1. 机器学习流程简介

    1)一次性设置(One time setup)
- 激活函数(Activation functions)

          - 数据预处理(Data Preprocessing)

          - 权重初始化(Weight Initialization)

          - 正则化(Regularization:避免过拟合的一种技术)

          - 梯度检查(Gradient checking)

    2)动态训练(Training dynamics)
- 跟踪学习过程 (Babysitting the learning process)

          - 参数更新 (Parameter updates)

          - 超级参数优化(Hyperparameter optimization)

          - 批量归一化(BN:Batch Normalization:解决在训练过程中,中间层数据分布发生改变的问题,以防止梯度消失或爆炸、加快训练速度
3)评估(Evaluation)
- 模型组合(Model ensembles)

             (训练多个独立的模型,测试时,取这些模型结果的平均值)

   神经网络学习过程本质就是为了:学习数据分布,一旦训练数据与测试数据的分布不同,那么网络的泛化能力也大大降低,所以需要使用输入数据归一化方法,使训练数据与测试数据的分布相同。

2. 激活函数(Activation Functions)

    详细内容参见:激活函数

    总结:

     1)使用ReLU时,使Learning Rates尽量小

     2)尝试使用Leaky ReLU/Maxout/ELU

     3)可以使用tanh,但期望不要太高

     4)不要使用sigmoid

3. 数据预算处理(Data Preprocessing)

     

     1)为什么输入数据需要归一化(Normalized Data)?

           归一化后有什么好处呢?原因在于神经网络学习过程本质就是为了学习数据分布,一旦训练数据与测试数据的分布不同,那么网络的泛化能力也大大降低;另外一方面,一旦每批训练数据的分布各不相同(batch 梯度下降),那么网络就要在每次迭代都去学习适应不同的分布,这样将会大大降低网络的训练速度,这也正是为什么我们需要对数据都要做一个归一化预处理的原因。

          对于深度网络的训练是一个复杂的过程,只要网络的前面几层发生微小的改变,那么后面几层就会被累积放大下去。一旦网络某一层的输入数据的分布发生改变,那么这一层网络就需要去适应学习这个新的数据分布,所以如果训练过程中,训练数据的分布一直在发生变化,那么将会影响网络的训练速度。

4. 权重初始化(Weight Initialization)

    1)小的随机数

         w= 0.01 * np.random.randn(fan_in,fan_out)

    2)神经元将饱和,梯度为0

         w = 1.0 * np.random.randn(fan_in,fan_out)

    3)合理的初始化(Xavier init)

         w = np.random.randn((fan_in,fan_out)/np.sqrt(fan_in)

    权重初始化是一个重要的研究领域。

5. 批量归一化(BN: Batch Normalization)

5.1 BN训练    

    1)随机梯度下降法(SGD)对于训练深度网络简单高效,但是它有个毛病,就是需要我们人为的去选择参数,比如学习率、参数初始化、权重衰减系数、Drop out比例等。这些参数的选择对训练结果至关重要,以至于我们很多时间都浪费在这些的调参上。那么使用BN(详见论文《Batch Normalization_ Accelerating Deep Network Training by Reducing Internal Covariate Shift》)之后,你可以不需要那么刻意的慢慢调整参数

    2)神经网络一旦训练起来,那么参数就要发生更新,除了输入层的数据外(因为输入层数据,我们已经人为的为每个样本归一化),后面网络每一层的输入数据分布是一直在发生变化的,因为在训练的时候,前面层训练参数的更新将导致后面层输入数据分布的变化。以网络第二层为例:网络的第二层输入,是由第一层的参数和input计算得到的,而第一层的参数在整个训练过程中一直在变化,因此必然会引起后面每一层输入数据分布的改变。我们把网络中间层在训练过程中,数据分布的改变称之为:“InternalCovariate Shift”。Paper所提出的算法,就是要解决在训练过程中,中间层数据分布发生改变的情况,于是就有了Batch  Normalization,这个牛逼算法的诞生。

   3)BN的地位:与激活函数层、卷积层、全连接层、池化层一样,BN(Batch Normalization)也属于网络的一层。

   4)BN的本质原理:在网络的每一层输入的时候,又插入了一个归一化层,也就是先做一个归一化处理(归一化至:均值0、方差为1),然后再进入网络的下一层。不过文献归一化层,可不像我们想象的那么简单,它是一个可学习、有参数(γ、β)的网络层

   5)归一化公式:

        

   6)如果是仅仅使用上面的归一化公式,对网络某一层A的输出数据做归一化,然后送入网络下一层B,这样是会影响到本层网络A所学习到的特征的。比如我网络中间某一层学习到特征数据本身就分布在S型激活函数的两侧,你强制把它给我归一化处理、标准差也限制在了1,把数据变换成分布于s函数的中间部分,这样就相当于我这一层网络所学习到的特征分布被你搞坏了,这可怎么办?于是文献使出了一招惊天地泣鬼神的招式:变换重构,引入了可学习参数γ、β,这就是算法关键之处:

       

       上面的公式表明,通过学习到的重构参数γ、β是可以恢复出原始的某一层所学到的特征的。

   

     7)引入了这个可学习重构参数γ、β,让我们的网络可以学习恢复出原始网络所要学习的特征分布。最后Batch Normalization网络层的前向传导过程公式就是:

             

             

     8)BN层是对于每个神经元做归一化处理,甚至只需要对某一个神经元进行归一化,而不是对一整层网络的神经元进行归一化。既然BN是对单个神经元的运算,那么在CNN中卷积层上要怎么搞?假如某一层卷积层有6个特征图,每个特征图的大小是100*100,这样就相当于这一层网络有6*100*100个神经元,如果采用BN,就会有6*100*100个参数γ、β,这样岂不是太恐怖了。因此卷积层上的BN使用,其实也是使用了类似权值共享的策略,把一整张特征图当做一个神经元进行处理

    9)卷积神经网络经过卷积后得到的是一系列的特征图,如果min-batch sizes为m,那么网络某一层输入数据可以表示为四维矩阵(m,f,w,h),m为min-batch sizes,f为特征图个数,w、h分别为特征图的宽高。在CNN中我们可以把每个特征图看成是一个特征处理(一个神经元),因此在使用Batch Normalization,mini-batch size 的大小就是:m*w*h,于是对于每个特征图都只有一对可学习参数:γ、β。说白了吧,这就是相当于求取所有样本所对应的一个特征图的所有神经元的平均值、方差,然后对这个特征图神经元做归一化。

    10)    在使用BN前,减小学习率、小心的权重初始化的目的是:使其输出的数据分布不要发生太大的变化。

    11) BN的作用:

       1)改善流经网络的梯度

       2)允许更大的学习率,大幅提高训练速度

            你可以选择比较大的初始学习率,让你的训练速度飙涨。以前还需要慢慢调整学习率,甚至在网络训练到一半的时候,还需要想着学习率进一步调小的比例选择多少比较合适,现在我们可以采用初始很大的学习率,然后学习率的衰减速度也很大,因为这个算法收敛很快。当然这个算法即使你选择了较小的学习率,也比以前的收敛速度快,因为它具有快速训练收敛的特性;

       3)减少对初始化的强烈依赖

       4)改善正则化策略:作为正则化的一种形式,轻微减少了对dropout的需求

            你再也不用去理会过拟合中drop out、L2正则项参数的选择问题,采用BN算法后,你可以移除这两项了参数,或者可以选择更小的L2正则约束参数了,因为BN具有提高网络泛化能力的特性;

       5)再也不需要使用使用局部响应归一化层了(局部响应归一化是Alexnet网络用到的方法,搞视觉的估计比较熟悉),因为BN本身就是一个归一化网络层;

       6)可以把训练数据彻底打乱(防止每批训练的时候,某一个样本都经常被挑选到,文献说这个可以提高1%的精度)。

       注:以上为学习过程,在测试时,均值和方差(mean/std)不基于小批量进行计算, 可取训练过程中的激活值的均值。

     

5.2 BN测试

     1)实际测试时,我们依然使用下面的公式:

         

        这里的均值和方差已经不是针对某一个Batch了,而是针对整个数据集而言。因此,在训练过程中除了正常的前向传播和反向求导之外,我们还要记录每一个Batch的均值和方差,以便训练完成之后按照下式计算整体的均值和方差:  

         


       上面简单理解就是:对于均值来说直接计算所有batch u值的平均值;然后对于标准偏差采用每个batch σB的无偏估计。最后测试阶段,BN的使用公式就是:

        

     2)BN可以应用于一个神经网络的任何神经元上。文献主要是把BN变换,置于网络激活函数层的前面。在没有采用BN的时候,激活函数层是这样的:

                              z=g(Wu+b)

          也就是我们希望一个激活函数,比如s型函数s(x)的自变量x是经过BN处理后的结果。因此前向传导的计算公式就应该是:
z=g(BN(Wu+b))

          其实因为偏置参数b经过BN层后其实是没有用的,最后也会被均值归一化,当然BN层后面还有个β参数作为偏置项,所以b这个参数就可以不用了。因此最后把BN层+激活函数层就变成了:

                               z=g(BN(Wu))


6. 跟踪训练过程

   1)Learning Rate

         - Learning Rate太小(如1e-6),cost下降很慢

         - Learning Rate太大(如1e-6),cost增长爆炸 (cur cost > 3* original cost)

         - 在[1e-3,1e-5]范围内比较合适

       

     2)Mini-batch SGD

           Loop:

           1. Sample a batch of data

           2. Forward prop it through the graph, get loss

           3. Backprop to calculate the gradients

           4. Update the parameters using gradient

7. 参数优化

    参数优化直观显示图 

    参数优化的目的是:减少损失(loss), 直至损失收敛(convergence)

