并发容器

  • ConcurrentHashMap
    • ConcurrentHashMap的结构 JDK1.7
      • 数据结构
      • put实现
      • size实现
    • ConcurrentHashMap的结构 JDK1.8
      • 数据结构
      • put实现
      • size实现
  • 并发队列
    • 非阻塞队列 ConcurrentLinkedQueue
      • ConcurrentLinkedQueue的数据结构
      • 入队列
        • 入队列的过程
        • 定位尾节点
        • 设置入队节点为尾节点
        • HOPS的设计意图
      • 出队列
  • 阻塞队列 BlockingQueue
    • 什么是阻塞队列
    • Java里的阻塞队列
      • ArrayBlockingQueue
      • LinkedBlockingQueue
      • PriorityBlockingQueue
      • DelayQueue
        • 如何实现`Delayed`接口
        • 如何实现延时阻塞队列
      • SynchronousQueue
      • LinkedTransferQueue
      • LinkedBlockingDeque
  • 并发List和set
    • Vector 和 CopyOnWriteArrayList
      • 应用
    • CopyOnWriteArraySet

ConcurrentHashMap

线程安全且高效的HashMap
(1)线程不安全的HashMap
在多线程环境下,使用HashMap进行put操作会程会导致HashMap的Entry链表形成环形数据结构,一旦形成环形数据结构,Entry的next节点永远不为空,就会产生死循环获取Entry,导致CPU利用率接近100%,所以在并发情况下不能使用HashMap。

(2)效率低下的HashTable
HashTable容器使用synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable的效率非常低下。因为当一个线程访问HashTable的同步方法,其他线程也访问HashTable的同步方法时,会进入阻塞或轮询状态。如线程1使用put进行元素添加,线程2不但不能使用put方法添加元素,也不能使用get方法来获取元素,所以竞争越激烈效率越低。
(3)ConcurrentHashMap的锁分段技术可有效提升并发访问率
HashTable容器在竞争激烈的并发环境下表现出效率低下的原因是所有访问HashTable的线程都必须竞争同一把锁,假如容器里有多把锁,每一把锁用于锁容器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技术。首先将数据分成一段一段地存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问。

ConcurrentHashMap的结构 JDK1.7

数据结构

jdk1.7中采用Segment + HashEntry的方式进行实现,结构如下
在这里插入图片描述
ConcurrentHashMap初始化时,计算出Segment数组的大小ssize和每个SegmentHashEntry数组的大小cap,并初始化Segment数组的第一个元素;其中ssize大小为2的幂次方,默认为16,cap大小也是2的幂次方,最小值为2,最终结果根据根据初始化容量initialCapacity进行计算,计算过程如下:

if (c * ssize < initialCapacity)++c;
int cap = MIN_SEGMENT_TABLE_CAPACITY;
while (cap < c)cap <<= 1;

其中Segment在实现上继承了ReentrantLock,这样就自带了锁的功能。

put实现

当执行put方法插入数据时,根据key的hash值,在Segment数组中找到相应的位置,如果相应位置的Segment还未初始化,则通过CAS进行赋值,接着执行Segment对象的put方法通过加锁机制插入数据,实现如下:
场景:线程A和线程B同时执行相同Segment对象的put方法
1、线程A执行tryLock()方法成功获取锁,则把HashEntry对象插入到相应的位置;
2、线程B获取锁失败,则执行scanAndLockForPut()方法,在scanAndLockForPut方法中,会通过重复执行tryLock()方法尝试获取锁,在多处理器环境下,重复次数为64,单处理器重复次数为1,当执行tryLock()方法的次数超过上限时,则执行lock()方法挂起线程B;
3、当线程A执行完插入操作时,会通过unlock()方法释放锁,接着唤醒线程B继续执行;

size实现

因为ConcurrentHashMap是可以并发插入数据的,所以在准确计算元素时存在一定的难度,一般的思路是统计每个Segment对象中的元素个数,然后进行累加,但是这种方式计算出来的结果并不一样的准确的,因为在计算后面几个Segment的元素个数时,已经计算过的Segment同时可能有数据的插入或则删除,在1.7的实现中,采用了如下方式:

try {for (;;) {if (retries++ == RETRIES_BEFORE_LOCK) {for (int j = 0; j < segments.length; ++j)ensureSegment(j).lock(); // force creation}sum = 0L;size = 0;overflow = false;for (int j = 0; j < segments.length; ++j) {Segment<K,V> seg = segmentAt(segments, j);if (seg != null) {sum += seg.modCount;int c = seg.count;if (c < 0 || (size += c) < 0)overflow = true;}}if (sum == last)break;last = sum;}
} finally {if (retries > RETRIES_BEFORE_LOCK) {for (int j = 0; j < segments.length; ++j)segmentAt(segments, j).unlock();}
}

先采用不加锁的方式,连续计算元素的个数,最多计算3次:
1、如果前后两次计算结果相同,则说明计算出来的元素个数是准确的;
2、如果前后两次计算结果都不同,则给每个Segment进行加锁,再计算一次元素的个数

ConcurrentHashMap的结构 JDK1.8

数据结构

1.8中放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现,结构如下:
在这里插入图片描述
只有在执行第一次put方法时才会调用initTable()初始化Node数组,实现如下:

private final Node<K,V>[] initTable() {Node<K,V>[] tab; int sc;while ((tab = table) == null || tab.length == 0) {if ((sc = sizeCtl) < 0)Thread.yield(); // lost initialization race; just spinelse if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {try {if ((tab = table) == null || tab.length == 0) {int n = (sc > 0) ? sc : DEFAULT_CAPACITY;@SuppressWarnings("unchecked")Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];table = tab = nt;sc = n - (n >>> 2);}} finally {sizeCtl = sc;}break;}}return tab;
}

put实现

当执行put方法插入数据时,根据key的hash值,在Node数组中找到相应的位置,实现如下:

1、如果相应位置的Node还未初始化,则通过CAS插入相应的数据;

else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null)))break;                   // no lock when adding to empty bin
}

2、如果相应位置的Node不为空,且当前该节点不处于移动状态,则对该节点加synchronized锁,如果该节点的hash不小于0,则遍历链表更新节点或插入新节点;

if (fh >= 0) {binCount = 1;for (Node<K,V> e = f;; ++binCount) {K ek;if (e.hash == hash &&((ek = e.key) == key ||(ek != null && key.equals(ek)))) {oldVal = e.val;if (!onlyIfAbsent)e.val = value;break;}Node<K,V> pred = e;if ((e = e.next) == null) {pred.next = new Node<K,V>(hash, key, value, null);break;}}
}

