一、概述


Handler是Android中处理异步消息的机制。Looper、Handler、MessageQueue、Message概括来说就是:Looper负责的就是创建一个MessageQueue,然后进入一个无限循环体不断从该MessageQueue中读取消息Message,然后回调相应的消息处理函数,而消息的创建者就是一个或多个Handler,执行完成一个消息后则继续循环。

 

二、MessageQueue详解


消息队列MessageQueue就是存放消息的队列。那队列中存储的消息是什么呢?假设我们在UI界面上单击了某个按钮,而此时程序又恰好收到了某个广播事件,那我们如何处理这两件事呢? 因为一个线程在某一时刻只能处理一件事情,不能同时处理多件事情,所以我们不能同时处理按钮的单击事件和广播事件,我们只能挨个对其进行处理,只要挨个处理就要有处理的先后顺序。为此Android把UI界面上单击按钮的事件封装成了一个Message,将其放入到MessageQueue里面去,即将单击按钮事件的Message入栈到消息队列中,然后再将广播事件的封装成以Message,也将其入栈到消息队列中。也就是说一个Message对象表示的是线程需要处理的一件事情,消息队列就是一堆需要处理的Message的池。线程Thread会依次取出消息队列中的消息,依次对其进行处理。

MessageQueue中有两个比较重要的方法,一个是enqueueMessage方法,一个是next方法。enqueueMessage方法用于将一个Message放入到消息队列MessageQueue中,next方法是从消息队列MessageQueue中阻塞式地取出一个Message。

 

三、Looper详解


消息队列MessageQueue只是存储Message的地方,真正让消息队列循环起来的是Looper,这就好比消息队列MessageQueue是个水车,那么Looper就是让水车转动起来的河水,如果没有河水,那么水车就是个静止的摆设,没有任何用处,Looper让MessageQueue动了起来。

Looper是用来使线程中的消息循环起来的。默认情况下当我们创建一个新的线程的时候,这个线程里面是没有消息队列MessageQueue的。为了能够让线程能够绑定一个消息队列,我们需要借助于Looper:首先我们要调用Looper的prepare方法,然后调用Looper的loop方法。

 

(一)prepare()方法

public static final void prepare() {if (sThreadLocal.get() != null) {throw new RuntimeException("Only one Looper may be created per thread");}sThreadLocal.set(new Looper(true));

sThreadLocal是一个ThreadLocal对象,可以在一个线程中存储变量。可以看到,将一个Looper的实例放入了ThreadLocal,并且先判断了sThreadLocal.get是否为null,否则抛出异常。这也就说明了Looper.prepare()方法不能被调用两次,同时也保证了一个线程中只有一个Looper实例。

 

(二)构造函数

上面的代码执行了Looper的构造函数,我们看一下其代码:

private Looper(boolean quitAllowed) {mQueue = new MessageQueue(quitAllowed);mRun = true;mThread = Thread.currentThread();
}

在构造函数中,创建了一个消息队列MessageQueue,并将其赋值给其成员字段mQueue,这样Looper也就与MessageQueue通过成员字段mQueue进行了关联。

 

(三)loop()方法

public static void loop() {final Looper me = myLooper();if (me == null) {throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");}final MessageQueue queue = me.mQueue;// Make sure the identity of this thread is that of the local process,// and keep track of what that identity token actually is.Binder.clearCallingIdentity();final long ident = Binder.clearCallingIdentity();for (;;) {Message msg = queue.next(); // might blockif (msg == null) {// No message indicates that the message queue is quitting.return;}// This must be in a local variable, in case a UI event sets the loggerPrinter logging = me.mLogging;if (logging != null) {logging.println(">>>>> Dispatching to " + msg.target + " " +msg.callback + ": " + msg.what);}msg.target.dispatchMessage(msg);if (logging != null) {logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);}// Make sure that during the course of dispatching the// identity of the thread wasn't corrupted.final long newIdent = Binder.clearCallingIdentity();if (ident != newIdent) {Log.wtf(TAG, "Thread identity changed from 0x"+ Long.toHexString(ident) + " to 0x"+ Long.toHexString(newIdent) + " while dispatching to "+ msg.target.getClass().getName() + " "+ msg.callback + " what=" + msg.what);}msg.recycle();}
}

上面有几行代码是关键代码:

1. final Looper me = myLooper();

myLooper()方法直接返回了sThreadLocal存储的Looper实例,如果me为null则抛出异常,也就是说looper方法必须在prepare方法之后运行。

final Looper me = myLooper();
if (me == null) {throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");}
public static Looper myLooper() {return sThreadLocal.get();
}