    Caffe Solver,基于梯度下降的优化方法

7.1 Gradient Descent Variants

7.1.1 Batch gradient descent

      
      每次基于整个数据集计算梯度
      
   for i in range(nb_epochs):params_grad = evaluate_gradient(loss_function, data, params)params = params - learning_rate * params_grad

7.1.2 SGD(Stochastic Gradient Descent: 随机梯度下降)

       

     每次基于一个数据样本计算梯度

  for i in range(nb_epochs):np.random.shuffle(data)for example in data:params_grad = evaluate_gradient(loss_function, example, params)params = params - learning_rate * params_grad


7.1.3 Mini-batch Gradient Descent

       

    每次基于n个数据样本计算梯度。

  for i in range(nb_epochs):np.random.shuffle(data)for batch in get_batches(data, batch_size=50):params_grad = evaluate_gradient(loss_function, batch, params)params = params - learning_rate * params_grad
   优点:

    1)减少参数更新的变化, 从而得到更加稳定的收敛

    2)使用先进的Deep Learning库,可以高效地计算mini-batch的梯度

    注:n一般取[50,256]范围内的数,视具体应用而定。

7.1.4 梯度下降算法面临的挑战

   1)选择合适的Learning Rate是困难的,太小导致收敛慢,太大阻碍收敛或且导致损失函数在最小值附近波动或发散;
2)预先定义的Learning Rate变动规则不能适应数据集的特性
3)同样的Learning Rate运用到所有的参数更新(后面的AdaGrad, AdaDelta, RMSProp, Adam为解决此问题而生)
4)最小化高度非凸损失函数的羝问题是:避免陷入众多的局部最优值。    


7.2 Momentum(动量)

     关键优点: 利用物体运动时的惯性,加快到达全局最优点的速度,且减少振荡。

      关键缺点:球盲目地沿着斜坡向山下滚。

       

     当Loss function的表面曲线的一维比其它维有更多的沟壑时,SGD要跨越此沟壑是困难的,如上图左边所示,SGD沿着沟壑的斜坡振荡,然后犹犹豫豫地向局部最优点前进。

     Momentum即动量,它模拟的是物体运动时的惯性,即更新的时候在一定程度上保留之前更新的方向,同时利用当前batch的梯度微调最终的更新方向。这样一来,可以在一定程度上增加稳定性,从而学习地更快,并且还有一定摆脱局部最优的能力: 


    # Momentum updateV = gama * V + learning_rate * dw  # integrate velocityw -= V                             # integrate position

     就是Momentum,经常取0.5,0.9,或0.99,有时随着时间而变化,从0.5到0.99;表示要在多大程度上保留原来的更新方向,这个值在0-1之间,在训练开始时,由于梯度可能会很大,所以初始值一般选为0.5;当梯度不那么大时,改为0.9。 是学习率,即当前batch的梯度多大程度上影响最终更新方向,跟普通的SGD含义相同。之和不一定为1。

     Momentum的物理解释是:当我们把球推下山时,球不断地累积其动量,速度越来越快(直到其最大速度,如果有空气阻力,如<1),同样的事情发生在参数更新中:梯度保持相同方向的维度的动量不停地增加,梯度方向不停变化的维度的动量不停地减少,因此可以得到更快的收敛速度并减少振荡

     

7.3 Nesterov Accelerated Gradient (NAG)

      关键优点:一个聪明的球,知道它将到哪儿去,且知道在斜坡向上之前减速。

                        沿着当前方向,先走一步,然后再看向哪个方向走最快,这样对前方的情况就有了更多地了解,可以做出明智的决策。


    

     

     

   w_ahead = w - gama * v# evaluate dw_ahead (the gradient at w_ahead instead of at w)v = gama * v + learning_rate * dw_aheadw -= v

       Momentum:

            1)计算当前的梯度(上图中:比较小的蓝色向量)

            2)沿着更新的累积的梯度方向进行一大跳(上图中:比较大的蓝色向量)

       NAG:

            1)沿着以前累积的梯度方向进行一大跳 (上图中:棕色向量)

            2)在新的位置测量梯度,然后进行校正(上图中:绿色向量)

            3)这个有预料的更新可以防止走的太快并导致增加的响应

       关键区别:

            1)计算梯度的位置不一样

  

7.4 每个参数有自适应的学习率(Per-parameter Adaptive Learning Rate)

      本章描述的方法(AdaGrad、AdaDelta、RMSprop、Adam)专为解决Learning Rate自适应的问题。

      前面讨论的基于梯度的优化方法(SGD、Momentum、NAG)的Learning Rate是全局的,且对所有参数是相同的。

      参数的有些维度变化快,有些维度变化慢;有些维度是负的斜坡,有些维度是正的斜坡(如鞍点);采用相同的Learning Rate是不科学的,比如有的参数可能已经到了仅需要微调的阶段,但又有些参数由于对应样本少等原因,还需要较大幅度的调动。理想的方案是根据参数每个维度的变化率,采用对应的LearningRate。

