目录

  • 一、I、P、B 帧
      • 三种帧的说明
  • 二、GOP(Group of picture)
  • 三、CABAC/CAVLC
            • 1.CABAC
            • 2. CAVLC
  • 四、DTS、PTS 的概念
  • 五、码流(码率)
  • 六、采样率
  • 七、音频采样率
  • 八、比特率
        • 常见编码模式
            • ==VBR(Variable Bitrate)动态比特率==
            • ==ABR(Average Bitrate)平均比特率==
            • ==CBR(Constant Bitrate)常数比特率==
  • 九、帧速率
  • 十、 分辨率
            • 1、显示分辨率
            • 2、图像分辨率
  • 十一、高清视频
  • 十二、 位率
      • 1、位率
      • 2、位率类型
        • 量化参数:QP(quantizer parameter)
        • 峰值信噪比:PSNR(Peak signal-to-noise ratio)
        • profile level
        • H.264三种档次
        • 主码流/副码流
  • 十三、音视频的同步

在这里插入图片描述

一、I、P、B 帧


I 帧(Intracoded frames)I 帧图像采用帧内编码方式,即只利用了单帧图像内的空间相关性,而没有利用时间相关性。I 帧使用帧内压缩,不使用运动补偿,由于I 帧不依赖其它帧,所以是随机存取的入点,同时是解码的基准帧I 帧主要用于接收机的初始化和信道的获取,以及节目的切换和插入,I 帧图像的压缩倍数相对较低。I 帧图像是周期性出现在图像序列中的,出现频率可由编码器选择


P 帧(Predictedframes)P 帧和 B 帧图像采用帧间编码方式,即同时利用了空间和时间上的相关性。P 帧图像只采用前向时间预测,可以提高压缩效率和图像质量。P 帧图像中可以包含帧内编码的部分,即 P 帧中的每一个宏块可以是前向预测,也可以是帧内编码


B 帧(Bi-directionalpredicted frames)B 帧图像采用双向时间预测,可以大大提高压缩倍数。值得注意的是,由于 B 帧图像采用了未来帧作为参考,因此 MPEG-2 编码码流中图像帧的传输顺序和显示顺序是不同的


一个 I 帧可以不依赖其他帧就解码出一幅完整的图像,而 P 帧、B 帧不行。P 帧需要依赖视频流中排在它前面的帧才能解码出图像。B 帧则需要依赖视频流中排在它前面或后面的帧才能解码出图像

三种帧的说明


1、I帧
I帧:帧内编码帧 ,I帧表示关键帧,你可以理解为这一帧画面的完整保留;解码时只需要本帧数据就可以完成(因为包含完整画面)

I帧特点:
❤️ 它是一个全帧压缩编码帧。它将全帧图像信息进行JPEG压缩编码及传输;
❤️ 解码时仅用I帧的数据就可重构完整图像;
❤️ I帧描述了图像背景和运动主体的详情;
❤️ I帧不需要参考其他画面而生成;
❤️ I帧是P帧和B帧的参考帧(其质量直接影响到同组中以后各帧的质量);
❤️ I帧是帧组GOP的基础帧(第一帧),在一组中只有一个I帧;
❤️ I帧不需要考虑运动矢量;
❤️ I帧所占数据的信息量比较大。


2、P帧
P帧:前向预测编码帧。P帧表示的是这一帧跟之前的一个关键帧(或P帧)的差别,解码时需要用之前缓存的画面叠加上本帧定义的差别,生成最终画面。(也就是差别帧,P帧没有完整画面数据,只有与前一帧的画面差别的数据)

P帧的预测与重构:P帧是以I帧为参考帧,在I帧中找出P帧“某点”的预测值和运动矢量,取预测差值和运动矢量一起传送。在接收端根据运动矢量从I帧中找出P帧“某点”的预测值并与差值相加以得到P帧“某点”样值,从而可得到完整的P帧。

P帧特点:
❤️ P帧是I帧后面相隔1~2帧的编码帧;
❤️ P帧采用运动补偿的方法传送它与前面的I或P帧的差值及运动矢量(预测误差);
❤️ 解码时必须将I帧中的预测值与预测误差求和后才能重构完整的P帧图像;
❤️ P帧属于前向预测的帧间编码。它只参考前面最靠近它的I帧或P帧;
❤️ P帧可以是其后面P帧的参考帧,也可以是其前后的B帧的参考帧;
❤️ 由于P帧是参考帧,它可能造成解码错误的扩散;
❤️ 由于是差值传送,P帧的压缩比较高。


3、B帧
B帧:双向预测内插编码帧。B帧是双向差别帧,也就是B帧记录的是本帧与前后帧的差别,换言之,要解码B帧,不仅要取得之前的缓存画面,还要解码之后的画面,通过前后画面的与本帧数据的叠加取得最终的画面。B帧压缩率高,但是解码时CPU会比较累

B帧的预测与重构
B帧以前面的I或P帧后面的P帧为参考帧,“找出”B帧“某点”的预测值和两个运动矢量,并取预测差值和运动矢量传送。接收端根据运动矢量在两个参考帧中“找出(算出)”预测值并与差值求和,得到B帧“某点”样值,从而可得到完整的B帧。

B帧特点
1)B帧是由前面的I或P帧和后面的P帧来进行预测的;
2)B帧传送的是它与前面的I或P帧和后面的P帧之间的预测误差及运动矢量;
3)B帧是双向预测编码帧;
4)B帧压缩比最高,因为它只反映丙参考帧间运动主体的变化情况,预测比较准确;
5)B帧不是参考帧,不会造成解码错误的扩散。

在这里插入图片描述

二、GOP(Group of picture)

