符串引用。
  4. 因此,a和b所指向的引用是同一个,所以a==b成立。

问题总结

关于常量池部分的内容,要比较深入和全面的理解,还是需要花一些时间的。

比如大家通过阅读上面的内容,认为对字符串常量池有一个非常深入的理解,可以,我们再来看一个问题:

public static void main(String[] args) {String str = new String("Hello World");String str1=str.intern();System.out.print(str == str1);
}

上面这段代码,很显然返回false,原因如下图所示。很明显strstr1所指向的引用地址不是同一个。

image-20211107155237442

但是我们把上述代码改造一下:

public static void main(String[] args) {String str = new String("Hello World")+new String("!");String str1=str.intern();System.out.print(str == str1);
}

上述程序输出的结果变成了:true。 为什么呢?

这里也是JVM编译器层面做的优化,因为String是不可变类型,所以理论上来说,上述程序的执行逻辑是:通过+进行字符串拼接时,相当于把原有的String变量指向的字符串常量HelloWorld取出来,加上另外一个String变量指向的字符串常量!,再生成一个新的对象。

假设我们是通过for循环来对String变量进行拼接,那将会生成大量的对象,如果这些对象没有被及时回收,会造成非常大的内存浪费。

所以JVM优化之后,其实是通过StringBuilder来进行拼接,也就是只会产生一个对象实例StringBuilder,然后再通过append方法来拼接。

为了证明我说的情况,来看一下上述代码的字节码。

 public static void main(java.lang.String[]);descriptor: ([Ljava/lang/String;)Vflags: ACC_PUBLIC, ACC_STATICCode:stack=4, locals=3, args_size=10: new           #3                  // class java/lang/StringBuilder3: dup4: invokespecial #4                  // Method java/lang/StringBuilder."<init>":()V7: new           #5                  // class java/lang/String10: dup11: ldc           #6                  // String Hello World13: invokespecial #7                  // Method java/lang/String."<init>":(Ljava/lang/String;)V16: invokevirtual #8                  // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;19: new           #5                  // class java/lang/String22: dup23: ldc           #9                  // String !25: invokespecial #7                  // Method java/lang/String."<init>":(Ljava/lang/String;)V28: invokevirtual #8                  // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;31: invokevirtual #10                 // Method java/lang/StringBuilder.toString:()Ljava/lang/String;34: astore_135: aload_136: invokevirtual #11                 // Method java/lang/String.intern:()Ljava/lang/String;39: astore_240: getstatic     #12                 // Field java/lang/System.out:Ljava/io/PrintStream;43: aload_144: aload_245: if_acmpne     5248: iconst_149: goto          5352: iconst_053: invokevirtual #13                 // Method java/io/PrintStream.print:(Z)V56: return

从字节码中可以看到,构建了一个StringBuilder,

 0: new           #3                  // class java/lang/StringBuilder

然后把字符串常量通过append方法进行拼接,最后调用toString()方法得到一个字符串常量。

16: invokevirtual #8                  // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
28: invokevirtual #8                  // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
31: invokevirtual #10                 // Method java/lang/StringBuilder.toString:()Ljava/lang/String;

因此,上述代码,等价于下面这种形式。

public static void main(String[] args) {StringBuilder sb=new StringBuilder().append(new String("Hello World")).append(new String("!"));String str=sb.toString();String str1=str.intern();System.out.print(str == str1);
}

所以,得到的结果是true

基于这个问题的变体还有很多,比如再来变一次,下面这段程序的运行结果是多少?

public static void main(String[] args) {String s1 = "a";String s2 = "b";String s3 = "ab";String s4 = s1 + s2;System.out.println(s3 == s4);
}

答案是false

因为上述程序等价于, s3s4指向不同的地址引用,自然不相等。

public static void main(String[] args) {String s1 = "a";String s2 = "b";String s3 = "ab";StringBuilder sb=new StringBuilder().append(s1).append(s2);String s4 = sb.toString();System.out.println(s3 == s4);
}

总结: 只有足够清晰的理解了字符串常量池相关的所有知识点,不管面试过程中如何变化,你都能准确回答,这就是知识的力量!
版权声明:本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 Mic带你学架构
如果本篇文章对您有帮助,还请帮忙点个关注和赞,您的坚持是我不断创作的动力。欢迎关注「跟着Mic学架构」公众号公众号获取更多技术干货!