2. final MessageQueue queue = me.mQueue;

拿到该looper实例中的消息队列mQueue。变量me是通过静态方法myLooper()获得的当前线程所绑定的Looper,me.mQueue是当前线程所关联的消息队列。

3. for (;;)

进入了循环。我们发现for循环没有设置循环终止的条件,所以这个for循环是个无限循环。

4. Message msg = queue.next(); // might block

取出一条消息,如果没有消息则阻塞。我们通过消息队列MessageQueue的next方法从消息队列中取出一条消息,如果此时消息队列中有Message,那么next方法会立即返回该Message,如果此时消息队列中没有Message,那么next方法就会阻塞式地等待获取Message。

5. msg.target.dispatchMessage(msg);

msg的target属性是Handler,该代码的意思是让Message所关联的Handler通过dispatchMessage方法让Handler处理该Message。

6. msg.recycle();

释放消息占据的资源。

(四)Looper主要作用

1.与当前线程绑定,保证一个线程只会有一个Looper实例,同时一个Looper实例也只有一个MessageQueue。

2.loop()方法,不断从MessageQueue中去取消息,交给消息Message的target属性,即Handler的dispatchMessage去处理。

 

四、Handler详解


(一)构造函数

使用Handler之前,我们都是初始化一个实例,比如用于更新UI线程,我们会在声明的时候直接初始化,或者在onCreate中初始化Handler实例。所以我们首先看Handler的构造方法,看其如何与MessageQueue联系上的,它在子线程中发送的消息(一般发送消息都在非UI线程)怎么发送到MessageQueue中的。

public Handler() {this(null, false);
}
public Handler(Callback callback, boolean async) {if (FIND_POTENTIAL_LEAKS) {final Class<? extends Handler> klass = getClass();if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&(klass.getModifiers() & Modifier.STATIC) == 0) {Log.w(TAG, "The following Handler class should be static or leaks might occur: " +klass.getCanonicalName());}}mLooper = Looper.myLooper();if (mLooper == null) {throw new RuntimeException("Can't create handler inside thread that has not called Looper.prepare()");}mQueue = mLooper.mQueue;mCallback = callback;mAsynchronous = async;}

上面有几行代码是关键代码:

1. public Handler(Callback callback, boolean async)

Handler.Callback是用来处理Message的一种手段,如果没有传递该参数,那么就应该重写Handler的handleMessage方法,也就是说为了使得Handler能够处理Message,我们有两种办法:

(1)向Hanlder的构造函数传入一个Handler.Callback对象,并实现Handler.Callback的handleMessage方法。

(2)无需向Hanlder的构造函数传入Handler.Callback对象,但是需要重写Handler本身的handleMessage方法。

 //在主线程中创建mHandler,所以自动绑定主线程private Handler mHandler = new Handler(){@Overridepublic void handleMessage(@NonNull Message msg) {switch (msg.what){case 1:System.out.println("handleMessage thread id " + Thread.currentThread().getId());System.out.println("msg.arg1:" + msg.arg1);System.out.println("msg.arg2:" + msg.arg2);System.out.println("msg.obj:" + msg.obj.toString());System.out.println("msg.setDate:" + msg.getData().get("QQ"));textview.setText("success");break;}}};private Handler mHandler2 = new Handler(new Handler.Callback() {@Overridepublic boolean handleMessage(@NonNull Message msg) {switch (msg.what){case 1:System.out.println("handleMessage thread id " + Thread.currentThread().getId());System.out.println("msg.arg1:" + msg.arg1);System.out.println("msg.arg2:" + msg.arg2);System.out.println("msg.obj:" + msg.obj.toString());System.out.println("msg.setDate:" + msg.getData().get("QQ"));textview.setText("success");break;}return false;}});

也就是说无论哪种方式,我们都得通过某种方式实现handleMessage方法,这点与Java中对Thread的设计有异曲同工之处。

在Java中,如果我们想使用多线程,有两种办法:

(1)向Thread的构造函数传入一个Runnable对象,并实现Runnable的run方法。

(2)无需向Thread的构造函数传入Runnable对象,但是要重写Thread本身的run方法。

2. mLooper = Looper.myLooper();

首先通过Looper.myLooper()获取了当前线程保存的Looper实例。

3.mQueue = mLooper.mQueue;