3、如果该节点是TreeBin类型的节点,说明是红黑树结构,则通过putTreeVal方法往红黑树中插入节点;

else if (f instanceof TreeBin) {Node<K,V> p;binCount = 2;if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) {oldVal = p.val;if (!onlyIfAbsent)p.val = value;}
}

4、如果binCount不为0,说明put操作对数据产生了影响,如果当前链表的个数达到8个,则通过treeifyBin方法转化为红黑树,如果oldVal不为空,说明是一次更新操作,没有对元素个数产生影响,则直接返回旧值;

if (binCount != 0) {if (binCount >= TREEIFY_THRESHOLD)treeifyBin(tab, i);if (oldVal != null)return oldVal;break;
}

5、如果插入的是一个新节点,则执行addCount()方法尝试更新元素个数baseCount

size实现

1.8中使用一个volatile类型的变量baseCount记录元素的个数,当插入新数据或则删除数据时,会通过addCount()方法更新baseCount,实现如下:

if ((as = counterCells) != null ||!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {CounterCell a; long v; int m;boolean uncontended = true;if (as == null || (m = as.length - 1) < 0 ||(a = as[ThreadLocalRandom.getProbe() & m]) == null ||!(uncontended =U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {fullAddCount(x, uncontended);return;}if (check <= 1)return;s = sumCount();
}

1、初始化时counterCells为空,在并发量很高时,如果存在两个线程同时执行CAS修改baseCount值,则失败的线程会继续执行方法体中的逻辑,使用CounterCell记录元素个数的变化;
2、如果CounterCell数组counterCells为空,调用fullAddCount()方法进行初始化,并插入对应的记录数,通过CAS设置cellsBusy字段,只有设置成功的线程才能初始化CounterCell数组,实现如下:

else if (cellsBusy == 0 && counterCells == as &&U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {boolean init = false;try {                           // Initialize tableif (counterCells == as) {CounterCell[] rs = new CounterCell[2];rs[h & 1] = new CounterCell(x);counterCells = rs;init = true;}} finally {cellsBusy = 0;}if (init)break;
}

3、如果通过CAS设置cellsBusy字段失败的话,则继续尝试通过CAS修改baseCount字段,如果修改baseCount字段成功的话,就退出循环,否则继续循环插入CounterCell对象;

else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))break; 

所以在1.8中的size实现比1.7简单多,因为元素个数保存baseCount中,部分元素的变化个数保存在CounterCell数组中,实现如下:

public int size() {long n = sumCount();return ((n < 0L) ? 0 :(n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :(int)n);
}final long sumCount() {CounterCell[] as = counterCells; CounterCell a;long sum = baseCount;if (as != null) {for (int i = 0; i < as.length; ++i) {if ((a = as[i]) != null)sum += a.value;}}return sum;
}

通过累加baseCountCounterCell数组中的数量,即可得到元素的总个数;

并发队列

在并发编程中,有时候需要使用线程安全的队列。如果要实现一个线程安全的队列有两种方式:一种是使用阻塞算法,另一种是使用非阻塞算法。使用阻塞算法的队列可以用一个锁(入队和出队用同一把锁)或两个锁(入队和出队用不同的锁)等方式来实现。非阻塞的实现方式则可以使用循环CAS的方式来实现。本

非阻塞队列 ConcurrentLinkedQueue

ConcurrentLinkedQueue是一个基于链接节点的无界线程安全队列,它采用先进先出的规则对节点进行排序,当我们添加一个元素的时候,它会添加到队列的尾部;当我们获取一个元素时,它会返回队列头部的元素。它采用了“wait-free”算法(即CAS算法)来实现

ConcurrentLinkedQueue的数据结构

在这里插入图片描述
ConcurrentLinkedQueue由head节点和tail节点组成,每个节点(Node)由节点元素(item)和指向下一个节点(next)的引用组成,节点与节点之间就是通过这个next关联起来,从而组成一张链表结构的队列。默认情况下head节点存储的元素为空,tail节点等于head节点

private transient volatile Node<E> tail = head;

入队列

入队列的过程

入队列就是将入队节点添加到队列的尾部。
为了方便理解入队时队列的变化,以及head节点和tail节点的变化,这里以一个示例来展开介绍。假设我们想在一个队列中依次插入4个节点,为了帮助大家理解,每添加一个节点就做了一个队列的快照图,如图6-4所示。图6-4所示的过程如下。
·添加元素1。队列更新head节点的next节点为元素1节点。又因为tail节点默认情况下等于
head节点,所以它们的next节点都指向元素1节点。
·添加元素2。队列首先设置元素1节点的next节点为元素2节点,然后更新tail节点指向元素
2节点。
·添加元素3,设置tail节点的next节点为元素3节点。
·添加元素4,设置元素3的next节点为元素4节点,然后将tail节点指向元素4节点。
在这里插入图片描述

通过调试入队过程并观察head节点和tail节点的变化,发现入队主要做两件事情:第一是将入队节点设置成当前队列尾节点的下一个节点;第二是更新tail节点,如果tail节点的next节点不为空,则将入队节点设置成tail节点,如果tail节点的next节点为空,则将入队节点设置成tail的next节点,所以tail节点不总是尾节点(理解这一点对于我们研究源码会非常有帮助)。
通过对上面的分析,我们从单线程入队的角度理解了入队过程,但是多个线程同时进行入队的情况就变得更加复杂了,因为可能会出现其他线程插队的情况。如果有一个线程正在入队,那么它必须先获取尾节点,然后设置尾节点的下一个节点为入队节点,但这时可能有另外一个线程插队了,那么队列的尾节点就会发生变化,这时当前线程要暂停入队操作,然后重新获取尾节点。让我们再通过源码来详细分析一下它是如何使用CAS算法来入队的。

public boolean offer(E e) {if (e == null) throw new NullPointerException();// 入队前,创建一个入队节点Node<E> n = new Node<E>(e);retry:// 死循环,入队不成功反复入队。for (;;) {// 创建一个指向tail节点的引用Node<E> t = tail;// p用来表示队列的尾节点,默认情况下等于tail节点。Node<E> p = t;for (int hops = 0; ; hops++) {// 获得p节点的下一个节点。Node<E> next = succ(p);// next节点不为空,说明p不是尾节点,需要更新p后在将它指向next节点if (next != null) {// 循环了两次及其以上,并且当前节点还是不等于尾节点if (hops > HOPS && t != tail)continue retry;p = next;}// 如果p是尾节点,则设置p节点的next节点为入队节点。else if (p.casNext(null, n)) {
/*如果tail节点有大于等于1个next节点,则将入队节点设置成tail节点,
更新失败了也没关系,因为失败了表示有其他线程成功更新了tail节点*/if (hops >= HOPS)casTail(t, n); // 更新tail节点,允许失败return true;}// p有next节点,表示p的next节点是尾节点,则重新设置p节点else {p = succ(p);}}}
}