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. Hadoop集群启动dataNode启动不成功,

    hadoop2.7集群搭建后&#xff0c;启动发现nameNode和nodeManger可以启动成功&#xff0c;dataNode启动不成功 到hadoop安装目录的/etc/hadoop/目录下查看 datanode日志&#xff0c;发现服务拒绝连接&#xff0c;一开始怀疑是ssh配置问题&#xff0c;重新删除了 .ssh目录&#…...

    2024/3/6 12:37:01
  2. Python Qt GUI设计:QMdiArea和QMdiSubWindow类实现多文档界面(拓展篇—3)

    一个典型的GUI应用程序可能有多个窗口&#xff0c;选项卡控件和堆栈窗口控件允许一次使用其中的一个窗口。然而&#xff0c;很多时候这种方法不是很有用&#xff0c;因为其他窗口的视图是隐藏的一种同时显示多个窗口的方法是&#xff0c;创建多个独立的窗口&#xff0c;这些独立…...

    2024/3/6 12:37:00
  3. FLASH闪存

    文章目录FLASH闪存模块存储器组织组成FLASH闪存的读取编程和擦除操作注意事项标准编程步骤闪存擦除FLASH操作相关寄存器FLASH访问控制寄存器FLASH秘钥寄存器FLASH控制寄存器库函数FLASH 通常指FLASH MEMORY 即闪存 全名叫FLASH EEPROM Memory 结合了POM和RAM的长处 不仅具备电…...

    2024/3/6 12:36:58
  4. Java集合笔记一 —— Collection,java相关技术库

    数组的长度不可变&#xff0c;集合可变的 数组中存放的数据类型是与定义的时候一致的&#xff0c;集合中可以存放各种数据类型 &#xff08;虽说集合中可以存放各种数据类型&#xff0c;但是一般情况下&#xff0c;都是一个集合存放一种数据类型&#xff09; 集合只能存放引…...

    2024/3/7 14:41:14
  5. 2021-11-07编码设计规约

    编码设计规约编码规约缘起代码格式与命名风格如何定义常量注释规约前后端设计与规约编码规约缘起 熵增定律&#xff1a;只要我们没有外力干预代码规范&#xff0c;我们的代码总有一天无可救药 编码规约存在的意义&#xff1a; 减少代码的维护成本 改善可读性 提高团队的开发合…...

    2024/3/6 12:36:56
  6. mac brew安装xxx时候出现curl: (22) The requested URL returned error: 404

    目前有两个解决方案&#xff1a; 方案一&#xff1a; &#xff08;通过方案一解决&#xff09; 直接更新update brew brew update 方案二&#xff1a; &#xff08;方案二实验没成功&#xff09; 修改环境变量&#xff1a; brew config # 查看 ## 查找&#xff1a; HOMEBRE…...

    2024/3/6 12:36:55
  7. 用shell创建django运行程序

    runserver直接运行版本 1.不用传入参数 #!/bin/shecho -e "\033[32m killed original process \033[0m" project_name"tax_backend" env_name"tax_backend"echo "name $name" idsps -ef | grep "$project_name" | grep -…...

    2024/3/6 12:36:54
  8. 用安卓手机给电脑当摄像头[DroidCam]

    因为一些原因要是用摄像头做一个认证&#xff0c;但是台式机没有摄像头怎么办&#xff1f; 我看看了手中的vivo X6 plus 古董安卓机 开始各种找教程找文章找工具&#xff0c;终于在不断努力中找齐了工具 这两个工具能用的很少都是几年前的东西不能用&#xff0c;收集一下做个…...