然后再获取该Looper实例中保存的消息队列MessageQueue,这样就保证了Handler的实例与Looper实例中MessageQueue关联上了。

 

(二)sendMessage()方法

   public final boolean sendMessage(Message msg){return sendMessageDelayed(msg, 0);}
   public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {Message msg = Message.obtain();msg.what = what;return sendMessageDelayed(msg, delayMillis);}
 public final boolean sendMessageDelayed(Message msg, long delayMillis){if (delayMillis < 0) {delayMillis = 0;}return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);}
 public boolean sendMessageAtTime(Message msg, long uptimeMillis) {MessageQueue queue = mQueue;if (queue == null) {RuntimeException e = new RuntimeException(this + " sendMessageAtTime() called with no mQueue");Log.w("Looper", e.getMessage(), e);return false;}return enqueueMessage(queue, msg, uptimeMillis);}

辗转反则最后调用了sendMessageAtTime,在此方法内部有直接获取MessageQueue,然后调用了enqueueMessage方法,我们再来看看此方法:

 private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {msg.target = this;if (mAsynchronous) {msg.setAsynchronous(true);}return queue.enqueueMessage(msg, uptimeMillis);}

上面有几行代码是关键代码:

1. msg.target = this;

该代码将Message的target绑定为当前的Handler。

2. queue.enqueueMessage;

变量queue表示的是Handler所绑定的消息队列MessageQueue,通过调用queue.enqueueMessage(msg, uptimeMillis)我们将Message放入到消息队列中。

现在已经很清楚了Looper会调用prepare()和loop()方法,在当前执行的线程中保存一个Looper实例,这个实例会保存一个MessageQueue对象,然后当前线程进入一个无限循环中去,不断从MessageQueue中读取Handler发来的消息。然后再回调创建该消息的Handler中的dispathMessage方法。Handler的dispatchMessage的源码如下:

public void dispatchMessage(Message msg) {if (msg.callback != null) {handleCallback(msg);} else {if (mCallback != null) {if (mCallback.handleMessage(msg)) {return;}}handleMessage(msg);}

上面有几行代码是关键代码:

1. if (msg.callback != null) { handleCallback(msg); }

首先会判断msg.callback存不存在,msg.callback是Runnable类型,如果msg.callback存在,那么说明该Message是通过执行Handler的postXXX系列方法将Message放入到消息队列中的,这种情况下会执行handleCallback(msg), handleCallback源码如下:

private static void handleCallback(Message message) {message.callback.run();
}

这样我们我们就清楚地看到我们执行了msg.callback的run方法,也就是执行了postXXX所传递的Runnable对象的run方法。

2. else { if (mCallback != null) { if (mCallback.handleMessage(msg)) { return; } }

如果我们不是通过postXXX系列方法将Message放入到消息队列中的,那么msg.callback就是null,代码继续往下执行,接着我们会判断Handler的成员字段mCallback存不存在。mCallback是Hanlder.Callback类型的,我们在上面的Handler构造函数提到过,在Handler的构造函数中我们可以传递Hanlder.Callback类型的对象,该对象需要实现handleMessage方法,如果我们在构造函数中传递了该Callback对象,那么我们就会让Callback的handleMessage方法来处理Message。

3.handleMessage(msg);

如果我们在构造函数中没有传入Callback类型的对象,那么mCallback就为null,那么我们会调用Handler自身的hanldeMessage方法,该方法默认是个空方法,我们需要自己是重写实现该方法。

综上,我们可以看到Handler提供了三种途径处理Message,而且处理有前后优先级之分:首先尝试让postXXX中传递的Runnable执行,其次尝试让Handler构造函数中传入的Callback的handleMessage方法处理,最后才是让Handler自身的handleMessage方法处理Message。

让我们看一下handleMessage(msg)

  /*** Subclasses must implement this to receive messages.*/public void handleMessage(Message msg) {}

可以看到这是一个空方法,为什么呢,因为消息的最终回调是由我们控制的,我们在创建handler的时候都是复写handleMessage方法,然后根据msg.what进行消息处理。

private Handler mHandler = new Handler(){public void handleMessage(android.os.Message msg){switch (msg.what){case value:break;default:break;}   };};

到此,sendMessage方式流程已经解释完毕,接下来看下post方式。

 

(三)post()方法

mHandler.post(new Runnable(){@Overridepublic void run(){Log.e("TAG", Thread.currentThread().getName());mTxt.setText("yoxi");}});