GOP即Group of picture(图像组),指两个I帧之间的距离Reference(参考周期)指两个P帧之间的距离。一个I帧所占用的字节数大于一个P帧,一个P帧所占用的字节数大于一个B帧。所以在码率不变的前提下,GOP值越大,P、B帧的数量会越多,平均每个I、P、B帧所占用的字节数就越多,也就更容易获取较好的图像质量Reference越大,B帧的数量越多,同理也更容易获得较好的图像质量

需要说明的是,通过提高GOP值来提高图像质量是有限度的,在遇到场景切换的情况时,H.264编码器会自动强制插入一个I帧,此时实际的GOP值被缩短了。另一方面,在一个GOP中,P、B帧是由I帧预测得到的,当I帧的图像质量比较差时,会影响到一个GOP中后续P、B帧的图像质量,直到下一个GOP开始才有可能得以恢复,所以GOP值也不宜设置过大。

同时,由于P、B帧的复杂度大于I帧,所以过多的P、B帧会影响编码效率,使编码效率降低。另外,过长的GOP还会影响Seek操作的响应速度,由于P、B帧是由前面的I或P帧预测得到的,所以Seek操作需要直接定位,解码某一个P或B帧时,需要先解码得到本GOP内的I帧及之前的N个预测帧才可以,GOP值越长,需要解码的预测帧就越多,seek响应的时间也越长

关键帧的周期,也就是两个IDR帧之间的距离,一个帧组的最大帧数,一般而言,每一秒视频至少需要使用 1 个关键帧。增加关键帧个数可改善质量,但是同时增加带宽和网络负载。


在这里插入图片描述

三、CABAC/CAVLC

H.264/AVC标准中两种熵编码方法,CABAC叫自适应二进制算数编码,CAVLC叫前后自适应可变长度编码。

1.CABAC

是一种无损编码方式,画质好,X264就会舍弃一些较小的DCT系数,码率降低,可以将码率再降低10-15%(特别是在高码率情况下),会降低编码和解码的速速。

2. CAVLC

将占用更少的CPU资源,但会影响压缩性能。


帧:当采样视频信号时,如果是通过逐行扫描,那么得到的信号就是一帧图像,通常帧频为25帧每秒(PAL制)、30帧每秒(NTSC制);

场:当采样视频信号时,如果是通过隔行扫描(奇、偶数行),那么一帧图像就被分成了两场,通常场频为50Hz(PAL制)、60Hz(NTSC制);


帧频、场频的由来:最早由于抗干扰和滤波技术的限制,电视图像的场频通常与电网频率(交流电)相一致,于是根据各地交流电频率不同就有了欧洲和中国等PAL制的50Hz和北美等NTSC制的60Hz,但是现在并没有这样的限制了,帧频可以和场频一样,或者场频可以更高。


帧编码、场编码方式
逐行视频帧内邻近行空间相关性较强,因此当活动量非常小或者静止的图像比较适宜采用帧编码方式;
场内相邻行之间的时间相关性较强,对运动量较大的运动图像则适宜采用场编码方式。

在这里插入图片描述

四、DTS、PTS 的概念

DTS、PTS 的概念如下所述:
DTS(Decoding Time Stamp):即解码时间戳,这个时间戳的意义在于告诉播放器该在什么时候解码这一帧的数据
PTS(Presentation Time Stamp):即显示时间戳,这个时间戳用来告诉播放器该在什么时候显示这一帧的数据

需要注意的是:虽然 DTS、PTS 是用于指导播放端的行为,但它们是在编码的时候由编码器生成的。

当视频流中没有 B 帧时,通常 DTS 和 PTS 的顺序是一致的。但如果有 B 帧时,就回到了我们前面说的问题:解码顺序和播放顺序不一致了

比如一个视频中,帧的显示顺序是:I B B P,现在我们需要在解码 B 帧时知道 P 帧中信息,因此这几帧在视频流中的顺序可能是:I P B B,这时候就体现出每帧都有 DTS 和 PTS 的作用了。DTS 告诉我们该按什么顺序解码这几帧图像,PTS 告诉我们该按什么顺序显示这几帧图像。顺序大概如下:

PTS: 1 4 2 3
DTS: 1 2 3 4
Stream: I P B B
在这里插入图片描述

五、码流(码率)

在这里插入图片描述

  1. 定义
    码流(Data Rate)是指视频文件在单位时间内使用的数据流量,也叫码率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越好

  2. 原理
    一般情况下,DVD格式歌曲的码流为6~8M;VCD歌曲的码流约为1.5M。相同配置和同样网络环境下,DVD歌曲和VCD歌曲的并发流是不一样的。

    视频比特率与码流只是同一个问题两种叫法,比如一个MPEG2视频文件,一般不但包含视频信息还有音频信息,音频也有自己的比特率,这是音视信息复合在一起的文件,这个文件的码流是其音视码流的总和。

    当然,码流越大,文件体积也越大,其计算公式是文件体积=时间X码率/8。例如,网络上常见的一部90分钟1Mbps码流的720P RMVB文件,其体积就=5400秒×1Mb/8=675MB。

    通常来说,一个视频文件包括了画面及声音,例如一个RMVB的视频文件,里面包含了视频信息和音频信息,音频及视频都有各自不同的采样方式和比特率,也就是说,同一个视频文件音频和视频的比特率并不是一样的。而我们所说的一个视频文件码流率大小,一般是指视频文件中音频及视频信息码流率的总和。
    以国内最流行,大家最熟悉的RMVB视频文件为例,RMVB中的VB,指的是VBR,即Variable Bit Rate的缩写,中文含义是可变比特率,它表示RMVB采用的是动态编码的方式,把较高的采样率用于复杂的动态画面(歌舞、飞车、战争、动作等),而把较低的采样率用于静态画面,合理利用资源,达到画质与体积可兼得的效果。