      下面讨论如何自适应Learing Rate的方案:AdaGrad、AdaDelta、RMSProp、Adam。

7.4.1 AdaGrad(Adaptive Gradient )

     关键优点:不需要手动调整Learning Rate,默认值为0.01即可。
     关键缺点:在分母中累积了梯度的平方,且此累积值单调递增,从而导致Learning Rate单调递减,直至无限小,从而不能再学到相关知识(AdaDelta、RMSprop、Adam专为解决此问题而生)。

     AdaGrad方法给参数的每个维度给出适应的Learning Rate。给不经常更新的参数以较大的Learning Rate, 给经常更新的参数以较小的Learning Rate。Google使用此优化方法“识别Youtube视频中的猫” 。

     在AdaGrad中,每个参数在每一次更新时都使用不同的Learming Rate。

     其公式如下:

    
θi

     其示意代码如下:

# Assume the gradient dx and parameter vector x
cache += dx**2
x -= learning_rate * dx / (np.sqrt(cache + 1e-8))

     learning_rate 是初始学习率,由于之后会自动调整学习率,所以初始值就不像之前的算法那样重要了。而1e-8指一个比较小的数,用来保证分母非0。

     其含义是,对于每个参数,随着其更新的总距离增多,其学习速率也随之变慢。


7.4.2 AdaDelta (Adaptive Delta)

    关键优点:1) 解决了AdaGrad Learning Rate单调递减的问题。 (是AdaGrad的扩展)

                      2) 不需要设置默认的Learning Rate 

   RMS(Root Mean Squared) : 均方根

   Adagrad算法存在三个问题:

    1)其学习率是单调递减的,训练后期学习率非常小
2)其需要手工设置一个全局的初始学习率
3)更新W时,左右两边的单位不同
Adadelta针对上述三个问题提出了比较漂亮的解决方案。

    


7.4.3 RMSprop

     RMSprop是由Geoff Hinton设计的。RMSprop与AdaDelta的目的一样:解决AdaGrad的Learning Rate逐步消失的问题。

    

7.4.4 Adam (Adaptive Moment Estimation)

    Adam的目的是:为每个参数计算自适应的Learning Rate。

    

     其实际效果与AdaDelta、RMSProp相比,毫不逊色!

7.5 优化算法效果可视化

    

              SGD optimization on Beale's function

    

                SGD optimization on Long Valley

      

                SGD optimization on Saddle Point

7.6 如何选择优化算法

     1)总结:

           - RMSprop是AdaGrad的扩展,以解决learning rate逐步消失的问题

           - RMSprop与AdaDelta相比,AdaDelta在分子更新规则中使用了参数RMS更新,其它相同

           - Adam与RMSprop相比,增加了偏差校正和动量

           - RMSprop、AdaDelta和Adam是非常类似的算法,在类似的环境下,效果相当

           - 从整体上看,Adam目前是最好的选择

     2)如果输入数据是稀疏的(sparse),使用adaptive learning-rate(AdaGrad、AdaDelta、RMSprop、Adam)可以获得最好的结果,且不需要调整learning rate;

     3)如果你关心快速收敛,你应当选择adaptive learning-rate方法

7.7 优化SGD的其它策略

7.7.1 Shuffling and Curriculum Learning

      1)Shuffling:每次迭代前,随机打乱训练样本的顺序

      2)Curriculum Learning:把训练样本按某种有意义的方式进行排序,对逐步解决困难问题有效。

7.7.2 批量归一化Batch Normalization (BN)        

      为了便于训练,我们经常归一化参数的初始值,通过mean=0, variance=1的高斯分布来初始化参数。在训练过程中,我们不同程度地更新参数,使用参数失去了归一化,这将降低训练速度且放大变化,网络越深问题越严重。

      BN为每一个mini-batch重建归一化参数。使模型结构的部分进行归一化,我们可以使用更高的learning rate,且参数初始化要求没哪么高。

      此外,BN还作为一个正则化(Regularizer),可以减少或避免使用Dropout。

      正则化(Regularizer):是一个用于解决过拟合(Overfitting)问题的一种技术。具体实现方法是在损失函数中增加惩罚因子(参数向量的范数,1范数(L1)或2范数(L2))lambda*N(w)。

7.7.3 早期停止(Early Stopping)

     在训练时,总是监视验证集的错误率,如果验证集的错误率不能得到改善,应当停止训练。

8. Regularization: Dropout

    在前向计算时,随机设置一些神经元的值为0,如下图所示:

    

    示意代码如下:

   p = 0.5  # probability of keeping a unit active, higher = less dropoutdef train_step(X)""" X contains the data """# forward pass for example 3-layer neural networkH1 = np.maximum(0, np.dot(W1, X) + b1)M1 = np.random.rand(*H1.shape) < p  # first dropout maskH1 *= M1   # dropH2 = np.maximum(0, np.dot(W2, H1) + b2)M2 = np.random.rand(*H2.shape) < p  # send dropout maskH2 *= M2   # drop out = np.dot(W3,H2) + b3
    相当于训练多个模型,一个dropout mask对应一个模型,且这些模型共享参数。