从源代码角度来看,整个入队过程主要做两件事情:第一是定位出尾节点;第二是使用
CAS算法将入队节点设置成尾节点的next节点,如不成功则重试。

定位尾节点

tail节点并不总是尾节点,所以每次入队都必须先通过tail节点来找到尾节点。尾节点可能是tail节点,也可能是tail节点的next节点。代码中循环体中的第一个if就是判断tail是否有next节点,有则表示next节点可能是尾节点。获取tail节点的next节点需要注意的是p节点等于p的next节点的情况,只有一种可能就是p节点和p的next节点都等于空,表示这个队列刚初始化,正准备添加节点,所以需要返回head节点。获取p节点的next节点代码如下

    final Node<E> succ(Node<E> p) {Node<E> next = p.getNext();return (p == next) head : next;}

设置入队节点为尾节点

p.casNext(null,n)方法用于将入队节点设置为当前队列尾节点的next节点,如果p是null,表示p是当前队列的尾节点,如果不为null,表示有其他线程更新了尾节点,则需要重新获取当前队列的尾节点。

HOPS的设计意图

上面分析过对于先进先出的队列入队所要做的事情是将入队节点设置成尾节点,doug lea写的代码和逻辑还是稍微有点复杂。那么,我用以下方式来实现是否可行?

public boolean offer(E e) {if (e == null)throw new NullPointerException();Node<E> n = new Node<E>(e);for (;;) {Node<E> t = tail;if (t.casNext(null, n) && casTail(t, n)) {return true;}}
}

tail节点永远作为队列的尾节点,这样实现代码量非常少,而且逻辑清晰和易懂。但是,这么做有个缺点,每次都需要使用循环CAS更新tail节点。如果能减少CAS更新tail节点的次数,就能提高入队的效率,所以doug lea使用hops变量来控制并减少tail节点的更新频率,并不是每次节点入队后都将tail节点更新成尾节点,而是当tail节点和尾节点的距离大于等于常量HOPS的值(默认等于1)时才更新tail节点,tail和尾节点的距离越长,使用CAS更新tail节点的次数就会越少,但是距离越长带来的负面效果就是每次入队时定位尾节点的时间就越长,因为循环体需要多循环一次来定位出尾节点,但是这样仍然能提高入队的效率,因为从本质上来看它通过增加对volatile变量的读操作来减少对volatile变量的写操作,而对volatile变量的写操作开销要远远大于读操作,所以入队效率会有所提升。

private static final int HOPS = 1;

出队列

出队列的就是从队列里返回一个节点元素,并清空该节点对元素的引用。让我们通过每个节点出队的快照来观察一下head节点的变化,如图6-5所示。
从图中可知,并不是每次出队时都更新head节点,当head节点里有元素时,直接弹出head节点里的元素,而不会更新head节点。只有当head节点里没有元素时,出队操作才会更新head节点。这种做法也是通过hops变量来减少使用CAS更新head节点的消耗,从而提高出队效率。让我们再通过源码来深入分析下出队过程。
在这里插入图片描述

public E poll() {Node<E> h = head;// p表示头节点,需要出队的节点Node<E> p = h;for (int hops = 0;; hops++) {// 获取p节点的元素E item = p.getItem();// 如果p节点的元素不为空,使用CAS设置p节点引用的元素为null,// 如果成功则返回p节点的元素。if (item != null && p.casItem(item, null)) {if (hops >= HOPS) {// 将p节点下一个节点设置成head节点Node<E> q = p.getNext();updateHead(h, (q != null) q : p);}return item;}// 如果头节点的元素为空或头节点发生了变化,这说明头节点已经被另外// 一个线程修改了。那么获取p节点的下一个节点Node<E> next = succ(p);// 如果p的下一个节点也为空,说明这个队列已经空了if (next == null) {// 更新头节点。updateHead(h, p);break;}// 如果下一个元素不为空,则将头节点的下一个节点设置成头节点p = next;}return null;
}

首先获取头节点的元素,然后判断头节点元素是否为空,如果为空,表示另外一个线程已经进行了一次出队操作将该节点的元素取走,如果不为空,则使用CAS的方式将头节点的引用设置成null,如果CAS成功,则直接返回头节点的元素,如果不成功,表示另外一个线程已经进行了一次出队操作更新了head节点,导致元素发生了变化,需要重新获取头节点。

阻塞队列 BlockingQueue

什么是阻塞队列

阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。这两个附加的操作支持阻塞的插入和移除方法。阻塞队列常用于生产者和消费者的场景,生产者是向队列里添加元素的线程,消费者是从队列里取元素的线程。阻塞队列就是生产者用来存放元素、消费者用来获取元素的容器

1)支持阻塞的插入方法:意思是当队列满时,队列会阻塞插入元素的线程,直到队列不满。
2)支持阻塞的移除方法:意思是在队列为空时,获取元素的线程会等待队列变为非空。
在这里插入图片描述

  • 抛出异常:当队列满时,如果再往队列里插入元素,会抛出IllegalStateException(“Queuefull”)异常。当队列空时,从队列里获取元素会抛出NoSuchElementException异常。
  • 返回特殊值:当往队列插入元素时,会返回元素是否插入成功,成功返回true。如果是移除方法,则是从队列里取出一个元素,如果没有则返回null。
  • 一直阻塞:当阻塞队列满时,如果生产者线程往队列里put元素,队列会一直阻塞生产者线程,直到队列可用或者响应中断退出。当队列空时,如果消费者线程从队列里take元素,队列会阻塞住消费者线程,直到队列不为空。
  • 超时退出:当阻塞队列满时,如果生产者线程往队列里插入元素,队列会阻塞生产者线程一段时间,如果超过了指定的时间,生产者线程就会退出。这两个附加操作的4种处理方式不方便记忆,所以我找了一下这几个方法的规律。put和take分别尾首含有字母t,offer和poll都含有字母o。

备注:如果是无界阻塞队列,队列不可能会出现满的情况,所以使用put或offer方法永远不会被阻塞,而且使用offer方法时,该方法永远返回true。

Java里的阻塞队列

名称 描述 是否有界
ArrayBlockingQueue 一个由数组结构组成的有界阻塞队列。 有界
LinkedBlockingQueue 一个由链表结构组成的有界阻塞队列。 有界
PriorityBlockingQueue 一个支持优先级排序的无界阻塞队列。 无界
DelayQueue 一个使用优先级队列实现的无界阻塞队列。 无界
SynchronousQueue 一个不存储元素的阻塞队列。
LinkedTransferQueue一个由链表结构组成的无界阻塞队列。 无界
LinkedBlockingDeque 一个由链表结构组成的双向阻塞队列。