  3. 多码流编辑
    多码流技术是通过在编码过程中同时产生多种不同码流及分辨率的流媒体数据,根据用户实际网络带宽条件为之自动分配相对最佳解码画质的解决方案。在实际网络直播应用中,由于位于不同网络位置的访问者所在网络环境存在差异,而仅以某种固定码流分辨率进行网络直播流媒体传送往往会导致网速较高的用户看到的画质仍不够清晰,网速较低的用户解码时间过长而使得画面不够流畅,为解决二者的矛盾使访问者浏览到尽可能看到兼顾清晰和流畅的直播内容,采用多码流技术成为了一个最简单最有效的办法

    例如:以500Kbps来编码音视频。
    其中 1KB/秒=1024*8bps,
    b就是比特位(bit)
    s就是秒(second)
    p就是每(per)
    所以,以500kbps来编码表示经过编码后的音视频数据每秒钟需要用500K的比特来表示

    具体的,对于音频来说,码流=采样率×比特数×声道,因此,对于常见的CD格式音频,它的码流就是:44100×16×2=1.41Mbit/sec,即一秒钟的文件大小是0.17625M,而常见的160Kbps的Mp3文件每秒就需160K/1024/8=0.01953125M,相差近10倍。
    在这里插入图片描述

六、采样率

采样率(也称为采样速度或者采样频率)定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。采样率是指将模拟信号转换成数字信号时的采样频率,也就是单位时间内采样多少点。一个采样点数据有多少个比特。比特率是指每秒传送的比特(bit)数。单位为 bps(Bit Per Second),比特率越高,传送的数据越大,音质越好.比特率 =采样率 x 采用位数 x声道数

采样率类似于动态影像的帧数,比如电影的采样率是24赫兹,PAL制式的采样率是25赫兹,NTSC制式的采样率是30赫兹。当我们把采样到的一个个静止画面再以采样率同样的速度回放时,看到的就是连续的画面。同样的道理,把以44.1kHZ采样率记录的CD以同样的速率播放时,就能听到连续的声音。显然,这个采样率越高,听到的声音和看到的图像就越连贯。当然,人的听觉和视觉器官能分辨的采样率是有限的,基本上高于44.1kHZ采样的声音,绝大部分人已经觉察不到其中的分别了。

而声音的位数就相当于画面的颜色数,表示每个取样的数据量,当然数据量越大,回放的声音越准确,不至于把开水壶的叫声和火车的鸣笛混淆。同样的道理,对于画面来说就是更清晰和准确,不至于把血和西红柿酱混淆。不过受人的器官的机能限制,16位的声音和24位的画面基本已经是普通人类的极限了,更高位数就只能靠仪器才能分辨出来了。比如电话就是3kHZ取样的7位声音,而CD是44.1kHZ取样的16位声音,所以CD就比电话更清楚。

当你理解了以上这两个概念,比特率就很容易理解了。以电话为例,每秒3000次取样,每个取样是7比特,那么电话的比特率是21000。 而CD是每秒 44100次取样,两个声道,每个取样是13位PCM编码,所以CD的比特率是44100213=1146600,也就是说CD每秒的数据量大约是 144KB,而一张CD的容量是74分等于4440秒,就是639360KB=640MB。

码率和取样率最根本的差别就是码率是针对源文件来讲的。

在这里插入图片描述

七、音频采样率

在这里插入图片描述

  1. 定义
    音频采样率是指录音设备在一秒钟内对声音信号的采样次数
    采样频率越高声音的还原就越真实越自然。在当今的主流采集卡上,采样频率一般共分为22.05KHz、44.1KHz、48KHz三个等级,22.05KHz只能达到FM广播的声音品质,44.1KHz则是理论上的CD音质界限,48KHz则更加精确一些。

  2. 常用的采样率编辑
    在数字音频领域,常用的采样率有:
    8,000 Hz - 电话所用采样率, 对于人的说话已经足够
    22,050 Hz - 无线电广播所用采样率
    32,000 Hz - miniDV 数码视频 camcorder、DAT (LP mode)所用采样率
    44,100 Hz - 音频 CD, 也常用于 MPEG-1 音频(VCD, SVCD, MP3)所用采样率
    47,250 Hz - 商用 PCM 录音机所用采样率
    48,000 Hz - miniDV、数字电视、DVD、DAT、电影和专业音频所用的数字声音所用采样率
    50,000 Hz - 商用数字录音机所用采样率
    96,000 或者 192,000 Hz - DVD-Audio、一些 LPCM DVD 音轨、BD-ROM(蓝光盘)音轨、和 HD-DVD (高清晰度 DVD)音轨所用所用采样率
    2.8224 MHz - Direct Stream Digital 的 1 位 sigma-delta modulation 过程所用采样率。

  3. 用例编辑
    声音其实是一种能量波,因此也有频率和振幅的特征,频率对应于时间轴线,振幅对应于电平轴线。波是无限光滑的,弦线可以看成由无数点组成,由于存储空间是相对有限的,数字编码过程中,必须对弦线的点进行采样。采样的过程就是抽取某点的频率值,很显然,在一秒中内抽取的点越多,获取得频率信息更丰富,为了复原波形,一次振动中,必须有2个点的采样,人耳能够感觉到的最高频率为20kHz,因此要满足人耳的听觉要求,则需要至少每秒进行40k次采样,用40kHz表达,这个40kHz就是采样率。我们常见的CD,采样率为44.1kHz。

    采集过程中视频和音频同步是非常重要的,光有频率信息是不够的,我们还必须获得该频率的能量值并量化,用于表示信号强度。量化电平数为2的整数次幂,我们常见的CD位16级的采样大小,即2的4次方。采样大小相对采样率更难理解,因为要显得抽象点,举个简单例子:假设对一个波进行8次采样,采样点分别对应的能量值分别为A1-A8,但我们只使用2bit的采样大小,结果我们只能保留A1-A8中4个点的值而舍弃另外4个。如果我们进行3bit的采样大小,则刚好记录下8个点的所有信息。采样率和采样大小的值越大,记录的波形更接近原始信号。
    在这里插入图片描述

八、比特率

数字信道传送数字信号的速率称为数据传输速率或比特率.