    在测试时,不需要dropout, 直接计算每层的激活值,然后进行scale作为本层最终输出的激活值,其代码如下:

   def predict(X):# ensembled forward passH1 = np.maxmium(0, np.dot(W1,X)+b1) * p  # Note: scale the activationsH2 = np.maxmium(0, np.dot(W2,H1)+b2) * p # Note: scale the activationsout = np.dot(W3,H2) + b3



     





查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. XP系统启动慢的另类解决(尤其是网络启动慢)

    前段时间,一直被系统启动慢困扰,现象是,每次进入桌面以后,系统反应很慢,如果这个时候打开资源管理器,就看见那个手电筒不停转啊转。大概2分多钟才能显示网络图标。虽然不影响使用,但那个2分多的等待着事让我心烦。期间也到网上查过,尝试过一些操作,例如把一些程序卸载…...

    2024/4/14 22:56:07
  2. 向busybox中添加命令

    注意: 个人使用的busybox 是1.21.0 其中 Kbuild Config.in usage.h applets.h 均是由 Kbuild.src Config.src 等gen 的,所以修改生成的文件的文件, 而不是Kbuild等。注释里有说明,其它的参考 别的命令来写。第一种方法向 BusyBox添加一个新命令非常简单,这是因为它具有良好…...

    2024/4/14 22:56:06
  3. 位,字节,16进制关系,以防忘记(给自己看的)

    1字节=8位 一个16进制为0xf,一个16进制数为四个二进制数,0x0为0000,0xf为1111,即1个16进制数为4位 UE软件打开bmp图像,如42 4D 38 04 04 00 00 00 00 00 36 04 00 00,每两个16进制数隔开,用意是:因为1个16进制数为4位,两个就是8位,即1个字节,所以这里是14字节,是位图…...

    2024/4/19 11:17:06
  4. IntelliJ IDEA2018破解教程(2019.1.11更新)

    转载自:https://blog.csdn.net/qq_27686779/article/details/78870816...

    2024/4/19 8:41:22
  5. 感恩有您,感恩父亲节PPT模板

    在这个世界上有这么一个男人,你从不说爱我,但你演技不好,藏不住满满的关怀,我问飞翔是什么感觉,你就将我抛起来,一年又一年,直到你抱不起我,直到你渐生白发,你没说,但我知道,你要牵着我一直走天涯,用你的白发换来我的青春。曾经的超人却在时光之战中慢慢苍老。感谢…...

    2024/4/14 21:52:05
  6. mysql数据库服务找不到

    安装MySQL数据库完成后,在控制面板的服务列表里找不到MySQL服务启动项如果我们用的是绿色免安装版本的mysql数据库有时会出现mysql数据库找不到的问题解决方案:打开cmd,切换到mysql的bin目录 D:\Program Files\MySQL5.1\bin>,下然后输入 mysqld.exe -install命令如果提示…...

    2024/4/14 21:52:03
  7. JS调用CS里的方法:WebMethod PageMethods AjaxMethod

    饮水思源:http://hi.baidu.com/%D3%B0%B7%E1/blog/item/f2739589fbb887bd0e2444d2.html 举个列子: Default.aspx 里代码 <%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="_Default" %>&…...

    2024/4/14 21:52:02
  8. python进制转化函数,10进制字符串互转,16进制字符串互转

    来了老弟,emmmmm,今天想到平时经常用到编码转化,把字符串转化为16进制绕过等等的,今天想着用python写个玩,查询了一些资料,看了些bolg上面的两个函数是将二进制流转化为16进制,data的每一个比特都被转为对应十六进制的2位,因此返回结果是data长度的二倍。 下面的两个函数…...

    2024/4/14 22:56:05
  9. Windows XP的硬盘空间优化

    写这个题目,可能很多朋友觉得没太大的必要,因为现在硬盘这么便宜,40G的不到千元就可买到,用不着优化。其实,即使你的硬盘再大,合理的安排和使用仍有必要,这可让你的系统运行良好,维护方便。对于小硬盘的朋友,其必要性更不用说了。  首先,XP的空间需求最小也要有1.4…...

    2024/4/14 22:56:03
  10. busybox内置ftp服务器用法

    参考:http://blog.chinaunix.net/uid-20564848-id-74041.html 最新的busybox已集成ftp服务器层需ftpd,使用方法如下: 方法一:# tcpsvd 0 21 ftpd -w /ftpd_dir &// 上面的0表示对所有ip地址都进行侦听// 如果设置为127.0.0.1那么只能开发板本地arm可以进行ftp// 比如开…...

    2024/4/14 22:56:03
  11. 感恩节祝福!

    我不是天使,但我拥有天堂;我不是海豚,但我翱翔海洋;我没有翅膀,但我俯视阳光;我没有三叶草,但我手捧希望!因为我有你们,我的朋友。祝感恩节快乐!转载于:https://blog.51cto.com/eskystar/10446...