ArrayBlockingQueue

ArrayBlockingQueue是一个用数组实现的有界阻塞队列。此队列按照先进先出(FIFO)的原则对元素进行排序。
默认情况下不保证线程公平的访问队列,所谓公平访问队列是指阻塞的线程,可以按照阻塞的先后顺序访问队列,即先阻塞线程先访问队列。非公平性是对先等待的线程是非公平的,当队列可用时,阻塞的线程都可以争夺访问队列的资格,有可能先阻塞的线程最后才访问队列。为了保证公平性,通常会降低吞吐量。我们可以使用以下代码创建一个公平的阻塞队列。

ArrayBlockingQueue fairQueue = new ArrayBlockingQueue(1000,true);//true 公平队列

访问者的公平性是使用可重入锁实现的,代码如下。

public ArrayBlockingQueue(int capacity, boolean fair) {if (capacity <= 0)throw new IllegalArgumentException();this.items = new Object[capacity];lock = new ReentrantLock(fair);notEmpty = lock.newCondition();notFull = lock.newCondition();
}

LinkedBlockingQueue

LinkedBlockingQueue是一个用链表实现的有界阻塞队列。此队列的默认和最大长度为Integer.MAX_VALUE。此队列按照先进先出的原则对元素进行排序。

PriorityBlockingQueue

PriorityBlockingQueue是一个支持优先级的无界阻塞队列。默认情况下元素采取自然顺序升序排列。也可以自定义类实现compareTo()方法来指定元素排序规则,或者初始化PriorityBlockingQueue时,指定构造参数Comparator来对元素进行排序。需要注意的是不能保证同优先级元素的顺序。

DelayQueue

DelayQueue是一个支持延时获取元素的无界阻塞队列。队列使用PriorityQueue来实现。队列中的元素必须实现Delayed接口,在创建元素时可以指定多久才能从队列中获取当前元素。只有在延迟期满时才能从队列中提取元素。
DelayQueue非常有用,可以将DelayQueue运用在以下应用场景。
·缓存系统的设计:可以用DelayQueue保存缓存元素的有效期,使用一个线程循环查询DelayQueue,一旦能从DelayQueue中获取元素时,表示缓存有效期到了。
·定时任务调度:使用DelayQueue保存当天将会执行的任务和执行时间,一旦从DelayQueue中获取到任务就开始执行,比如TimerQueue就是使用DelayQueue实现的。

如何实现Delayed接口

DelayQueue队列的元素必须实现Delayed接口。我们可以参考ScheduledThreadPoolExecutorScheduledFutureTask类的实现,一共有三步。
第一步:在对象创建的时候,初始化基本数据。使用time记录当前对象延迟到什么时候可以使用,使用sequenceNumber来标识元素在队列中的先后顺序。代码如下。

private static final AtomicLong sequencer = new AtomicLong(0);
ScheduledFutureTask(Runnable r, V result, long ns, long period) {ScheduledFutureTask(Runnable r, V result, long ns, long period) {super(r, result);this.time = ns;this.period = period;this.sequenceNumber = sequencer.getAndIncrement();}

第二步:实现getDelay方法,该方法返回当前元素还需要延时多长时间,单位是纳秒,代码如下

public long getDelay(TimeUnit unit) {return unit.convert(time - now(), TimeUnit.NANOSECONDS);
}

通过构造函数可以看出延迟时间参数ns的单位是纳秒,自己设计的时候最好使用纳秒,因为实getDelay()方法时可以指定任意单位,一旦以秒或分作为单位,而延时时间又精确不到纳秒就麻烦了。使用时请注意当time小于当前时间时,getDelay会返回负数。
第三步:实现compareTo方法来指定元素的顺序。例如,让延时时间最长的放在队列的末尾。实现代码如下。

public int compareTo(Delayed other) {if (other == this) // compare zero ONLY if same objectreturn 0;if (other instanceof ScheduledFutureTask) {ScheduledFutureTask<> x = (ScheduledFutureTask<>)other;long diff = time - x.time;if (diff < 0)return -1;else if (diff > 0)return 1;else if (sequenceNumber < x.sequenceNumber)return -1;elsereturn 1;}long d = (getDelay(TimeUnit.NANOSECONDS) -other.getDelay(TimeUnit.NANOSECONDS));return (d == 0) 0 : ((d < 0) -1 : 1);
}

如何实现延时阻塞队列

延时阻塞队列的实现很简单,当消费者从队列里获取元素时,如果元素没有达到延时时间,就阻塞当前线程。

long delay = first.getDelay(TimeUnit.NANOSECONDS);
if (delay <= 0)return q.poll();
else if (leader != null)available.await();
else {Thread thisThread = Thread.currentThread();leader = thisThread;try {available.awaitNanos(delay);} finally {if (leader == thisThread)leader = null;}
}

代码中的变量leader是一个等待获取队列头部元素的线程。如果leader不等于空,表示已经有线程在等待获取队列的头元素。所以,使用await()方法让当前线程等待信号。如果leader等于空,则把当前线程设置成leader,并使用awaitNanos()方法让当前线程等待接收信号或等待delay时间。

SynchronousQueue

SynchronousQueue是一个不存储元素的阻塞队列。每一个put操作必须等待一个take操作,否则不能继续添加元素。
它支持公平访问队列。默认情况下线程采用非公平性策略访问队列。使用以下构造方法可以创建公平性访问的SynchronousQueue,如果设置为true,则等待的线程会采用先进先出的顺序访问队列。

public SynchronousQueue(boolean fair) {transferer = fair new TransferQueue() : new TransferStack();}

SynchronousQueue可以看成是一个传球手,负责把生产者线程处理的数据直接传递给消费者线程。队列本身并不存储任何元素,非常适合传递性场景。SynchronousQueue的吞吐量高于
LinkedBlockingQueueArrayBlockingQueue

LinkedTransferQueue

LinkedTransferQueue是一个由链表结构组成的无界阻塞TransferQueue队列。相对于其他阻
塞队列,LinkedTransferQueue多了tryTransfertransfer方法。
(1)transfer方法
如果当前有消费者正在等待接收元素(消费者使用take()方法或带时间限制的poll()方法时)transfer方法可以把生产者传入的元素立刻transfer(传输)给消费者。如果没有消费者在等待接收元素,transfer方法会将元素存放在队列的tail节点,并等到该元素被消费者消费了才返回。transfer方法的关键代码如下。