比特率是指每秒传送的比特(bit)数。单位为bps(Bit Per Second),比特率越高,传送的数据越大。在视频领域,比特率常翻译为码率

比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;如果比特率越少则情况刚好相反。

比特率是指将数字声音、视频由模拟格式转化成数字格式的采样率,采样率越高,还原后的音质、画质就越好

常见编码模式


VBR(Variable Bitrate)动态比特率

也就是没有固定的比特率,压缩软件在压缩时根据音频数据即时确定使用什么比特率,这是以质量为前提兼顾文件大小的方式,推荐编码模式;

ABR(Average Bitrate)平均比特率

是VBR的一种插值参数。LAME针对CBR不佳的文件体积比和VBR生成文件大小不定的特点独创了这种编码模式。ABR在指定的文件大小内,以每50帧(30帧约1秒)为一段,低频和不敏感频率使用相对低的流量,高频和大动态表现时使用高流量,可以做为VBR和CBR的一种折衷选择

CBR(Constant Bitrate)常数比特率

指文件从头到尾都是一种位速率。相对于VBR和ABR来讲,它压缩出来的文件体积很大,而且音质相对于VBR和ABR不会有明显的提高

在这里插入图片描述

九、帧速率

帧速率也称为FPS(Frames PerSecond)的缩写——帧/秒。是指每秒钟刷新的图片的帧数,也可以理解为图形处理器每秒钟能够刷新几次。越高的帧速率可以得到更流畅、更逼真的动画。每秒钟帧数(FPS)越多,所显示的动作就会越流畅。

在这里插入图片描述

十、 分辨率

分辨率主要是指显示器所能显示的像素的多少,可以从显示分辨率与图像分辨率两个方向来分类。

1、显示分辨率

(屏幕分辨率)是屏幕图像的精密度,是指显示器所能显示的像素的多少。由于屏幕上的点、线和面都是由像素组成的,显示器可显示的像素越多,画面就越精细,同样的屏幕区域内能显示的信息也越多,所以分辨率是个非常重要的性能指标之一。可以把整个图像想象成是一个大型的棋盘,而分辨率的表示方式就是所有经线和纬线交叉点的数目。显示分辨率一定的情况下,显示屏越小图像越清晰,反之,显示屏大小固定时,显示分辨率越高图像越清晰。

2、图像分辨率

则是单位英寸中所包含的像素点数,其定义更趋近于分辨率本身的定义。象素数越多,其分辨率就越高,因此,分辨率通常是以象素数来计量的.

640*480分辨率的视频,建议视频的码速率设置在700以上,音频采样率44100就行了.
一个音频编码率为128Kbps,视频编码率为800Kbps的文件,其总编码率为928Kbps,意思是经过编码后的数据每秒钟需要用928K比特来表示。

计算输出文件大小公式:
(音频编码率(KBit为单位)/8 +视频编码率(KBit为单位)/8)×影片总长度(秒为单位)=文件大小(MB为单位)

在这里插入图片描述

十一、高清视频

高清,英文为“High Definition”,即指“高分辨率”。 高清电视(HDTV),是由美国电影电视工程师协会确定的高清晰度电视标准格式。现在的大屏幕液晶电视机,一般都支持1080i和720P,而一些俗称的“全高清”(Full HD),则是指支持1080P输出的电视机。

目前的720P以及1080P采用了很多种编码,例如主流的MPEG2,VC-1以及H.264,还有Divx以及Xvid,至于封装格式更多到令人发指,ts、mkv、wmv以及蓝光专用等等。

720和1080代表视频流的分辨率,前者1280*720,后者1920*1080,不同的编码需要不同的系统资源,大概可以认为是H.264>VC-1>MPEG2。

VC-1是最后被认可的高清编码格式,不过因为有微软的后台,所以这种编码格式不能小窥。相对于MPEG2,VC-1的压缩比更高,但相对于H.264而言,编码解码的计算则要稍小一些,目前来看,VC-1可能是一个比较好的平衡,辅以微软的支持,应该是一只不可忽视的力量。一般来说,VC-1多为 “.wmv”后缀,但这都不是绝对的,具体的编码格式还是要通过软件来查询。

总的来说,从压缩比上来看,H.264的压缩比率更高一些,也就是同样的视频,通过H.264编码算法压出来的视频容量要比VC-1的更小,但是VC-1 格式的视频在解码计算方面则更小一些,一般通过高性能的CPU就可以很流畅的观看高清视频。相信这也是目前NVIDIA Geforce 8系列显卡不能完全解码VC-1视频的主要原因。

PS&TS是两种视频或影片封装格式,常用于高清片。扩展名分别为VOB/EVO和TS等;其文件编码一般用MPEG2/VC-1/H.264

目前的高清视频编码格式主要有H.264、VC-1、MPEG-2、MPEG-4、DivX、XviD、WMA-HD以及X264。事实上,现在网络上流传的高清视频主要以两类文件的方式存在:一类是经过MPEG-2标准压缩,以tp和ts为后缀的视频流文件;一类是经过WMV-HD(Windows Media Video HighDefinition)标准压缩过的wmv文件,还有少数文件后缀为avi或mpg,其性质与wmv是一样的真正效果好的高清视频更多地以H.264与VC-1这两种主流的编码格式流传

一般来说,H.264格式以“.avi”、“.mkv”以及“.ts”封装比较常见

在这里插入图片描述

十二、 位率

位率又称为“码率”。指单位时间内,单个录像通道所产生的数据量,其单位通常是bps、Kbps或Mbps。可以根据录像的时间与位率估算出一定时间内的录像文件大小

1、位率

是一个可调参数,不同的分辨率模式下和监控场景下,合适的位率大小是不同的。在设置时,要综合考虑三个因素:


1、分辨率   
分辨率是决定位率(码率)的主要因素,不同的分辨率要采用不同的位率。总体而言,录像的分辨率越高,所要求的位率(码率)也越大,但并不总是如此.所谓“合理的范围”指的是,如果低于这个范围,图像质量看起来会变得不可接受;如果高于这个范围,则显得没有必要,对于网络资源以及存储资源来说是一种浪费。
  
2、场景   
监控的场景是设置码率时要考虑的第二个因素。在视频监控中,图像的运动剧烈程度还与位率有一定的关系,运动越剧烈,编码所要求的码率就越高。反之则越低。因此在同样的图像分辨率条件下,监控人多的场景和人少的场景,所要求的位率也是不同的。
 
3、存储空间   
最后需要考量的因素是存储空间,这个因素主要是决定了录像系统的成本。位率设置得越高,画质相对会越好,但所要求的存储空间就越大。所以在工程实施中,设置合适的位率即可以保证良好的回放图像质量,又可以避免不必要的资源浪费。

2、位率类型


位率类型又称为码率类型,共有两种——动态码率(VBR)和固定码率(CBR)。

动态码率指编码器在对图像进行压缩编码的过程中,根据图像的状况实时调整码率高低的过程,例如当图像中没有物体在移动时,编码器自动将码率调整到一个较低的值。但当图像中开始有物体移动时,编码器又自动将码率调整到一个较高的值,并且实时根据运动的剧烈程度进行调整。这种方式是一种图像质量不变,数据量变化的编码模式。在动态码率模式下,我们在硬盘录像机上设置的位率值称为“位率上限”。意思是我们人为设定一个编码码率变化的上限,可以低于,但不能高于。根据这个位率值,我们可以估算出一定时间内的存储容量的上限值。  
  
固定码率是指编码器在对图像进行编码的过程中,自始至终采用一个固定的码率值,不论图像情况如何变化。这种方式是码率量不变,而图像质量变化的编码模式。在固定码率模式下,在硬盘录像机上设置的位率值就是编码时所使用的位率值,根据这个数值,我们可以精确地估算出一定时间内的存储容量。


量化参数:QP(quantizer parameter)

介于0~31之间,值越小,量化越精细,图像质量就越高,而产生的码流也越长。


峰值信噪比:PSNR(Peak signal-to-noise ratio)

允许计算峰值信噪比,编码结束后在屏幕上显示PSNR计算结果。开启与否与输出的视频质量无关,关闭后会带来微小的速度提升。


profile level

分别是BP、EP、MP、HP:
  1、BP-Baseline Profile:基本画质。支持I/P 帧,只支持无交错(Progressive)和CAVLC;
  2、EP-Extended profile:进阶画质。支持I/P/B/SP/SI 帧,只支持无交错(Progressive)和CAVLC;
  3、MP-Main profile:主流画质。提供I/P/B 帧,支持无交错(Progressive)和交错(Interlaced),也支持CAVLC 和CABAC 的支持;
  4、HP-High profile:高级画质。在main Profile 的基础上增加了8x8内部预测、自定义量化、无损视频编码和更多的YUV 格式;
详细点击:profile level


H.264三种档次

每个档次支持一组特定的编码功能,并支持一类特定的应用。
1)基本档次:利用I片和P片支持帧内和帧间编码,支持利用基于上下文的自适应的变长编码进行的熵编码(CAVLC)。主要用于可视电话、会议电视、无线通信等实时视频通信;
2)主要档次:支持隔行视频,采用B片的帧间编码和采用加权预测的帧内编码;支持利用基于上下文的自适应的算术编码(CABAC)。主要用于数字广播电视与数字视频存储;
3)扩展档次:支持码流之间有效的切换(SP和SI片)、改进误码性能(数据分割),但不支持隔行视频和CABAC。主要用于网络的视频流,如视频点播。


主码流/副码流

主码流位率高,图像质量高,便于本地存储;副码流位率低,图像质量低,便于网络传输。

在这里插入图片描述

十三、音视频的同步

上面说了视频帧、DTS、PTS 相关的概念。我们都知道在一个媒体流中,除了视频以外,通常还包括音频。音频的播放,也有 DTS、PTS 的概念,但是音频没有类似视频中 B 帧,不需要双向预测,所以音频帧的 DTS、PTS 顺序是一致的

音频视频混合在一起播放,就呈现了我们常常看到的广义的视频。在音视频一起播放的时候,我们通常需要面临一个问题:怎么去同步它们,以免出现画不对声的情况。

**要实现音视频同步,通常需要选择一个参考时钟,参考时钟上的时间是线性递增的,编码音视频流时依据参考时钟上的时间给每帧数据打上时间戳。在播放时,读取数据帧上的时间戳,同时参考当前参考时钟上的时间来安排播放。这里的说的时间戳就是我们前面说的 PTS。实践中,我们可以选择:同步视频到音频、同步音频到视频、同步音频和视频到外部时钟。

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. 手机浏览器缓存的.ts视频文件如何合成(不下载软件)

    手机缓存的视频文件都是1-3秒的.ts小片段,如果想拷贝到电脑上看会累死。 打开一看有将近两千个,网上大多是教下什么软件可以合成的。又不想下。 用dos命令可以自己在电脑上合成。 copy/b E:\temps*.ts E:\temps\new.ts 如上,执行该命令后&am…...

    2024/4/21 1:27:44
  2. 无损视频合并软件有哪些?如何合并视频

    现在,网上各种平台都有很多好看的短视频,但是如果能够将它们串联在一起,就更好了。那么,怎么把视频合并起来呢?一般我们需要借助视频合并软件,但是网上的这类软件有很多,我们应该如何选择呢&…...