然后run方法中可以写更新UI的代码,其实这个Runnable并没有创建什么线程,而是发送了一条消息,下面看源码:

 public final boolean post(Runnable r){return  sendMessageDelayed(getPostMessage(r), 0);}
  private static Message getPostMessage(Runnable r) {Message m = Message.obtain();m.callback = r;return m;}

可以看到,在getPostMessage中,得到了一个Message对象,然后将我们创建的Runable对象作为callback属性,赋值给了此message。 注:产生一个Message对象,可以new也可以使用Message.obtain()方法;两者都可以,但是更建议使用obtain方法,因为Message内部维护了一个Message池用于Message的复用,避免使用new重新分配内存。

 public final boolean sendMessageDelayed(Message msg, long delayMillis){if (delayMillis < 0) {delayMillis = 0;}return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);}
 public boolean sendMessageAtTime(Message msg, long uptimeMillis) {MessageQueue queue = mQueue;if (queue == null) {RuntimeException e = new RuntimeException(this + " sendMessageAtTime() called with no mQueue");Log.w("Looper", e.getMessage(), e);return false;}return enqueueMessage(queue, msg, uptimeMillis);}

最终和handler.sendMessage一样,调用了sendMessageAtTime,然后调用了enqueueMessage方法,给msg.target赋值为handler,最终加入MessagQueue。

 public void dispatchMessage(Message msg) {if (msg.callback != null) {handleCallback(msg);} else {if (mCallback != null) {if (mCallback.handleMessage(msg)) {return;}}handleMessage(msg);}}

可以看到,这里msg的callback和target都有值,那么会执行msg.callback != null的判断,则执行handleCallback回调,也就是我们的Runnable对象。

 

五、总结


到此,这个流程已经解释完毕,让我们首先总结一下:

  1. 首先Looper.prepare()在本线程中保存一个Looper实例,然后该实例中保存一个MessageQueue对象;因为Looper.prepare()在一个线程中只能调用一次,所以MessageQueue在一个线程中只会存在一个。

  2. 在Lopper构造函数中,创建了一个消息队列MessageQueue,并将其赋值给其成员字段mQueue,这样Looper也就与MessageQueue通过成员字段mQueue进行了关联。

  3. Looper.loop()会让当前线程进入一个无限循环,不端从MessageQueue的实例中读取消息,然后回调msg.target.dispatchMessage(msg)方法。

  4. Handler的构造方法,会首先得到当前线程中保存的Looper实例,进而与Looper实例中的MessageQueue想关联。

  5. Handler的sendMessage方法,会给msg的target赋值为handler自身,然后加入MessageQueue中。

  6. 在构造Handler实例时,我们会重写handleMessage方法,也就是msg.target.dispatchMessage(msg)最终调用的方法。

 

六、一图胜千言


我们在本文讨论了Thread、MessageQueue、Looper以及Hanlder的之间的关系,我们可以通过如下一张传送带的图来更形象的理解他们之间的关系。

在现实生活的生产生活中,存在着各种各样的传送带,传送带上面洒满了各种货物,传送带在发动机滚轮的带动下一直在向前滚动,不断有新的货物放置在传送带的一端,货物在传送带的带动下送到另一端进行收集处理。

我们可以把传送带上的货物看做是一个个的Message,而承载这些货物的传送带就是装载Message的消息队列MessageQueue。传送带是靠发送机滚轮带动起来转动的,我们可以把发送机滚轮看做是Looper,而发动机的转动是需要电源的,我们可以把电源看做是线程Thread,所有的消息循环的一切操作都是基于某个线程的。一切准备就绪,我们只需要按下电源开关发动机就会转动起来,这个开关就是Looper的loop方法,当我们按下开关的时候,我们就相当于执行了Looper的loop方法,此时Looper就会驱动着消息队列循环起来。

那Hanlder在传送带模型中相当于什么呢?我们可以将Handler看做是放入货物以及取走货物的管道:货物从一端顺着管道划入传送带,货物又从另一端顺着管道划出传送带。我们在传送带的一端放入货物的操作就相当于我们调用了Handler的sendMessageXXX、sendEmptyMessageXXX或postXXX方法,这就把Message对象放入到了消息队列MessageQueue中了。当货物从传送带的另一端顺着管道划出时,我们就相当于调用了Hanlder的dispatchMessage方法,最终执行handleMessage方法,在该方法中我们完成对Message的处理。

 

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. 计组——Cache与Cpu连线

    图中CBA分别是000—001(两片Rom的片选三八译码器的输入)010–011–100–101–110–111(6片2kx8的RAM的片选输入)存储器的地址线由使用的芯片定【2k】--4--5--6" src="https://img-blog.csdnimg.cn/20200619221832573.png?x-oss-process=image/watermark,type_Zm…...