    2024/4/14 22:56:01
  12. 将asp.net的后台cs代码移动到页面上

    在做项目时,我们一般会将aspx文件和其后台cs文件分开,然后将后台的cs文件编译成dll发布到生产环境中。如果我们的项目规定是每周1发布一次,现在发布后第二天客户在其中某个页面发现一个Bug导致业务无法正常处理,这个时候我们的项目正在添加新的功能,编码还没有完成,不可能…...

    2024/4/14 22:56:00
  13. postgres数据库安装(最简单)

    postgres数据库安装(最简单) 1.下载postgres数据库免安装版 链接:https://pan.baidu.com/s/1o9aqp5dTrJFLze0RACTQeg 提取码:jjj4 2.创建data文件夹3.配置环境变量**然后将%PostgreSQL%加入path中** 4.初始化数据库 initdb.exe -D D:\FileData\pgsql\data -E UTF-8 --local…...

    2024/4/14 22:55:59
  14. 二级缓存的问题

    在众多的XP优化技巧中,较为流行的一种说法是Windows XP系统需要用户手工打开CPU的二级缓存,这样才能使CPU发挥出最大效率。这种说法流传相当广泛,现在使用率最高的Windows系统优化软件之一的“Windows 优化大师”也是持这种观点,在它的优化设置栏中就有优化CPU二级缓存的选…...

    2024/4/16 23:12:54
  15. 为Android安装BusyBox —— 完整的bash shell

    大家是否有过这样的经历,在命令行里输入adb shell,然后使用命令操作你的手机或模拟器,但是那些命令都是常见Linux命令的阉割缩水版,用起来很不爽。是否想过在Android上使用较完整的shell呢?用BusyBox吧。不论使用adb连接设备使用命令行还是在手机上直接用terminal emulato…...

    2024/4/14 22:55:57
  16. 感恩节感恩

    今天是感恩节,所以要感感恩。除了通过各种方式表达感恩之情外,也要写一篇博文。 其实一直都在让自己用感恩的心来生活,清楚自己拥有多少美好的事物,让生活更加乐观、积极。 感谢家人、朋友、同学、老师、同事、网友…… 因为有你们的培养、教导、批评、赞美才有今天的我。 …...

    2024/4/19 22:29:07
  17. 小强的HTML5移动开发之路(4)——CSS2和CSS3

    在上一篇中我们提到学习HTML5要具备CSS的知识,在页面设计的时候HTML5知识页面的布局与结构,要实现一个很绚丽漂亮的界面就需要借助CSS。下面我们先来回顾一下css2的基本用法,再来看看和css3的关系与区别。1、css是什么?cascading stylesheet(级联样式表),为网页提供表现形…...

    2024/4/19 1:19:03
  18. XP系统优化简单实用技法

    1。关闭计算机时自动结束任务: 在关机的时候,有时会弹出讨厌的对话框,提醒某个程序仍在运行,是否结束任务。其实完全梢酝坏愕阈薷娜肳indows自动结束这些仍在运行的程序。在注册表中打开HKEY_CURRENT_USER\Control Panel\Desktop 目录,把里面的AugoEndTasks键值改为12…...

    2024/4/14 22:55:53
  19. 【JAVA学习】02.Tomcat安装与配置

    【提要】: 下载免安装版(绿色版)Tomcat 8(与JDK 1.8匹配) 【步骤】: 1、下载后解压到指定路径,如:D:\apache-tomcat-8.5.29; 2、新增环境变量:【变量名】TOMCAT_HOME 【变量值】E:\apache-tomcat-8.5.29【变量名】CATALINA_BASE 【变量值】%TOMCAT_HOME%【变量名】CA…...

    2024/4/14 22:55:53
  20. 回顾二零零九,展望二零一零

    2010年的第一天,比以往都来得更早一些。2009年已如过往云烟,但是2009年仍是让我感恩备至的一年,2009年也是我跨越梦想与现实的一年,2009年同时也是非比寻常的一年。2009年的最后一天,比以往都来得更迟一些。当2009年末最后一道星光划过夜空,时间已如流星一样一去不复返。…...

    2024/4/14 21:52:14

最新文章

  1. 使用NGINX做局域网内 浏览器直接访问链接 拓展外网链接访问本地

    达成目的功能&#xff1a; 在本地服务的一个文件路径下&#xff0c;局域网内用ip和路径名访问到对应的地址&#xff1b;如 10.5.9.0/v1 即可访问到 某个固定本地地址目录 V1下&#xff0c;名为index.html的文件。前言 NGINX 是一个非常流行的开源 Web 服务器和反向代理服务器…...

    2024/4/28 0:56:53
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. ChatGPT 初学者指南

    原文&#xff1a;ChatGPT for Beginners 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 介绍 如果您一直关注新闻和趋势&#xff0c;您可能已经在某个地方读到或听到过&#xff0c;Sam Altman 的生成式人工智能平台 ChatGPT 已经将人工智能推向了一个新的高度 - 许多…...