    2024/3/4 14:23:42
  9. 面试问题及答案合计

    面试总结 1.说一下ThreadLocal ​ 1.ThreadLocal是java中所提供的线程本地存储机制&#xff0c;可以利用该机制将数据缓存在某个线程内部&#xff0c;该线程在任意时刻&#xff0c;任意方法中获取缓存的数据 ​ 2.ThreadLocal底层是通过ThreadLocalMap来实现的&#xff0c;每…...

    2024/3/4 14:23:40
  10. docker 下载镜像失败

    下载镜像时 报错&#xff1a;error pulling image configuration: Get "https://production.cloudflare.docker.com/registry-v2/docker/registry/v2/blobs/sha256/5d/5d0da3dc976460b72c77d94c8a1ad043720b0416bfc16c52c45d4847e53fadb6/data?verify1636271440-7XNGk560…...

    2024/3/4 14:23:39
  11. 有if无else

    // 练习&#xff1b; //根据淡旺季和年龄打印票价 //旺季 4-10. 成人18-60 60元 未成年小于18 半价 老人大于60岁&#xff08;1/3&#xff09; //淡季 成人40 其他20 import java.util.Scanner; public class NestedIf {public static void main(String[] arge) {Scanner jiSc…...

    2024/3/6 12:36:52
  12. Java程序员书籍推荐:这些书你看过几本?,java初级程序员面试

    3、Spring源码深度解析 Spring 这个框架做得很好&#xff0c;功能很强大&#xff0c;以至于很多开发者都只知Spring&#xff0c;不知什么是工厂、什么是单例、什么是代理&#xff08;我面试别人的真实体会&#xff09;。这种功能强 大的框架内部一定是很复杂的实现&#xff0c;…...

    2024/3/6 12:36:51
  13. 机器学习实践-线性回归

    为了检验自己前期对机器学习中线性回归部分的掌握程度并找出自己在学习中存在的问题&#xff0c;我使用C语言简单实现了单变量简单线性回归。 本文对自己使用C语言实现单变量线性回归过程中遇到的问题和心得做出总结。 线性回归 线性回归是机器学习和统计学中最基础和最广泛应…...

    2024/3/6 12:36:50
  14. 苹果Mac图片无损放大软件:ON1 Resize

    ON1 Resize 采用ON1行业领先的Fractals技术&#xff0c;是实现最高质量的图像无损放大必备工具。新版本包括性能增强功能和新功能&#xff0c;可以更轻松&#xff0c;更快速地调整照片大小&#xff0c;而不会损失清晰度和细节。ON1 Resize 2021 还内置了一款图片浏览器&#xf…...

    2024/3/6 12:36:49
  15. Access中的基础SQL操作

    SQL是一种结构化查询语言,集数据定义、数据查询、数据操纵、数据控制功能于一体。定义create、drop、alter查询select操纵inster、update、delete控制crant、revote【实例一:图书管理数据库】假设我们有一个图书管理的数据库,其中的表关系如下:一、创建表create table 读者…...

    2024/3/29 3:36:01
  16. 598. 范围求和 II

    598. 范围求和 II 给定一个初始元素全部为 0&#xff0c;大小为 m*n 的矩阵 M 以及在 M 上的一系列更新操作。 操作用二维数组表示&#xff0c;其中的每个操作用一个含有两个正整数 a 和 b 的数组表示&#xff0c;含义是将所有符合 0 < i < a 以及 0 < j < b 的元…...

    2024/3/6 12:36:47
  17. 转码日记:1day之下定决心

    双非电子信息工程大三在读&#xff0c;面临考验or生产的抉择。 本专业就业形式不错&#xff0c;简单来说顺利毕业实习前针对性学习x月就能找到待遇不错的工作。院内考研大热&#xff0c;但上岸比例不乐观&#xff0c;面对择校、考研、读研等不确定因素&#xff0c;动摇了大一、…...

    2024/3/6 12:36:46
  18. 关于常用类

    常用类 内部类 class Outer{class Inner {// 内部类也会形成一个 .class 文件// 访问outer 里的private 的属性。// 方法 ().....属性 自己定义} }яАpublic static void main(String[] args) { //Outer outer new Outer(); //Outer.Inter inter ou…...