    2024/4/21 1:27:42
  3. 无损分割视频的软件哪个好

    随着科技的迅速发展,好看的影视剧一大波的袭来让我们应接不暇,在我们不可能总是能跟我们喜欢的人一起去看,所以电影节目里面那些比较精彩的片段总是想保存下来和喜欢的人一起分享,但是由于各种原因会出现很多的问题,比…...

    2024/4/21 1:27:41
  4. python-视频分帧多帧合成视频

    1.视频分帧: import cv2 vidcap cv2.VideoCapture(005.avi) success,image vidcap.read() count 0 success True while success:success,image vidcap.read()cv2.imwrite("frame%d.jpg" % count, image) # save frame as JPEG fileif cv2.wait…...

    2024/5/3 23:06:36
  5. 视频格式基础知识:让你了解MKV、MP4、H.265、码率\码流、多码流等等

    转载请标明出处:http://blog.csdn.net/xx326664162/article/details/51784440 文章出自:薛瑄的博客 你也可以查看我的其他同类文章,也会让你有一定的收货! 1、封装格式(MP4/MKV…) vs 媒体格式(H.264/FLAC/AAC…) MP4MKV是你下…...

    2024/5/4 1:39:44
  6. 《羊皮卷》读书笔记

    大家好,我是不一样的算法工程师,最近看了卡耐基《羊皮卷:世界上最伟大的励志书》 这是一部人生的“圣经”,是世界精神导师们的思想精华,它揭示了希望、财富、幸福的真正秘密,已经怎样追求它们的法则。世界每…...

    2024/4/21 1:27:39
  7. 战略工具和战略选择

    战略就是企业发展的方向,方向对了,成功就不远了。在商业环境中,有几个战略分析的工具非常的不错,从微观层面有波特五力模型(从直接竞争对手、顾客、供应商、潜在新公司和替代性产品五个因素分析)、波士顿矩…...

    2024/4/21 1:27:38
  8. 近观香港,远看上海,反思深圳

    http://www.iheima.com/article-218166.html?comefromtoutiaohao 作者 | 清和 智本社社长 来源 | 智本社(ID:zhibenshe0-1) 过去几十年,中国大地上演绎了一段城市化的疯狂舞曲。城市的前途、楼市的命运以及亿万家庭的财富&am…...

    2024/4/21 1:27:36
  9. 当你的才华还撑不起你的野心的时候,那就静下心来学习吧!

    当你的才华还撑不起你的野心的时候,你就应该静下心来学习; 当你的能力还驾驭不了你的目标时,就应该沉下心来,历练。 梦想,不是浮躁,而是沉淀和积累,只有拼出来的美丽,没有等出来的…...

    2024/4/21 1:27:35
  10. 撸一段 SQL ? 还是撸一段代码?

    点击上方“后端技术精选”,选择“置顶公众号”技术文章第一时间送达!作者:Orsoncnblogs.com/java-class/p/5985916.html技术经验交流:点击入群以下都为个人思考总结所得,只作为抛砖引玉之说,一定会有不同意…...

    2024/4/21 1:27:34
  11. 中国龙与西方龙的区别

    译者译记: 从本文可以看到中西方文化差异。他们的Dragon是邪恶的代表,中国的龙(Long)是神物受崇拜,还自比为龙的传人,在他们看来你就是它们敌对的传人。简单将“龙”翻译成Dragon,造成中西方彼此的误解。而到底是谁把…...

    2024/4/21 1:27:33
  12. Dataverse使用入门

    Dataverse的结构:典型的套娃结构,很好理解。 Dataverse Layers 数据结构总共分三层:Dataverse(北大翻译成“数据空间”)、Dataset(数据集)和File(文档)。Dataverse下面可…...

    2024/4/20 20:43:05
  13. 能让你醍醐灌顶的34个人生哲理

    1、任何时候,都要保留30%的自己。有留白的文章,才会让别人回味无穷。有隐藏的底牌,才不会一下子被人牢牢吃死。 2、想让对象觉得你重视她,不是天天约会,给她送昂贵化妆品,而是相恋期间,能记住各…...

    2024/5/4 5:30:03
  14. 进大厂也就这回事,工作后2到3年进大厂操作指南

    在BAT这种大厂里,只要肯吃苦,技术和工资进步的速度会超出你想象,我在上海,按当前价格算,一般在大厂里干个三四年,好歹房子的首付应该能有,而且这种房子还不是太偏远太小的。 进大厂确实需要一定…...

    2024/4/20 20:43:02
  15. Deep Learning with Pytorch | Chapter4 Real-wrold data representation using tensors

    第四章主要内容:如何将视频、图片、文本等数据表达成tensor的形式,以适合于训练神经网络。(本文是原书第四章部分内容,个人侧重学习图像数据)。 说明: (1)本章涉及到从磁盘读取相应的数据,因此…...

    2024/4/20 20:43:01
  16. python学习札记之一,环境及入口

    很多年前,做项目的时候集成过IronPython.NET,其强大的集成功能给我留下了深刻的印象。辗转许多年后,Python依靠其简单、易用、易扩展等特性逐步提升自己的位置,转眼间,已经成了C位大佬,这下我需要仰视它了。…...

    2024/4/21 1:27:33
  17. 知乎超热门话题:为什么要考985?

    点上方蓝字人工智能算法与Python大数据获取更多干货在右上方 设为星标 ★,第一时间获取资源仅做学术分享,如有侵权,联系删除转载于 :知乎,机器学习算法那些事各位下午好,这次给大家分享一个比较沉重的话题…...

    2024/4/21 1:27:32
  18. 基金定投需要注意波段操作!(文章有点长,含Python代码)

    最近,在用Python对股市进行量化分析,发现网上流传很广的一些结论并不一定正确。 定投策略就是不要管股市是涨是跌,每个月都定期的拿出一笔钱来买基金。股市总是上演七陪二平一赚的股市,散户因为没有能力判断,索性不判…...

