线性回归

线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。
只有一个自变量的情况称为单变量回归,多于一个自变量情况的叫做多元回归
在这里插入图片描述
线性回归用矩阵表示举例
在这里插入图片描述

线性回归的特征与目标的关系

线性关系

  • 单变量线性关系
    在这里插入图片描述
  • 多变量线性关系
    在这里插入图片描述
    单特征与目标值的关系呈直线关系,或者两个特征与目标值呈现平面的关系
  • 非线性关系
    在这里插入图片描述
    如果是非线性关系,那么回归方程可以理解为:w1x1+w2x22+w3x32

线性回归API

sklearn.linear_model.LinearRegression()

  • LinearRegression.coef_:回归系数(w1,w2,w3,…,wn)
  • LinearRegression.intercept_:偏置 (b)
from sklearn.linear_model import LinearRegression
# 1.数据获取
x = [[80, 86],[82, 80],[85, 78],[90, 90],[86, 82],[82, 90],[78, 80],[92, 94]]y = [84.2, 80.6, 80.1, 90, 83.2, 87.6, 79.4, 93.4]
# 2.基本处理
# 3.特征工程
# 4.机器学习
# 4.1构建模型
estimator = LinearRegression()
# 4.2训练模型
estimator.fit(x,y)
# 5.模型评估
# 获取回归系数
estimator.coef_
# 获取偏置
estimator.intercept_

在这里插入图片描述

常见函数的导数

在这里插入图片描述

导数的四则运算

在这里插入图片描述

线性回归的损失和优化

损失函数

真实结果与预测的结果之间存在的一定误差。损失函数值越小,预测结果越接近真实结果。
在这里插入图片描述

  • yi为第i个训练样本的真实值
  • h(xi)为第i个训练样本特征值组合预测函数
  • 又称最小二乘法

正规方程

在这里插入图片描述
X为特征值矩阵,y为目标值矩阵。直接求到最好的结果
缺点:当特征过多过复杂时,求解速度太慢并且得不到结果
在这里插入图片描述
正规方程推导
把该损失函数转换成矩阵写法:
在这里插入图片描述
其中y是真实值矩阵,X是特征值矩阵,w是权重矩阵
对其求解关于w的最小值,起止y,X 均已知二次函数直接求导,导数为零的位置,即为最小值。
求导:
在这里插入图片描述

梯度下降(Gradient Descent)

梯度下降法的基本思想可以类比为一个下山的过程。
假设这样一个场景:一个人被困在山上,需要从山上下来(i.e. 找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视度很低。因此,下山的路径就无法确定,他必须利用自己周围的信息去找到下山的路径。这个时候,他就可以利用梯度下降算法来帮助自己下山。具体来说就是,以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着山的高度下降的地方走,(同理,如果我们的目标是上山,也就是爬到山顶,那么此时应该是朝着最陡峭的方向往上走)。然后每走一段距离,都反复采用同一个方法,最后就能成功的抵达山谷。
在这里插入图片描述
梯度下降的基本过程就和下山的场景很类似。
首先,我们有一个可微分的函数。这个函数就代表着一座山。
我们的目标就是找到这个函数的最小值,也就是山底。
根据之前的场景假设,最快的下山的方式就是找到当前位置最陡峭的方向,然后沿着此方向向下走,对应到函数中,就是找到给定点的梯度 ,然后朝着梯度相反的方向,就能让函数值下降的最快!因为梯度的方向就是函数之变化最快的方向。 所以,我们重复利用这个方法,反复求取梯度,最后就能到达局部的最小值,这就类似于我们下山的过程。而求取梯度就确定了最陡峭的方向,也就是场景中测量方向的手段。

梯度

梯度是微积分中一个很重要的概念
​在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率
​在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向
这也就说明了为什么我们需要千方百计的求取梯度!我们需要到达山底,就需要在每一步观测到此时最陡峭的地方,梯度就恰巧告诉了我们这个方向。梯度的方向是函数在给定点上升最快的方向,那么梯度的反方向就是函数在给定点下降最快的方向,这正是我们所需要的。所以我们只要沿着梯度的反方向一直走,就能走到局部的最低点!