    2024/3/6 12:36:45
  19. 字母顺序排序

    #include<stdio.h> #include<string.h> int main() {char a[100];int i0;int j1;int n,l;int m8;int x,y,z;scanf("%s",a); lstrlen(a);//测试字符串长度 ml; for(i0;i<l;i){for(nm;n>1;n--){if(a[i]>a[j]){xa[i];a[i]a[j];a[j]x;} j;}ji2;m--;…...

    2024/3/6 12:36:44
  20. 网络渗透———复现任务

    1、靶机安装easy file sharing server&#xff08;efssetup_2018.zip&#xff09; 2、利用Nmap扫描发现靶机(Windows)运行了该服务。 打开VM&#xff0c;从文件中打开Metasploitable2并登录,用户名跟密码都是msfadmin。显示msfadminmetsploitable:~$ 即登录成功。然后运行info…...

    2024/3/6 12:36:43

最新文章

  1. 基础小知识

    Go make | new 都是用于分配相应类型的内存空间。区别&#xff1a; make仅支持 slice、map、channel 三种数据类型的内存分配和初始化返回值是所创建类型的本身分配堆上的内存空间&#xff0c;通过GC回收new分配内存&#xff0c;内存里存的值是对应类型的零值。返回值是所创…...

    2024/3/29 17:40:45
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. ​python学习之变量类型​

    print单纯输中的十种数据类型只需要用print()函数即可&#xff0c;()里面直接写变量名。 下面重点介绍print格式输出&#xff1a; 第一种方法&#xff1a;一个萝卜一个坑&#xff0c;下面的代码中&#xff0c;{0}、{1}、{2}分别表示j,i,j*i&#xff0c;单引号里面是输出格式。…...

    2024/3/29 12:47:58
  4. (保姆级)离线安装mongoDB集群

    Docker搭建MongoDB集群 副本集模式&#xff08;Replica Set&#xff09; 是一种互为主从的关系&#xff0c; Replica Set 将数据复制多份保存&#xff0c;不同服务器保存同一份数据&#xff0c;在出现故障时自动切换&#xff0c;实现故障转移。 此集群拥有一个主节点和多个从…...

    2024/3/29 10:14:26
  5. iOS 开发 block 等待 block 或 block 等待

    block 等待 在 iOS 开发中&#xff0c;如果你想要一个 block&#xff08;闭包&#xff09;等待执行完成&#xff0c;通常意味着你想要同步地执行这个 block&#xff0c;而不是异步地。然而&#xff0c;block 本身并不直接支持同步等待&#xff0c;因为它们是作为函数对象来设计…...

    2024/3/27 11:01:42
  6. 【外汇早评】美通胀数据走低,美元调整

    原标题:【外汇早评】美通胀数据走低,美元调整昨日美国方面公布了新一期的核心PCE物价指数数据,同比增长1.6%,低于前值和预期值的1.7%,距离美联储的通胀目标2%继续走低,通胀压力较低,且此前美国一季度GDP初值中的消费部分下滑明显,因此市场对美联储后续更可能降息的政策…...

    2024/3/27 10:21:24
  7. 【原油贵金属周评】原油多头拥挤,价格调整

    原标题:【原油贵金属周评】原油多头拥挤,价格调整本周国际劳动节,我们喜迎四天假期,但是整个金融市场确实流动性充沛,大事频发,各个商品波动剧烈。美国方面,在本周四凌晨公布5月份的利率决议和新闻发布会,维持联邦基金利率在2.25%-2.50%不变,符合市场预期。同时美联储…...

    2024/3/24 20:11:25
  8. 【外汇周评】靓丽非农不及疲软通胀影响

    原标题:【外汇周评】靓丽非农不及疲软通胀影响在刚结束的周五,美国方面公布了新一期的非农就业数据,大幅好于前值和预期,新增就业重新回到20万以上。具体数据: 美国4月非农就业人口变动 26.3万人,预期 19万人,前值 19.6万人。 美国4月失业率 3.6%,预期 3.8%,前值 3…...