Node pred = tryAppend(s, haveData);
return awaitMatch(s, pred, e, (how == TIMED), nanos);

第一行代码是试图把存放当前元素的s节点作为tail节点。第二行代码是让CPU自旋等待消费者消费元素。因为自旋会消耗CPU,所以自旋一定的次数后使用Thread.yield()方法来暂停当前正在执行的线程,并执行其他线程。
(2)tryTransfer方法
tryTransfer方法是用来试探生产者传入的元素是否能直接传给消费者。如果没有消费者等待接收元素,则返回false。和transfer方法的区别是tryTransfer方法无论消费者是否接收,方法立即返回,而transfer方法是必须等到消费者消费了才返回。对于带有时间限制的tryTransferE elong timeoutTimeUnit unit)方法,试图把生产者传入
的元素直接传给消费者,但是如果没有消费者消费该元素则等待指定的时间再返回,如果超时还没消费元素,则返回false,如果在超时时间内消费了元素,则返回true。’

LinkedBlockingDeque

LinkedBlockingDeque是一个由链表结构组成的双向阻塞队列。所谓双向队列指的是可以从队列的两端插入和移出元素。双向队列因为多了一个操作队列的入口,在多线程同时入队时,也就减少了一半的竞争。相比其他的阻塞队列,LinkedBlockingDeque多了addFirstaddLastofferFirstofferLastpeekFirstpeekLast等方法,以First单词结尾的方法,表示插入、
获取(peek)或移除双端队列的第一个元素。以Last单词结尾的方法,表示插入、获取或移除双端队列的最后一个元素。另外,插入方法add等同于addLast,移除方法remove等效于removeFirst。但是take方法却等同于takeFirst,不知道是不是JDKbug,使用时还用带有FirstLast后缀的方法更清楚。
在初始化LinkedBlockingDeque时可以设置容量防止其过度膨胀。另外,双向阻塞队列可以运用在“工作窃取”模式中。

并发List和set

Vector 和 CopyOnWriteArrayList

在读多写少的高并发环境中,使用 CopyOnWriteArrayList 可以提高系统的性能,但是,在写多读少的场合,CopyOnWriteArrayList 的性能可能不如 Vector

Vector 或者 CopyOnWriteArrayList 是两个线程安全的List实现,ArrayList 不是线程安全的因此,应该尽量避免在多线程环境中使用ArrayList。如果因为某些原因必须使用的,则需要使用Collections.synchronizedList(List list)进行包装。

        List list = Collections.synchronizedList(new ArrayList());...synchronized (list) {Iterator i = list.iterator(); // 必须在同步块中while (i.hasNext())foo(i.next());}

CopyOnWriteArrayList 的内部实现与Vector又有所不同。顾名思义,Copy-On-Write 就是 CopyOnWriteArrayList 的实现机制。即当对象进行写操作时,复制该对象;若进行的读操作,则直接返回结果,操作过程中不需要进行同步。

CopyOnWriteArrayList 很好地利用了对象的不变性,在没有对对象进行写操作前,由于对象未发生改变,因此不需要加锁。而在试图改变对象时,总是先获取对象的一个副本,然后对副本进行修改,最后将副本写回。

这种实现方式的核心思想是减少锁竞争,从而提高在高并发时的读取性能,但是它却在一定程度上牺牲了写的性能

get() 操作上,Vector 使用了同步关键字,所有的 get() 操作都必须先取得对象锁才能进行。在高并发的情况下,大量的锁竞争会拖累系统性能。反观CopyOnWriteArrayListget() 实现,并没有任何的锁操作。


/**
/*Vector
*/
public class Vector {
...public synchronized E get(int index) {if (index >= elementCount)throw new ArrayIndexOutOfBoundsException(index);return elementData(index);}E elementData(int index) {return (E) elementData[index];}
...
}
/**
/*Vector
*/
public class CopyOnWriteArrayList {
...
public E get(int index) {return elementAt(getArray(), index);}static <E> E elementAt(Object[] a, int index) {return (E) a[index];}
...
}

add() 操作上,CopyOnWriteArrayList 的写操作性能不如Vector,原因也在于Copy-On-Write


/**
*CopyOnWriteArrayList
*/
final transient Object lock = new Object();public boolean add(E e) {synchronized (lock) {Object[] es = getArray();int len = es.length;es = Arrays.copyOf(es, len + 1);es[len] = e;setArray(es);return true;}}

应用

CopyOnWriteArrayList的应用场景本片的主题是并发安全List,所以其主要使用于并发多线程对List有读写操作的场景下。比如有一个流量监控系统,其中有一个功能是要统计今日的访问IP,这显然是一个并发场景,因为同一个时间点可能有多个访问进来,为了保证统计结果的准确行可以考虑使用CopyOnWriteArrayList来存储ip数据:

/*** @Author: 王琦 <QQ.Eamil>1124602935@qq.com</QQ.Eamil>* @Date: 2019-4-29 0029 23:04* @Description: 流量平台IP统计*/
public class DataMonitorService {/*** 流量统计,IP监控列表*/private static CopyOnWriteArrayList<String> MONITOR_IP = new CopyOnWriteArrayList();/*** 是否在监控中*/public static boolean isMonitor(String ip){return MONITOR_IP.contains(ip) ? true : false;}/***  获取最新一个ip*/public static String lastIp(){return MONITOR_IP.get(MONITOR_IP.size()-1);}/*** 添加至监控列表*/public static void addMonitor(String ip){if (!isMonitor(ip)) {MONITOR_IP.add(ip);}}
}

代码很简单,但是细心的同学可能会发现上面我们刚刚说过它在写的时候加了锁,性能不能会很差吗,那你这个例子中的流量监控显示是一个发并发场景 + 实时读写的场景,这个怕是不合适吧。嗯,没错,是这样的,是会有性能问题,这也就是它的缺点,但是其可以保证你们的流量统计数据是安全的。

CopyOnWriteArraySet

List相似,并发Set也有一个 CopyOnWriteArraySet ,它实现了 Set 接口,并且是线程安全的。它的内部实现完全依赖于 CopyOnWriteArrayList ,因此,它的特性和 CopyOnWriteArrayList 完全一致,适用于 读多写少的高并发场合,在需要并发写的场合,则可以使用 Set s = Collections.synchronizedSet(Set<T> s)得到一个线程安全的Set

    Set s = Collections.synchronizedSet(new HashSet());...synchronized (s) {Iterator i = s.iterator(); // 必须在同步块中while (i.hasNext())foo(i.next());}
查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. 【引擎开发技术点记录】QT引擎中的简易LOG设计

    初衷 游戏引擎作为一个大型的软件系统,如果进行设计的话,某一处出现了BUG,那么其查找起来是非常繁琐的。一旦代码量上w,那么debug工作将会变得非常令人困扰。为了解决这个问题,设计一个简单的LOG系统是非常有必要的。 设计思路 由于LOG系统与整个引擎的各个方面都是紧耦合…...