    2024/4/18 10:11:51
  2. vim插件管理器vim-plug

    插件vim-plug有如下优点 轻量级、单个文件且支持一些直观的安装选项。 支持并行插件加载(要求Vim编译带有Python或Ruby支持,这几乎已经是现代Vim的标配)。 支持大多数插件的延迟加载,即只为特定命令或文件类型触发必要的插件。1.安装vim-plug的方式非常简单 下载插件文件。…...

    2024/4/24 14:03:59
  3. JavaScript笔记–ECMAScript

    JavaScript笔记–ECMAScript 输入输出语句 alert(msg) 浏览器弹出警示框 console.log(msg) 浏览器控制台打印输出信息 prompt(info) 浏览器弹出输入框,用户可以输入(取过来的值是 string) 变量 1、声明变量 var age; // 声明一个名称为age的变量**var ** 是一个JS关…...

    2024/4/24 14:03:57
  4. java AES加密示例

    import javax.crypto.Cipher; import javax.crypto.KeyGenerator; import javax.crypto.SecretKey; import java.util.Scanner;public class TestAES {public static void main(String[] args) throws Exception {System.out.println("输入需要加密的消息:");Scanne…...

    2024/4/24 14:03:56
  5. C++栈对象,堆对象,静态对象的理解

    栈对象 的优势是在适当的时候自动生成,又在适当的时候自动销毁,不需要程序员操心;而且栈对象的创建速度一般较堆对象快,因为分配堆对象时,会调用operator new操作,operator new会采用某种内存空间搜索算法,而该搜索过程可能是很费时间的,产生栈对象则没有这么麻烦,它仅…...

    2024/4/24 14:03:55
  6. android开发从入门到精通 扶松柏 PDF版

    内容简介: 《Android开发从入门到精通》详细讲解了Android技术的基础知识,并通过实例的方式介绍Android在各个领域的具体应用和实现过程。《Android开发从入门到精通》分为20章,包括Android操作系统概述、搭建Android开发环境、Android程序初步开发、界面布局组件、Android基…...

    2024/4/24 14:03:58
  7. java 登陆 图形界面 (不用sql的) 改进版

    专门弄一个类似sql数据的map集合类 用来存放账号密码 isboolsql方法用来验证private static Map<Integer,String> usegroup= new HashMap<Integer,String>( ); static {getUsegroup().put(1,"1");getUsegroup().put(2,"2");getUsegroup().pu…...

    2024/4/24 14:03:53
  8. SU(N)Hubbard模型

    ...

    2024/4/24 14:03:53
  9. Dev-C++报错 error: ‘for’ loop initial declarations are only allowed in C99 mode

    **error: ‘for’ loop initial declarations are only allowed in C99 mode 的原因及解决办法 for(int i=0; i<10; i++) { … } **错误**:使用gcc编译代码会报错:> error: for loop initial declarations are only allowed in C99 mode > note: us…...

    2024/4/24 14:03:52
  10. 树莓派4B初始化使用设置

    树莓派4B初始化使用设置 一、下载烧录树莓派镜像 1、打开树莓派的官网,https://www.raspberrypi.org/downloads/raspberry-pi-os/ ,我们点击箭头所指位置,下载树莓派系统的压缩包。2、准备一张TF卡以及读卡器,建议使用16G以上的卡,用于树莓派的硬盘。我们在使用之前应该对…...

    2024/4/24 14:03:50
  11. zookeeper单机伪集群的搭建经历

    1、下载JDK安装包,解压后,并配置环境变量 2、下载zookeeper安装包,解压后修改配置,复制两份同样修改配置 3、单机伪集群搭建 这里三组端口号都不能重复 1组:给客户端使用 2组:集群间通信使用(Leader监听此端口) 3组:集群间选举leader使用 不能重复,不能重复,不能重复…...

    2024/4/24 14:03:50
  12. 求数组中最大元素的乘积

    来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/maximum-product-of-two-elements-in-an-array 给一个整数数组 nums,请你选择数组的两个不同下标 i 和 j,使 (nums[i]-1)(nums[j]-1) 取得最大值。 请计算并返回该式的最大值。 输入 {1,4,5,2} 输出:12 解释:…...