    2024/4/27 12:58:33
  4. 与机器对话:ChatGPT 和 AI 语言模型的奇妙故事

    原文&#xff1a;Talking to Machines: The Fascinating Story of ChatGPT and AI Language Models 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 从 ELIZA 到 ChatGPT&#xff1a;会话式人工智能的简史 会话式人工智能是人工智能&#xff08;AI&#xff09;的一个分…...

    2024/4/26 15:58:04
  5. 【外汇早评】美通胀数据走低,美元调整

    原标题:【外汇早评】美通胀数据走低,美元调整昨日美国方面公布了新一期的核心PCE物价指数数据,同比增长1.6%,低于前值和预期值的1.7%,距离美联储的通胀目标2%继续走低,通胀压力较低,且此前美国一季度GDP初值中的消费部分下滑明显,因此市场对美联储后续更可能降息的政策…...

    2024/4/26 18:09:39
  6. 【原油贵金属周评】原油多头拥挤,价格调整

    原标题:【原油贵金属周评】原油多头拥挤,价格调整本周国际劳动节,我们喜迎四天假期,但是整个金融市场确实流动性充沛,大事频发,各个商品波动剧烈。美国方面,在本周四凌晨公布5月份的利率决议和新闻发布会,维持联邦基金利率在2.25%-2.50%不变,符合市场预期。同时美联储…...

    2024/4/26 20:12:18
  7. 【外汇周评】靓丽非农不及疲软通胀影响

    原标题:【外汇周评】靓丽非农不及疲软通胀影响在刚结束的周五,美国方面公布了新一期的非农就业数据,大幅好于前值和预期,新增就业重新回到20万以上。具体数据: 美国4月非农就业人口变动 26.3万人,预期 19万人,前值 19.6万人。 美国4月失业率 3.6%,预期 3.8%,前值 3…...

    2024/4/26 23:05:52
  8. 【原油贵金属早评】库存继续增加,油价收跌

    原标题:【原油贵金属早评】库存继续增加,油价收跌周三清晨公布美国当周API原油库存数据,上周原油库存增加281万桶至4.692亿桶,增幅超过预期的74.4万桶。且有消息人士称,沙特阿美据悉将于6月向亚洲炼油厂额外出售更多原油,印度炼油商预计将每日获得至多20万桶的额外原油供…...

    2024/4/27 4:00:35
  9. 【外汇早评】日本央行会议纪要不改日元强势

    原标题:【外汇早评】日本央行会议纪要不改日元强势近两日日元大幅走强与近期市场风险情绪上升,避险资金回流日元有关,也与前一段时间的美日贸易谈判给日本缓冲期,日本方面对汇率问题也避免继续贬值有关。虽然今日早间日本央行公布的利率会议纪要仍然是支持宽松政策,但这符…...

    2024/4/27 17:58:04
  10. 【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响

    原标题:【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响近日伊朗局势升温,导致市场担忧影响原油供给,油价试图反弹。此时OPEC表态稳定市场。据消息人士透露,沙特6月石油出口料将低于700万桶/日,沙特已经收到石油消费国提出的6月份扩大出口的“适度要求”,沙特将满…...

    2024/4/27 14:22:49
  11. 【外汇早评】美欲与伊朗重谈协议

    原标题:【外汇早评】美欲与伊朗重谈协议美国对伊朗的制裁遭到伊朗的抗议,昨日伊朗方面提出将部分退出伊核协议。而此行为又遭到欧洲方面对伊朗的谴责和警告,伊朗外长昨日回应称,欧洲国家履行它们的义务,伊核协议就能保证存续。据传闻伊朗的导弹已经对准了以色列和美国的航…...

    2024/4/26 21:56:58
  12. 【原油贵金属早评】波动率飙升,市场情绪动荡

    原标题:【原油贵金属早评】波动率飙升,市场情绪动荡因中美贸易谈判不安情绪影响,金融市场各资产品种出现明显的波动。随着美国与中方开启第十一轮谈判之际,美国按照既定计划向中国2000亿商品征收25%的关税,市场情绪有所平复,已经开始接受这一事实。虽然波动率-恐慌指数VI…...

    2024/4/27 9:01:45
  13. 【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试

    原标题:【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试美国和伊朗的局势继续升温,市场风险情绪上升,避险黄金有向上突破阻力的迹象。原油方面稍显平稳,近期美国和OPEC加大供给及市场需求回落的影响,伊朗局势并未推升油价走强。近期中美贸易谈判摩擦再度升级,美国对中…...

    2024/4/27 17:59:30
  14. 【原油贵金属早评】市场情绪继续恶化,黄金上破

    原标题:【原油贵金属早评】市场情绪继续恶化,黄金上破周初中国针对于美国加征关税的进行的反制措施引发市场情绪的大幅波动,人民币汇率出现大幅的贬值动能,金融市场受到非常明显的冲击。尤其是波动率起来之后,对于股市的表现尤其不安。隔夜美国股市出现明显的下行走势,这…...