    2024/3/29 2:45:46
  9. 【原油贵金属早评】库存继续增加,油价收跌

    原标题:【原油贵金属早评】库存继续增加,油价收跌周三清晨公布美国当周API原油库存数据,上周原油库存增加281万桶至4.692亿桶,增幅超过预期的74.4万桶。且有消息人士称,沙特阿美据悉将于6月向亚洲炼油厂额外出售更多原油,印度炼油商预计将每日获得至多20万桶的额外原油供…...

    2024/3/29 16:26:39
  10. 【外汇早评】日本央行会议纪要不改日元强势

    原标题:【外汇早评】日本央行会议纪要不改日元强势近两日日元大幅走强与近期市场风险情绪上升,避险资金回流日元有关,也与前一段时间的美日贸易谈判给日本缓冲期,日本方面对汇率问题也避免继续贬值有关。虽然今日早间日本央行公布的利率会议纪要仍然是支持宽松政策,但这符…...

    2024/3/29 5:19:52
  11. 【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响

    原标题:【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响近日伊朗局势升温,导致市场担忧影响原油供给,油价试图反弹。此时OPEC表态稳定市场。据消息人士透露,沙特6月石油出口料将低于700万桶/日,沙特已经收到石油消费国提出的6月份扩大出口的“适度要求”,沙特将满…...

    2024/3/28 17:01:12
  12. 【外汇早评】美欲与伊朗重谈协议

    原标题:【外汇早评】美欲与伊朗重谈协议美国对伊朗的制裁遭到伊朗的抗议,昨日伊朗方面提出将部分退出伊核协议。而此行为又遭到欧洲方面对伊朗的谴责和警告,伊朗外长昨日回应称,欧洲国家履行它们的义务,伊核协议就能保证存续。据传闻伊朗的导弹已经对准了以色列和美国的航…...

    2024/3/29 11:11:56
  13. 【原油贵金属早评】波动率飙升,市场情绪动荡

    原标题:【原油贵金属早评】波动率飙升,市场情绪动荡因中美贸易谈判不安情绪影响,金融市场各资产品种出现明显的波动。随着美国与中方开启第十一轮谈判之际,美国按照既定计划向中国2000亿商品征收25%的关税,市场情绪有所平复,已经开始接受这一事实。虽然波动率-恐慌指数VI…...

    2024/3/29 1:13:26
  14. 【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试

    原标题:【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试美国和伊朗的局势继续升温,市场风险情绪上升,避险黄金有向上突破阻力的迹象。原油方面稍显平稳,近期美国和OPEC加大供给及市场需求回落的影响,伊朗局势并未推升油价走强。近期中美贸易谈判摩擦再度升级,美国对中…...

    2024/3/29 8:28:16
  15. 【原油贵金属早评】市场情绪继续恶化,黄金上破

    原标题:【原油贵金属早评】市场情绪继续恶化,黄金上破周初中国针对于美国加征关税的进行的反制措施引发市场情绪的大幅波动,人民币汇率出现大幅的贬值动能,金融市场受到非常明显的冲击。尤其是波动率起来之后,对于股市的表现尤其不安。隔夜美国股市出现明显的下行走势,这…...

    2024/3/29 7:41:19
  16. 【外汇早评】美伊僵持,风险情绪继续升温

    原标题:【外汇早评】美伊僵持,风险情绪继续升温昨日沙特两艘油轮再次发生爆炸事件,导致波斯湾局势进一步恶化,市场担忧美伊可能会出现摩擦生火,避险品种获得支撑,黄金和日元大幅走强。美指受中美贸易问题影响而在低位震荡。继5月12日,四艘商船在阿联酋领海附近的阿曼湾、…...

    2024/3/24 20:11:18
  17. 【原油贵金属早评】贸易冲突导致需求低迷,油价弱势

    原标题:【原油贵金属早评】贸易冲突导致需求低迷,油价弱势近日虽然伊朗局势升温,中东地区几起油船被袭击事件影响,但油价并未走高,而是出于调整结构中。由于市场预期局势失控的可能性较低,而中美贸易问题导致的全球经济衰退风险更大,需求会持续低迷,因此油价调整压力较…...