    2024/4/24 14:03:48
  13. Redis学习笔记—数据类型及常用命令

    Redis 学习笔记 一、简介 Redis本质上是一个Key-Value类型的内存数据库,很像memcached,整个数据库在内存当中进行操作,定期通过异步操作把数据库数 据写到硬盘上进行保存。因为是纯内存操作,Redis的性能非常出色,每秒可以处理超过 10万次读写操作,是已知性能快的KeyValu…...

    2024/4/24 14:03:47
  14. 剪绳子(动态规划、贪婪算法)

    题目描述 给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],…,k[m]。请问k[0]xk[1]x…xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。…...

    2024/4/19 9:35:58
  15. 发布镜像

    DockerHub注册dockerhub https://hub.docker.com/signup,需要有一个账号查看登录命令[root@xiaoyequ /]# docker login --helpUsage: docker login [OPTIONS] [SERVER]Log in to a Docker registry. If no server is specified, the default is defined by the daemon.Options…...

    2024/4/20 12:50:40
  16. idea TODO、FIXME等标签

    标签说明 1)TODO 未实现的功能,且该功能的缺少并不会导致程序中断 2) FIXME 未实现的功能,且该功能的缺少会导致程序中断 3) XXX 已经实现了功能,但是需要重构 idea 自定义TODO 感觉这篇文章写得挺好的https://blog.csdn.net/cgl125167016/article/details/79028073 在XM…...

    2024/4/15 3:26:35
  17. 设计模式(一) 单例

    单例饿汉式懒汉式加锁双重校验为什么要判断两次instance是否为null为什么instance要添加volatile关键字静态内部类的方式枚举 饿汉式优点: 不用考虑多线程问题,利用clinit机制实现单例对象 缺点:类加载时,即使用不到当前对象也要创建对象,占用内存/*** 饿汉式* 私有化静态空参构…...

    2024/4/15 3:26:34
  18. 【mysql】Navicat关闭窗口,未保存sql语句找回

    最近迁移数据比较多,好不容易写在navicat的查询框的数据,一不小心关闭,然后本着不慌的心态,找找软件有没有啥日志之类的。结果发现,真有。工具-历史记录 然后就找到了...

    2024/4/18 22:32:15
  19. A1033 To Fill or Not to Fill (25分)【C语言】

    A1033 To Fill or Not to Fill (25分)【C语言】 原题链接 晴神… 题目描述: With highways available, driving a car from Hangzhou to any other city is easy. But since the tank capacity of a car is limited, we have to find gas stations on the way from time to ti…...

    2024/4/23 4:31:30
  20. 组播基础原理——IGMP

    文章目录复习回顾IP组播基础点到多点的应用传统点到多点新型点到多点单播部署点到多点存在的问题广播部署点到多点存在的问题组播部署点到多点的优势组播基本架构组播地址结构组成组播IP地址组播MAC地址IGMP协议原理及配置IGMPv1IGMPv2IGMPv3总结IGMP配置IGMP Snooping复习回顾…...

    2024/4/19 23:03:45

最新文章

  1. F-47创建预付款请求

    F-47创建预付款请求 需要删除 可以使用FB08 冲消即可...

    2024/4/24 18:41:51
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. Ubuntu磁盘扩容

    使用 df -h命令查看系统磁盘控件的使用情况&#xff1a; [samspobosrv:~]$ df -h Filesystem Size Used Avail Use% Mounted on udev 7.8G 0 7.8G 0% /dev tmpfs 1.6G 1.7M 1.…...

    2024/4/22 15:09:26
  4. 【Godot4自学手册】第三十五节摇杆控制开门

    本节主要实现&#xff0c;在地宫墙壁上安装一扇门&#xff0c;在核实安装一个开门的摇杆&#xff0c;攻击摇杆&#xff0c;打开这扇门&#xff0c;但是只能攻击一次&#xff0c;效果如下&#xff1a; 一、添加完善节点 切换到underground场景&#xff0c;先将TileMap修改一下…...

    2024/4/23 5:54:10
  5. 【外汇早评】美通胀数据走低,美元调整

    原标题:【外汇早评】美通胀数据走低,美元调整昨日美国方面公布了新一期的核心PCE物价指数数据,同比增长1.6%,低于前值和预期值的1.7%,距离美联储的通胀目标2%继续走低,通胀压力较低,且此前美国一季度GDP初值中的消费部分下滑明显,因此市场对美联储后续更可能降息的政策…...