    2024/4/25 18:39:16
  15. 【外汇早评】美伊僵持,风险情绪继续升温

    原标题:【外汇早评】美伊僵持,风险情绪继续升温昨日沙特两艘油轮再次发生爆炸事件,导致波斯湾局势进一步恶化,市场担忧美伊可能会出现摩擦生火,避险品种获得支撑,黄金和日元大幅走强。美指受中美贸易问题影响而在低位震荡。继5月12日,四艘商船在阿联酋领海附近的阿曼湾、…...

    2024/4/25 18:39:16
  16. 【原油贵金属早评】贸易冲突导致需求低迷,油价弱势

    原标题:【原油贵金属早评】贸易冲突导致需求低迷,油价弱势近日虽然伊朗局势升温,中东地区几起油船被袭击事件影响,但油价并未走高,而是出于调整结构中。由于市场预期局势失控的可能性较低,而中美贸易问题导致的全球经济衰退风险更大,需求会持续低迷,因此油价调整压力较…...

    2024/4/26 19:03:37
  17. 氧生福地 玩美北湖(上)——为时光守候两千年

    原标题:氧生福地 玩美北湖(上)——为时光守候两千年一次说走就走的旅行,只有一张高铁票的距离~ 所以,湖南郴州,我来了~ 从广州南站出发,一个半小时就到达郴州西站了。在动车上,同时改票的南风兄和我居然被分到了一个车厢,所以一路非常愉快地聊了过来。 挺好,最起…...

    2024/4/26 22:01:59
  18. 氧生福地 玩美北湖(中)——永春梯田里的美与鲜

    原标题:氧生福地 玩美北湖(中)——永春梯田里的美与鲜一觉醒来,因为大家太爱“美”照,在柳毅山庄去寻找龙女而错过了早餐时间。近十点,向导坏坏还是带着饥肠辘辘的我们去吃郴州最富有盛名的“鱼头粉”。说这是“十二分推荐”,到郴州必吃的美食之一。 哇塞!那个味美香甜…...

    2024/4/25 18:39:14
  19. 氧生福地 玩美北湖(下)——奔跑吧骚年!

    原标题:氧生福地 玩美北湖(下)——奔跑吧骚年!让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 啊……啊……啊 两…...

    2024/4/26 23:04:58
  20. 扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!

    原标题:扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!扒开伪装医用面膜,翻六倍价格宰客!当行业里的某一品项火爆了,就会有很多商家蹭热度,装逼忽悠,最近火爆朋友圈的医用面膜,被沾上了污点,到底怎么回事呢? “比普通面膜安全、效果好!痘痘、痘印、敏感肌都能用…...

    2024/4/27 23:24:42
  21. 「发现」铁皮石斛仙草之神奇功效用于医用面膜

    原标题:「发现」铁皮石斛仙草之神奇功效用于医用面膜丽彦妆铁皮石斛医用面膜|石斛多糖无菌修护补水贴19大优势: 1、铁皮石斛:自唐宋以来,一直被列为皇室贡品,铁皮石斛生于海拔1600米的悬崖峭壁之上,繁殖力差,产量极低,所以古代仅供皇室、贵族享用 2、铁皮石斛自古民间…...

    2024/4/25 18:39:00
  22. 丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者

    原标题:丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者【公司简介】 广州华彬企业隶属香港华彬集团有限公司,专注美业21年,其旗下品牌: 「圣茵美」私密荷尔蒙抗衰,产后修复 「圣仪轩」私密荷尔蒙抗衰,产后修复 「花茵莳」私密荷尔蒙抗衰,产后修复 「丽彦妆」专注医学护…...

    2024/4/26 19:46:12
  23. 广州械字号面膜生产厂家OEM/ODM4项须知!

    原标题:广州械字号面膜生产厂家OEM/ODM4项须知!广州械字号面膜生产厂家OEM/ODM流程及注意事项解读: 械字号医用面膜,其实在我国并没有严格的定义,通常我们说的医美面膜指的应该是一种「医用敷料」,也就是说,医用面膜其实算作「医疗器械」的一种,又称「医用冷敷贴」。 …...

    2024/4/27 11:43:08
  24. 械字号医用眼膜缓解用眼过度到底有无作用?

    原标题:械字号医用眼膜缓解用眼过度到底有无作用?医用眼膜/械字号眼膜/医用冷敷眼贴 凝胶层为亲水高分子材料,含70%以上的水分。体表皮肤温度传导到本产品的凝胶层,热量被凝胶内水分子吸收,通过水分的蒸发带走大量的热量,可迅速地降低体表皮肤局部温度,减轻局部皮肤的灼…...

    2024/4/27 8:32:30
  25. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  26. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  27. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  28. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  29. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  30. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  31. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  32. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  33. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  34. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  35. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  36. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  37. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  38. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  39. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  40. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  41. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  42. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  43. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  44. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57