    2024/4/24 11:44:49
  2. nginx创建静态页面

    centos7使用yum安装nginx,默认版本为1.16配置文件默认路径:/etc/nginx/nginx.conf静态页面默认路径:/usr/share/nginx/html编辑页面内容:cd /usr/share/nginx/html/vim test.html你好,北京。浏览器访问:报错中文乱码,解决方法:cp /etc/nginx/nginx.conf /etc/nginx/ngi…...

    2024/4/24 11:44:43
  3. EDUSOHO踩坑笔记之二十八:认证与授权

    EDUSOHO踩坑笔记之二十八:认证与授权认证方式Basic Authenticationcurl -X POST -H "Accept:application/vnd.edusoho.v2+json" -H "Authorization: Basic dGVzdDJlZHVvc2hvOjEyMzQ1Ng==" http://demo.edusoho.com/api/tokensX-Auth-Tokencurl-X POST -H …...

    2024/5/8 11:51:04
  4. web大作业(2)登陆页面的实现

    首先还是复制一个登陆页面: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>html登录模板</title> <style> /* 让页面所有元素的padding和margin都设置为0 */ *{margin:0;padding:0;box-sizing:border-b…...

    2024/4/24 11:44:39
  5. 205同构字符串(HashMap)

    1、题目描述给定两个字符串 s 和 t,判断它们是否是同构的。如果 s 中的字符可以被替换得到 t ,那么这两个字符串是同构的。所有出现的字符都必须用另一个字符替换,同时保留字符的顺序。两个字符不能映射到同一个字符上,但字符可以映射自己本身。说明:你可以假设 s 和 t 具…...

    2024/5/8 22:30:07
  6. Java中的泛型基本介绍

    Java中的泛型泛型的基本概念泛型的使用泛型类泛型接口泛型通配符泛型方法泛型方法的基本用法类中的泛型方法泛型方法与可变参数静态方法与泛型泛型方法总结泛型的上下边界泛型数组 泛型的基本概念泛型: 参数化类型参数:定义方法时有形参 调用方法时传递实参参数化类型: 将类型由…...

    2024/5/8 12:14:59
  7. SpaceX的代码开源了,来看看火箭技术的代码.Spacex Rest API设计很有参考价值

    SpaceX 世界上可以拥有载人航天技术是美俄中马。其中只有马斯克的SpaceX属于民营商用企业。 地址 https://github.com/r-spacex/SpaceX-APIAPI效果 GET https://api.spacexdata.com/v3/launches/latest返回值 {"flight_number": 95,"mission_name": "…...

    2024/5/9 2:00:26
  8. Python学习笔记2

    字符串print (“good good study, day day up”) good good study, day day up\ 转义符,如果前面有转义符,那么它就失去了原来的含义,转化为字符串的一部分,相当于一个特殊字符了print (“小明说:“我没有少圆明园””) 小明说"我没有少圆明园"双引号和单引号还可…...

    2024/4/24 11:44:35
  9. 高质量的缺陷分析:让自己少写 bug

    简介: 缺陷分析做得好,bug 写得少。阿里资深技术专家和你分享如何进行高质量的缺陷分析,总结了 5 个要点,通过缺陷分析消除开发中的各种盲点,打造一个学习型的团队。软件开发中的缺陷隐含着极高的价值,但是许多组织都仅仅忍受了缺陷带来的成本和后果,却让价值白白溜掉了…...

    2024/5/8 20:46:53
  10. SpringBoot ~ 自定义Banner

    官方提供的application.yml的banner配置信息 # BANNER spring.banner.charset=UTF-8 # Banner file encoding. spring.banner.location=classpath:banner.txt # Banner text resource location. spring.banner.image.location=classpath:banner.gif # Banner image file locati…...

    2024/4/24 11:44:33
  11. U盘文件、文件夹不显示却能搜索到 显示U盘文件的解决办法

    U盘文件、文件夹不显示却能搜索到 显示U盘文件的解决办法U盘里面的文件突然间无故消失,经过检查并不是被隐藏也不是中病毒,并且显示空间有被占用,而且文件、文件夹能被搜索到。 1、把u盘插入电脑usb接口中,按快捷键win+r打开运行窗口,输入cmd回车2、先确定刚刚插入u盘的盘…...

    2024/4/24 11:44:39
  12. C语言实例:字符和ASCII相互转换

    ASCII对照表ASCII值 控制字符 ASCII值 控制字符 ASCII值 控制字符 ASCII值 控制字符0 NUT 32 (space) 64 @ 96 、1 SOH 33 ! 65 A 97 a2 STX 34 " 66 B 98 b3 ETX 35 # 67 C 99 c4 EOT 36 $ 68 D 100 d5 ENQ 37 % 69 E 101 e6 ACK 38 & 70 F 102 f7 BEL 39 ’ 71 G 10…...

    2024/5/1 1:57:03
  13. 分布式电商项目四十八:库存服务

    库存服务 本章开始编写库存服务相关的内容,首先把库存的微服务添加到注册中心中,添加配置文件: spring:datasource:username: rootpassword: 123456url: jdbc:mysql://IP地址/mall_wms?useUnicode=true&characterEncoding=UTF-8&useSSL=false&serverTimezone=A…...

    2024/4/29 0:43:07
  14. Python数据库模块pymssql连接SQLServer数据库操作详解

    最近需要使用到SQLServer数据库,之前一直使用的是MySQL数据库,我比较喜欢使用Python,之前一直使用的是pymysql作为数据库的操作工具,现在需要换成pymssql了,使用方法大概相同,查资料的过程中发现网上很多资料讲的都是部分的,这里总结了一下最近的操作,详细地给出了操作…...

    2024/4/24 11:44:32
  15. 第一个Java程序

    第一个Java程序 完成:第一遍 1.使用记事本打印"Hello World" 步骤: (1).编写源代码 源代码以.java结尾 public class My {public static void main(String[] args){System.out.println("Hello World");System.out.println("Welocme to Java World&q…...