    2024/4/21 1:27:31
  19. 元稹题杜甫墓志铭

    引导语:《唐故工部员外郎杜君墓系铭并序》,是唐代文学家元稹为著名诗人杜甫撰写的墓志铭。下面我们来仔细读一篇这篇铭文。唐故检校工部员外郎杜君墓系铭元稹(江陵士曹时作)叙曰:余读诗至杜子美,而知大小之有所总萃焉。始尧舜时&a…...

    2024/4/20 16:25:02
  20. 视觉slam学习之——ch7 视觉里程计(centos系统)

    这个章节主要讲解: 图像特征提取; 多幅图像匹配特征点; 对极几何; PNP问题; ICP问题; 三角化原理; 一. 特征点提取和匹配 工程实践需要你事先安装了opencv3; 由于opencv3中提…...

    2024/4/21 1:27:29

最新文章

  1. 不尝试一下?计算机领域两大赛事来了!!

    前言 最近,熊二新来的同事小强比较关注国内的一些赛事信息。这不,近期有两大赛事。这两大赛事,主要还是面向高校学生的。一个是搞网络安全方向的: 第二届京麒CTF挑战赛,另一个是搞数据库方向的: 2024年全国大学生计算机系统能力大…...

    2024/5/4 8:59:13
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言,在此感激不尽。 权重和梯度的更新公式如下: w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. 将.docx格式文件转成html,uniapp使用u-parse展示

    使用mammoth。 1、在index.html中加入&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta http-equiv"X-UA-Compatible" content"IEedge" /><meta name"viewp…...

    2024/5/2 6:04:57
  4. 鹅厂实习offer

    #转眼已经银四了&#xff0c;你收到offer了吗# 本来都打算四月再投实习了&#xff0c;突然三月初被wxg捞了&#xff08;一年前找日常实习投的简历就更新了下&#xff09;&#xff0c;直接冲了&#xff0c;流程持续二十多天&#xff0c;结果是运气还不错&#xff0c;应该是部门比…...

    2024/5/1 13:19:09
  5. K8S容器空间不足问题分析和解决

    如上图&#xff0c;今天测试环境的K8S平台出现了一个问题&#xff0c;其中的一个容器报错&#xff1a;Free disk space below threshold. Available: 3223552 bytes (threshold: 10485760B)&#xff0c;意思服务器硬盘空间不够了。这个问题怎么产生的&#xff0c;又怎么解决的呢…...

    2024/5/2 2:38:17
  6. 【外汇早评】美通胀数据走低,美元调整

    原标题:【外汇早评】美通胀数据走低,美元调整昨日美国方面公布了新一期的核心PCE物价指数数据,同比增长1.6%,低于前值和预期值的1.7%,距离美联储的通胀目标2%继续走低,通胀压力较低,且此前美国一季度GDP初值中的消费部分下滑明显,因此市场对美联储后续更可能降息的政策…...

    2024/5/1 17:30:59
  7. 【原油贵金属周评】原油多头拥挤,价格调整

    原标题:【原油贵金属周评】原油多头拥挤,价格调整本周国际劳动节,我们喜迎四天假期,但是整个金融市场确实流动性充沛,大事频发,各个商品波动剧烈。美国方面,在本周四凌晨公布5月份的利率决议和新闻发布会,维持联邦基金利率在2.25%-2.50%不变,符合市场预期。同时美联储…...

    2024/5/2 16:16:39
  8. 【外汇周评】靓丽非农不及疲软通胀影响

    原标题:【外汇周评】靓丽非农不及疲软通胀影响在刚结束的周五,美国方面公布了新一期的非农就业数据,大幅好于前值和预期,新增就业重新回到20万以上。具体数据: 美国4月非农就业人口变动 26.3万人,预期 19万人,前值 19.6万人。 美国4月失业率 3.6%,预期 3.8%,前值 3…...

    2024/4/29 2:29:43
  9. 【原油贵金属早评】库存继续增加,油价收跌

    原标题:【原油贵金属早评】库存继续增加,油价收跌周三清晨公布美国当周API原油库存数据,上周原油库存增加281万桶至4.692亿桶,增幅超过预期的74.4万桶。且有消息人士称,沙特阿美据悉将于6月向亚洲炼油厂额外出售更多原油,印度炼油商预计将每日获得至多20万桶的额外原油供…...

    2024/5/3 23:10:03
  10. 【外汇早评】日本央行会议纪要不改日元强势

    原标题:【外汇早评】日本央行会议纪要不改日元强势近两日日元大幅走强与近期市场风险情绪上升,避险资金回流日元有关,也与前一段时间的美日贸易谈判给日本缓冲期,日本方面对汇率问题也避免继续贬值有关。虽然今日早间日本央行公布的利率会议纪要仍然是支持宽松政策,但这符…...

    2024/4/27 17:58:04
  11. 【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响

    原标题:【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响近日伊朗局势升温,导致市场担忧影响原油供给,油价试图反弹。此时OPEC表态稳定市场。据消息人士透露,沙特6月石油出口料将低于700万桶/日,沙特已经收到石油消费国提出的6月份扩大出口的“适度要求”,沙特将满…...

    2024/4/27 14:22:49
  12. 【外汇早评】美欲与伊朗重谈协议

    原标题:【外汇早评】美欲与伊朗重谈协议美国对伊朗的制裁遭到伊朗的抗议,昨日伊朗方面提出将部分退出伊核协议。而此行为又遭到欧洲方面对伊朗的谴责和警告,伊朗外长昨日回应称,欧洲国家履行它们的义务,伊核协议就能保证存续。据传闻伊朗的导弹已经对准了以色列和美国的航…...

    2024/4/28 1:28:33
  13. 【原油贵金属早评】波动率飙升,市场情绪动荡

    原标题:【原油贵金属早评】波动率飙升,市场情绪动荡因中美贸易谈判不安情绪影响,金融市场各资产品种出现明显的波动。随着美国与中方开启第十一轮谈判之际,美国按照既定计划向中国2000亿商品征收25%的关税,市场情绪有所平复,已经开始接受这一事实。虽然波动率-恐慌指数VI…...