    2024/3/29 9:57:23
  18. 氧生福地 玩美北湖(上)——为时光守候两千年

    原标题:氧生福地 玩美北湖(上)——为时光守候两千年一次说走就走的旅行,只有一张高铁票的距离~ 所以,湖南郴州,我来了~ 从广州南站出发,一个半小时就到达郴州西站了。在动车上,同时改票的南风兄和我居然被分到了一个车厢,所以一路非常愉快地聊了过来。 挺好,最起…...

    2024/3/29 0:49:46
  19. 氧生福地 玩美北湖(中)——永春梯田里的美与鲜

    原标题:氧生福地 玩美北湖(中)——永春梯田里的美与鲜一觉醒来,因为大家太爱“美”照,在柳毅山庄去寻找龙女而错过了早餐时间。近十点,向导坏坏还是带着饥肠辘辘的我们去吃郴州最富有盛名的“鱼头粉”。说这是“十二分推荐”,到郴州必吃的美食之一。 哇塞!那个味美香甜…...

    2024/3/24 20:11:15
  20. 氧生福地 玩美北湖(下)——奔跑吧骚年!

    原标题:氧生福地 玩美北湖(下)——奔跑吧骚年!让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 啊……啊……啊 两…...

    2024/3/29 17:27:19
  21. 扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!

    原标题:扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!扒开伪装医用面膜,翻六倍价格宰客!当行业里的某一品项火爆了,就会有很多商家蹭热度,装逼忽悠,最近火爆朋友圈的医用面膜,被沾上了污点,到底怎么回事呢? “比普通面膜安全、效果好!痘痘、痘印、敏感肌都能用…...

    2024/3/24 20:11:13
  22. 「发现」铁皮石斛仙草之神奇功效用于医用面膜

    原标题:「发现」铁皮石斛仙草之神奇功效用于医用面膜丽彦妆铁皮石斛医用面膜|石斛多糖无菌修护补水贴19大优势: 1、铁皮石斛:自唐宋以来,一直被列为皇室贡品,铁皮石斛生于海拔1600米的悬崖峭壁之上,繁殖力差,产量极低,所以古代仅供皇室、贵族享用 2、铁皮石斛自古民间…...

    2024/3/26 11:21:23
  23. 丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者

    原标题:丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者【公司简介】 广州华彬企业隶属香港华彬集团有限公司,专注美业21年,其旗下品牌: 「圣茵美」私密荷尔蒙抗衰,产后修复 「圣仪轩」私密荷尔蒙抗衰,产后修复 「花茵莳」私密荷尔蒙抗衰,产后修复 「丽彦妆」专注医学护…...

    2024/3/28 18:26:34
  24. 广州械字号面膜生产厂家OEM/ODM4项须知!

    原标题:广州械字号面膜生产厂家OEM/ODM4项须知!广州械字号面膜生产厂家OEM/ODM流程及注意事项解读: 械字号医用面膜,其实在我国并没有严格的定义,通常我们说的医美面膜指的应该是一种「医用敷料」,也就是说,医用面膜其实算作「医疗器械」的一种,又称「医用冷敷贴」。 …...

    2024/3/28 12:42:28
  25. 械字号医用眼膜缓解用眼过度到底有无作用?

    原标题:械字号医用眼膜缓解用眼过度到底有无作用?医用眼膜/械字号眼膜/医用冷敷眼贴 凝胶层为亲水高分子材料,含70%以上的水分。体表皮肤温度传导到本产品的凝胶层,热量被凝胶内水分子吸收,通过水分的蒸发带走大量的热量,可迅速地降低体表皮肤局部温度,减轻局部皮肤的灼…...

    2024/3/28 20:09:10
  26. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  27. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  28. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  29. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  30. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  31. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  32. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  33. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  34. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  35. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  36. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  37. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  38. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  39. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  40. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  41. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  42. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  43. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  44. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  45. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57