    2024/4/24 11:44:35
  16. 2020微信域名拦截检测方法和官方接口

    实时查询域名拦截检测的接口,接口是调用的官方数据,实时查询,还能查到因为什么被拦截,能识别认证域名,普通域名,拦截域名接口地址:https://6ska.cn/api/urljc/doc.php 网上能找到的都是有限制的,这里找到一个无限制的...

    2024/4/24 11:44:34
  17. java二分查找

    java二分查找算法 import java.util.Scanner;/* @作 者:leeza @时 间:2020-06-08 10:24 @简单说明:二分查找 */ public class Test_01_Binary_search {public static void main(String[] args) {Scanner sc = new Scanner(System.in);System.out.println("输入数…...

    2024/4/24 11:44:33
  18. Leedcode 刷题:128. 最长连续序列2020.6.6

    最长连续序列给定一个未排序的整数数组,找出最长连续序列的长度。 要求算法的时间复杂度为 O(n)。 示例: 输入: [100, 4, 200, 1, 3, 2] 输出: 4 解释: 最长连续序列是 [1, 2, 3, 4]。它的长度为 4。tag:HashSet(哈希表)、并查集 思考: 复杂度为N则应该一遍遍历就能够得到…...

    2024/4/15 4:58:06
  19. vue-cli3项目框架搭建

    1.框架创建 vue create projectname (不要出现大写字母,特殊字符)? Please pick a preset:default (babel, eslint) > Manually select features? Check the features needed for your project:(*) Babel( ) TypeScript( ) Progressive Web App (PWA) Support(*) Router(*…...

    2024/4/24 11:44:32
  20. E-R图转换为关系模式的原则

    转换一般遵循如下原则: 1.一个实体型转换为一个关系模式。实体的属性就是关系的属性。实体的码就是关系的码。 例如在我们的例子中,学生实体可以转换为如下关系模式,其中学号为学生关系的码: 学生(学号,姓名,出生日期,所在系,年级,平均成绩) 同样,性别、宿舍、班级…...

    2024/4/27 11:08:09

最新文章

  1. 贪心算法-----柠檬水找零

    今日题目&#xff1a;leetcode860 题目链接&#xff1a;点击跳转题目 分析&#xff1a; 顾客只会给三种面值&#xff1a;5、10、20&#xff0c;先分类讨论 当收到5美元时&#xff1a;不用找零&#xff0c;面值5张数1当收到10美元时&#xff1a;找零5美元&#xff0c;面值5张数…...

    2024/5/9 4:28:29
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/5/7 10:36:02
  3. 布隆过滤器是如何避免缓存穿透的?

    布隆过滤器&#xff08;Bloom filter&#xff09;是一种空间效率极高的概率型数据结构&#xff0c;用于判断一个元素是否在一个集合中。它的原理是当一个元素被加入集合时&#xff0c;通过几个不同的Hash函数将元素映射成一个位数组中的多个位置&#xff0c;再次查询时如果位数…...

    2024/5/4 6:23:37
  4. 深入浅出 -- 系统架构之微服务中Nacos的部署

    前面我们提到过&#xff0c;在微服务架构中&#xff0c;Nacos注册中心属于核心组件&#xff0c;通常我们会采用高性能独立服务器进行部署&#xff0c;下面我们一起来看看Nacos部署过程&#xff1a; 1、环境准备 因为Nacos是支持windows和Linux系统的&#xff0c;且服务器操作…...

    2024/5/5 1:21:32
  5. 开启 Keep-Alive 可能会导致http 请求偶发失败

    大家好&#xff0c;我是蓝胖子&#xff0c;说起提高http的传输效率&#xff0c;很多人会开启http的Keep-Alive选项&#xff0c;这会http请求能够复用tcp连接&#xff0c;节省了握手的开销。但开启Keep-Alive真的没有问题吗&#xff1f;我们来细细分析下。 最大空闲时间造成请求…...

    2024/5/5 19:08:29
  6. 【外汇早评】美通胀数据走低,美元调整

    原标题:【外汇早评】美通胀数据走低,美元调整昨日美国方面公布了新一期的核心PCE物价指数数据,同比增长1.6%,低于前值和预期值的1.7%,距离美联储的通胀目标2%继续走低,通胀压力较低,且此前美国一季度GDP初值中的消费部分下滑明显,因此市场对美联储后续更可能降息的政策…...

    2024/5/8 6:01:22
  7. 【原油贵金属周评】原油多头拥挤,价格调整

    原标题:【原油贵金属周评】原油多头拥挤,价格调整本周国际劳动节,我们喜迎四天假期,但是整个金融市场确实流动性充沛,大事频发,各个商品波动剧烈。美国方面,在本周四凌晨公布5月份的利率决议和新闻发布会,维持联邦基金利率在2.25%-2.50%不变,符合市场预期。同时美联储…...

    2024/5/7 9:45:25
  8. 【外汇周评】靓丽非农不及疲软通胀影响

    原标题:【外汇周评】靓丽非农不及疲软通胀影响在刚结束的周五,美国方面公布了新一期的非农就业数据,大幅好于前值和预期,新增就业重新回到20万以上。具体数据: 美国4月非农就业人口变动 26.3万人,预期 19万人,前值 19.6万人。 美国4月失业率 3.6%,预期 3.8%,前值 3…...

    2024/5/4 23:54:56
  9. 【原油贵金属早评】库存继续增加,油价收跌

    原标题:【原油贵金属早评】库存继续增加,油价收跌周三清晨公布美国当周API原油库存数据,上周原油库存增加281万桶至4.692亿桶,增幅超过预期的74.4万桶。且有消息人士称,沙特阿美据悉将于6月向亚洲炼油厂额外出售更多原油,印度炼油商预计将每日获得至多20万桶的额外原油供…...

    2024/5/9 4:20:59
  10. 【外汇早评】日本央行会议纪要不改日元强势

    原标题:【外汇早评】日本央行会议纪要不改日元强势近两日日元大幅走强与近期市场风险情绪上升,避险资金回流日元有关,也与前一段时间的美日贸易谈判给日本缓冲期,日本方面对汇率问题也避免继续贬值有关。虽然今日早间日本央行公布的利率会议纪要仍然是支持宽松政策,但这符…...

    2024/5/4 23:54:56
  11. 【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响

    原标题:【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响近日伊朗局势升温,导致市场担忧影响原油供给,油价试图反弹。此时OPEC表态稳定市场。据消息人士透露,沙特6月石油出口料将低于700万桶/日,沙特已经收到石油消费国提出的6月份扩大出口的“适度要求”,沙特将满…...