    2024/4/23 20:58:27
  6. 【原油贵金属周评】原油多头拥挤,价格调整

    原标题:【原油贵金属周评】原油多头拥挤,价格调整本周国际劳动节,我们喜迎四天假期,但是整个金融市场确实流动性充沛,大事频发,各个商品波动剧烈。美国方面,在本周四凌晨公布5月份的利率决议和新闻发布会,维持联邦基金利率在2.25%-2.50%不变,符合市场预期。同时美联储…...

    2024/4/23 13:30:22
  7. 【外汇周评】靓丽非农不及疲软通胀影响

    原标题:【外汇周评】靓丽非农不及疲软通胀影响在刚结束的周五,美国方面公布了新一期的非农就业数据,大幅好于前值和预期,新增就业重新回到20万以上。具体数据: 美国4月非农就业人口变动 26.3万人,预期 19万人,前值 19.6万人。 美国4月失业率 3.6%,预期 3.8%,前值 3…...

    2024/4/23 13:28:06
  8. 【原油贵金属早评】库存继续增加,油价收跌

    原标题:【原油贵金属早评】库存继续增加,油价收跌周三清晨公布美国当周API原油库存数据,上周原油库存增加281万桶至4.692亿桶,增幅超过预期的74.4万桶。且有消息人士称,沙特阿美据悉将于6月向亚洲炼油厂额外出售更多原油,印度炼油商预计将每日获得至多20万桶的额外原油供…...

    2024/4/24 18:16:28
  9. 【外汇早评】日本央行会议纪要不改日元强势

    原标题:【外汇早评】日本央行会议纪要不改日元强势近两日日元大幅走强与近期市场风险情绪上升,避险资金回流日元有关,也与前一段时间的美日贸易谈判给日本缓冲期,日本方面对汇率问题也避免继续贬值有关。虽然今日早间日本央行公布的利率会议纪要仍然是支持宽松政策,但这符…...

    2024/4/23 13:27:44
  10. 【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响

    原标题:【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响近日伊朗局势升温,导致市场担忧影响原油供给,油价试图反弹。此时OPEC表态稳定市场。据消息人士透露,沙特6月石油出口料将低于700万桶/日,沙特已经收到石油消费国提出的6月份扩大出口的“适度要求”,沙特将满…...

    2024/4/19 11:57:53
  11. 【外汇早评】美欲与伊朗重谈协议

    原标题:【外汇早评】美欲与伊朗重谈协议美国对伊朗的制裁遭到伊朗的抗议,昨日伊朗方面提出将部分退出伊核协议。而此行为又遭到欧洲方面对伊朗的谴责和警告,伊朗外长昨日回应称,欧洲国家履行它们的义务,伊核协议就能保证存续。据传闻伊朗的导弹已经对准了以色列和美国的航…...

    2024/4/23 13:29:53
  12. 【原油贵金属早评】波动率飙升,市场情绪动荡

    原标题:【原油贵金属早评】波动率飙升,市场情绪动荡因中美贸易谈判不安情绪影响,金融市场各资产品种出现明显的波动。随着美国与中方开启第十一轮谈判之际,美国按照既定计划向中国2000亿商品征收25%的关税,市场情绪有所平复,已经开始接受这一事实。虽然波动率-恐慌指数VI…...

    2024/4/23 13:27:22
  13. 【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试

    原标题:【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试美国和伊朗的局势继续升温,市场风险情绪上升,避险黄金有向上突破阻力的迹象。原油方面稍显平稳,近期美国和OPEC加大供给及市场需求回落的影响,伊朗局势并未推升油价走强。近期中美贸易谈判摩擦再度升级,美国对中…...

    2024/4/23 13:28:42
  14. 【原油贵金属早评】市场情绪继续恶化,黄金上破

    原标题:【原油贵金属早评】市场情绪继续恶化,黄金上破周初中国针对于美国加征关税的进行的反制措施引发市场情绪的大幅波动,人民币汇率出现大幅的贬值动能,金融市场受到非常明显的冲击。尤其是波动率起来之后,对于股市的表现尤其不安。隔夜美国股市出现明显的下行走势,这…...

    2024/4/23 22:01:21
  15. 【外汇早评】美伊僵持,风险情绪继续升温

    原标题:【外汇早评】美伊僵持,风险情绪继续升温昨日沙特两艘油轮再次发生爆炸事件,导致波斯湾局势进一步恶化,市场担忧美伊可能会出现摩擦生火,避险品种获得支撑,黄金和日元大幅走强。美指受中美贸易问题影响而在低位震荡。继5月12日,四艘商船在阿联酋领海附近的阿曼湾、…...