    2024/4/30 9:43:09
  14. 【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试

    原标题:【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试美国和伊朗的局势继续升温,市场风险情绪上升,避险黄金有向上突破阻力的迹象。原油方面稍显平稳,近期美国和OPEC加大供给及市场需求回落的影响,伊朗局势并未推升油价走强。近期中美贸易谈判摩擦再度升级,美国对中…...

    2024/4/27 17:59:30
  15. 【原油贵金属早评】市场情绪继续恶化,黄金上破

    原标题:【原油贵金属早评】市场情绪继续恶化,黄金上破周初中国针对于美国加征关税的进行的反制措施引发市场情绪的大幅波动,人民币汇率出现大幅的贬值动能,金融市场受到非常明显的冲击。尤其是波动率起来之后,对于股市的表现尤其不安。隔夜美国股市出现明显的下行走势,这…...

    2024/5/2 15:04:34
  16. 【外汇早评】美伊僵持,风险情绪继续升温

    原标题:【外汇早评】美伊僵持,风险情绪继续升温昨日沙特两艘油轮再次发生爆炸事件,导致波斯湾局势进一步恶化,市场担忧美伊可能会出现摩擦生火,避险品种获得支撑,黄金和日元大幅走强。美指受中美贸易问题影响而在低位震荡。继5月12日,四艘商船在阿联酋领海附近的阿曼湾、…...

    2024/4/28 1:34:08
  17. 【原油贵金属早评】贸易冲突导致需求低迷,油价弱势

    原标题:【原油贵金属早评】贸易冲突导致需求低迷,油价弱势近日虽然伊朗局势升温,中东地区几起油船被袭击事件影响,但油价并未走高,而是出于调整结构中。由于市场预期局势失控的可能性较低,而中美贸易问题导致的全球经济衰退风险更大,需求会持续低迷,因此油价调整压力较…...

    2024/4/26 19:03:37
  18. 氧生福地 玩美北湖(上)——为时光守候两千年

    原标题:氧生福地 玩美北湖(上)——为时光守候两千年一次说走就走的旅行,只有一张高铁票的距离~ 所以,湖南郴州,我来了~ 从广州南站出发,一个半小时就到达郴州西站了。在动车上,同时改票的南风兄和我居然被分到了一个车厢,所以一路非常愉快地聊了过来。 挺好,最起…...

    2024/4/29 20:46:55
  19. 氧生福地 玩美北湖(中)——永春梯田里的美与鲜

    原标题:氧生福地 玩美北湖(中)——永春梯田里的美与鲜一觉醒来,因为大家太爱“美”照,在柳毅山庄去寻找龙女而错过了早餐时间。近十点,向导坏坏还是带着饥肠辘辘的我们去吃郴州最富有盛名的“鱼头粉”。说这是“十二分推荐”,到郴州必吃的美食之一。 哇塞!那个味美香甜…...

    2024/4/30 22:21:04
  20. 氧生福地 玩美北湖(下)——奔跑吧骚年!

    原标题:氧生福地 玩美北湖(下)——奔跑吧骚年!让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 啊……啊……啊 两…...

    2024/5/1 4:32:01
  21. 扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!

    原标题:扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!扒开伪装医用面膜,翻六倍价格宰客!当行业里的某一品项火爆了,就会有很多商家蹭热度,装逼忽悠,最近火爆朋友圈的医用面膜,被沾上了污点,到底怎么回事呢? “比普通面膜安全、效果好!痘痘、痘印、敏感肌都能用…...

    2024/5/4 2:59:34
  22. 「发现」铁皮石斛仙草之神奇功效用于医用面膜

    原标题:「发现」铁皮石斛仙草之神奇功效用于医用面膜丽彦妆铁皮石斛医用面膜|石斛多糖无菌修护补水贴19大优势: 1、铁皮石斛:自唐宋以来,一直被列为皇室贡品,铁皮石斛生于海拔1600米的悬崖峭壁之上,繁殖力差,产量极低,所以古代仅供皇室、贵族享用 2、铁皮石斛自古民间…...

    2024/4/28 5:48:52
  23. 丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者

    原标题:丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者【公司简介】 广州华彬企业隶属香港华彬集团有限公司,专注美业21年,其旗下品牌: 「圣茵美」私密荷尔蒙抗衰,产后修复 「圣仪轩」私密荷尔蒙抗衰,产后修复 「花茵莳」私密荷尔蒙抗衰,产后修复 「丽彦妆」专注医学护…...

    2024/4/30 9:42:22
  24. 广州械字号面膜生产厂家OEM/ODM4项须知!

    原标题:广州械字号面膜生产厂家OEM/ODM4项须知!广州械字号面膜生产厂家OEM/ODM流程及注意事项解读: 械字号医用面膜,其实在我国并没有严格的定义,通常我们说的医美面膜指的应该是一种「医用敷料」,也就是说,医用面膜其实算作「医疗器械」的一种,又称「医用冷敷贴」。 …...

    2024/5/2 9:07:46
  25. 械字号医用眼膜缓解用眼过度到底有无作用?

    原标题:械字号医用眼膜缓解用眼过度到底有无作用?医用眼膜/械字号眼膜/医用冷敷眼贴 凝胶层为亲水高分子材料,含70%以上的水分。体表皮肤温度传导到本产品的凝胶层,热量被凝胶内水分子吸收,通过水分的蒸发带走大量的热量,可迅速地降低体表皮肤局部温度,减轻局部皮肤的灼…...

    2024/4/30 9:42:49
  26. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  27. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  28. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  29. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  30. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  31. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  32. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  33. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  34. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  35. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  36. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  37. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  38. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  39. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  40. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  41. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  42. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  43. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  44. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  45. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57