    2024/5/4 23:55:05
  12. 【外汇早评】美欲与伊朗重谈协议

    原标题:【外汇早评】美欲与伊朗重谈协议美国对伊朗的制裁遭到伊朗的抗议,昨日伊朗方面提出将部分退出伊核协议。而此行为又遭到欧洲方面对伊朗的谴责和警告,伊朗外长昨日回应称,欧洲国家履行它们的义务,伊核协议就能保证存续。据传闻伊朗的导弹已经对准了以色列和美国的航…...

    2024/5/4 23:54:56
  13. 【原油贵金属早评】波动率飙升,市场情绪动荡

    原标题:【原油贵金属早评】波动率飙升,市场情绪动荡因中美贸易谈判不安情绪影响,金融市场各资产品种出现明显的波动。随着美国与中方开启第十一轮谈判之际,美国按照既定计划向中国2000亿商品征收25%的关税,市场情绪有所平复,已经开始接受这一事实。虽然波动率-恐慌指数VI…...

    2024/5/7 11:36:39
  14. 【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试

    原标题:【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试美国和伊朗的局势继续升温,市场风险情绪上升,避险黄金有向上突破阻力的迹象。原油方面稍显平稳,近期美国和OPEC加大供给及市场需求回落的影响,伊朗局势并未推升油价走强。近期中美贸易谈判摩擦再度升级,美国对中…...

    2024/5/4 23:54:56
  15. 【原油贵金属早评】市场情绪继续恶化,黄金上破

    原标题:【原油贵金属早评】市场情绪继续恶化,黄金上破周初中国针对于美国加征关税的进行的反制措施引发市场情绪的大幅波动,人民币汇率出现大幅的贬值动能,金融市场受到非常明显的冲击。尤其是波动率起来之后,对于股市的表现尤其不安。隔夜美国股市出现明显的下行走势,这…...

    2024/5/6 1:40:42
  16. 【外汇早评】美伊僵持,风险情绪继续升温

    原标题:【外汇早评】美伊僵持,风险情绪继续升温昨日沙特两艘油轮再次发生爆炸事件,导致波斯湾局势进一步恶化,市场担忧美伊可能会出现摩擦生火,避险品种获得支撑,黄金和日元大幅走强。美指受中美贸易问题影响而在低位震荡。继5月12日,四艘商船在阿联酋领海附近的阿曼湾、…...

    2024/5/4 23:54:56
  17. 【原油贵金属早评】贸易冲突导致需求低迷,油价弱势

    原标题:【原油贵金属早评】贸易冲突导致需求低迷,油价弱势近日虽然伊朗局势升温,中东地区几起油船被袭击事件影响,但油价并未走高,而是出于调整结构中。由于市场预期局势失控的可能性较低,而中美贸易问题导致的全球经济衰退风险更大,需求会持续低迷,因此油价调整压力较…...

    2024/5/8 20:48:49
  18. 氧生福地 玩美北湖(上)——为时光守候两千年

    原标题:氧生福地 玩美北湖(上)——为时光守候两千年一次说走就走的旅行,只有一张高铁票的距离~ 所以,湖南郴州,我来了~ 从广州南站出发,一个半小时就到达郴州西站了。在动车上,同时改票的南风兄和我居然被分到了一个车厢,所以一路非常愉快地聊了过来。 挺好,最起…...

    2024/5/7 9:26:26
  19. 氧生福地 玩美北湖(中)——永春梯田里的美与鲜

    原标题:氧生福地 玩美北湖(中)——永春梯田里的美与鲜一觉醒来,因为大家太爱“美”照,在柳毅山庄去寻找龙女而错过了早餐时间。近十点,向导坏坏还是带着饥肠辘辘的我们去吃郴州最富有盛名的“鱼头粉”。说这是“十二分推荐”,到郴州必吃的美食之一。 哇塞!那个味美香甜…...

    2024/5/4 23:54:56
  20. 氧生福地 玩美北湖(下)——奔跑吧骚年!

    原标题:氧生福地 玩美北湖(下)——奔跑吧骚年!让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 啊……啊……啊 两…...

    2024/5/8 19:33:07
  21. 扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!

    原标题:扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!扒开伪装医用面膜,翻六倍价格宰客!当行业里的某一品项火爆了,就会有很多商家蹭热度,装逼忽悠,最近火爆朋友圈的医用面膜,被沾上了污点,到底怎么回事呢? “比普通面膜安全、效果好!痘痘、痘印、敏感肌都能用…...

    2024/5/5 8:13:33
  22. 「发现」铁皮石斛仙草之神奇功效用于医用面膜

    原标题:「发现」铁皮石斛仙草之神奇功效用于医用面膜丽彦妆铁皮石斛医用面膜|石斛多糖无菌修护补水贴19大优势: 1、铁皮石斛:自唐宋以来,一直被列为皇室贡品,铁皮石斛生于海拔1600米的悬崖峭壁之上,繁殖力差,产量极低,所以古代仅供皇室、贵族享用 2、铁皮石斛自古民间…...

    2024/5/8 20:38:49
  23. 丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者

    原标题:丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者【公司简介】 广州华彬企业隶属香港华彬集团有限公司,专注美业21年,其旗下品牌: 「圣茵美」私密荷尔蒙抗衰,产后修复 「圣仪轩」私密荷尔蒙抗衰,产后修复 「花茵莳」私密荷尔蒙抗衰,产后修复 「丽彦妆」专注医学护…...

    2024/5/4 23:54:58
  24. 广州械字号面膜生产厂家OEM/ODM4项须知!

    原标题:广州械字号面膜生产厂家OEM/ODM4项须知!广州械字号面膜生产厂家OEM/ODM流程及注意事项解读: 械字号医用面膜,其实在我国并没有严格的定义,通常我们说的医美面膜指的应该是一种「医用敷料」,也就是说,医用面膜其实算作「医疗器械」的一种,又称「医用冷敷贴」。 …...

    2024/5/6 21:42:42
  25. 械字号医用眼膜缓解用眼过度到底有无作用?

    原标题:械字号医用眼膜缓解用眼过度到底有无作用?医用眼膜/械字号眼膜/医用冷敷眼贴 凝胶层为亲水高分子材料,含70%以上的水分。体表皮肤温度传导到本产品的凝胶层,热量被凝胶内水分子吸收,通过水分的蒸发带走大量的热量,可迅速地降低体表皮肤局部温度,减轻局部皮肤的灼…...

    2024/5/4 23:54:56
  26. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  27. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  28. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  29. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  30. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  31. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  32. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  33. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  34. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  35. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  36. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  37. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  38. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  39. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  40. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  41. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  42. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  43. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  44. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  45. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57