    2024/4/23 13:29:23
  16. 【原油贵金属早评】贸易冲突导致需求低迷,油价弱势

    原标题:【原油贵金属早评】贸易冲突导致需求低迷,油价弱势近日虽然伊朗局势升温,中东地区几起油船被袭击事件影响,但油价并未走高,而是出于调整结构中。由于市场预期局势失控的可能性较低,而中美贸易问题导致的全球经济衰退风险更大,需求会持续低迷,因此油价调整压力较…...

    2024/4/23 13:27:46
  17. 氧生福地 玩美北湖(上)——为时光守候两千年

    原标题:氧生福地 玩美北湖(上)——为时光守候两千年一次说走就走的旅行,只有一张高铁票的距离~ 所以,湖南郴州,我来了~ 从广州南站出发,一个半小时就到达郴州西站了。在动车上,同时改票的南风兄和我居然被分到了一个车厢,所以一路非常愉快地聊了过来。 挺好,最起…...

    2024/4/23 13:47:22
  18. 氧生福地 玩美北湖(中)——永春梯田里的美与鲜

    原标题:氧生福地 玩美北湖(中)——永春梯田里的美与鲜一觉醒来,因为大家太爱“美”照,在柳毅山庄去寻找龙女而错过了早餐时间。近十点,向导坏坏还是带着饥肠辘辘的我们去吃郴州最富有盛名的“鱼头粉”。说这是“十二分推荐”,到郴州必吃的美食之一。 哇塞!那个味美香甜…...

    2024/4/19 11:59:23
  19. 氧生福地 玩美北湖(下)——奔跑吧骚年!

    原标题:氧生福地 玩美北湖(下)——奔跑吧骚年!让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 啊……啊……啊 两…...

    2024/4/19 11:59:44
  20. 扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!

    原标题:扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!扒开伪装医用面膜,翻六倍价格宰客!当行业里的某一品项火爆了,就会有很多商家蹭热度,装逼忽悠,最近火爆朋友圈的医用面膜,被沾上了污点,到底怎么回事呢? “比普通面膜安全、效果好!痘痘、痘印、敏感肌都能用…...

    2024/4/23 13:28:08
  21. 「发现」铁皮石斛仙草之神奇功效用于医用面膜

    原标题:「发现」铁皮石斛仙草之神奇功效用于医用面膜丽彦妆铁皮石斛医用面膜|石斛多糖无菌修护补水贴19大优势: 1、铁皮石斛:自唐宋以来,一直被列为皇室贡品,铁皮石斛生于海拔1600米的悬崖峭壁之上,繁殖力差,产量极低,所以古代仅供皇室、贵族享用 2、铁皮石斛自古民间…...

    2024/4/24 16:38:05
  22. 丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者

    原标题:丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者【公司简介】 广州华彬企业隶属香港华彬集团有限公司,专注美业21年,其旗下品牌: 「圣茵美」私密荷尔蒙抗衰,产后修复 「圣仪轩」私密荷尔蒙抗衰,产后修复 「花茵莳」私密荷尔蒙抗衰,产后修复 「丽彦妆」专注医学护…...

    2024/4/23 13:28:14
  23. 广州械字号面膜生产厂家OEM/ODM4项须知!

    原标题:广州械字号面膜生产厂家OEM/ODM4项须知!广州械字号面膜生产厂家OEM/ODM流程及注意事项解读: 械字号医用面膜,其实在我国并没有严格的定义,通常我们说的医美面膜指的应该是一种「医用敷料」,也就是说,医用面膜其实算作「医疗器械」的一种,又称「医用冷敷贴」。 …...

    2024/4/23 13:27:51
  24. 械字号医用眼膜缓解用眼过度到底有无作用?

    原标题:械字号医用眼膜缓解用眼过度到底有无作用?医用眼膜/械字号眼膜/医用冷敷眼贴 凝胶层为亲水高分子材料,含70%以上的水分。体表皮肤温度传导到本产品的凝胶层,热量被凝胶内水分子吸收,通过水分的蒸发带走大量的热量,可迅速地降低体表皮肤局部温度,减轻局部皮肤的灼…...

    2024/4/23 13:27:19
  25. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  26. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  27. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  28. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  29. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  30. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  31. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  32. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  33. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  34. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  35. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  36. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  37. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  38. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  39. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  40. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  41. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  42. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  43. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  44. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57