梯度下降
  • 单变量函数的梯度下降
    假设有一个单变量的函数 :J(θ) = θ2
    函数的微分:J`(θ) = 2θ
    初始化,起点为: θ0= 1
    学习率:α = 0.4
    梯度下降的迭代计算过程:
    在这里插入图片描述
    在这里插入图片描述
  • 多变量函数的梯度下降
    假设有一个目标函数 ::J(θ) = θ12 + θ22
    假设初始的起点为: θ0 = (1, 3)
    初始的学习率为:α = 0.1
    函数的梯度为:▽:J(θ) =< 2θ1 ,2θ2>
    进行多次迭代:
    在这里插入图片描述
    在这里插入图片描述

梯度下降(Gradient Descent)公式

在这里插入图片描述
α在梯度下降算法中被称作为学习率或者步长,学习率太小,每次移动步长太小,收敛太慢。学习率太大,每次移动步长大,可能导致不收敛,错过最优解。
在这里插入图片描述
梯度下降和正规方程的对比

梯度下降 正规方程
需要选择学习率 不需要
需要迭代求解 一次运算得出
特征数量较大可以使用 需要计算方程,时间复杂度高O(n3)
  • 选择:
    • 小规模数据:
      • LinearRegression(不能解决拟合问题)
      • 岭回归
    • 大规模数据:SGDRegressor

常见的梯度下降算法有:

  • 全梯度下降算法(Full gradient descent)
  • 随机梯度下降算法(Stochastic gradient descent)
  • 随机平均梯度下降算法(Stochastic average gradient descent)
  • 小批量梯度下降算法(Mini-batch gradient descent)

它们都是为了正确地调节权重向量,通过为每个权重计算一个梯度,从而更新权值,使目标函数尽可能最小化。其差别在于样本的使用方式不同。

全梯度下降算法(FG)

计算训练集所有样本误差,对其求和再取平均值作为目标函数。
权重向量沿其梯度相反的方向移动,从而使当前目标函数减少得最多。
因为在执行每次更新时,我们需要在整个数据集上计算所有的梯度,所以批梯度下降法的速度会很慢,同时,批梯度下降法无法处理超出内存容量限制的数据集。
批梯度下降法同样也不能在线更新模型,即在运行的过程中,不能增加新的样本。
其是在整个训练数据集上计算损失函数关于参数θ的梯度:
在这里插入图片描述

随机梯度下降算法(SG)

由于FG每迭代更新一次权重都需要计算所有样本误差,而实际问题中经常有上亿的训练样本,故效率偏低,且容易陷入局部最优解,因此提出了随机梯度下降算法。
其每轮计算的目标函数不再是全体样本误差,而仅是单个样本误差,即每次只代入计算一个样本目标函数的梯度来更新权重,再取下一个样本重复此过程,直到损失函数值停止下降或损失函数值小于某个可以容忍的阈值。
此过程简单,高效,通常可以较好地避免更新迭代收敛到局部最优解。其迭代形式为
在这里插入图片描述
每次只使用一个样本迭代,若遇上噪声则容易陷入局部最优解。
其中,x(i)表示一条训练样本的特征值,y(i)表示一条训练样本的标签值
但是由于,SG每次只使用一个样本迭代,若遇上噪声则容易陷入局部最优解。

小批量梯度下降算法(mini-bantch)

小批量梯度下降算法是FG和SG的折中方案,在一定程度上兼顾了以上两种方法的优点。
每次从训练样本集上随机抽取一个小样本集,在抽出来的小样本集上采用FG迭代更新权重。
被抽出的小样本集所含样本点的个数称为batch_size,通常设置为2的幂次方,更有利于GPU加速处理。
特别的,若batch_size=1,则变成了SG;若batch_size=n,则变成了FG.其迭代形式为
在这里插入图片描述

随机平均梯度下降算法(SAG)

在SG方法中,虽然避开了运算成本大的问题,但对于大数据训练而言,SG效果常不尽如人意,因为每一轮梯度更新都完全与上一轮的数据和梯度无关。
随机平均梯度算法克服了这个问题,在内存中为每一个样本都维护一个旧的梯度,随机选择第i个样本来更新此样本的梯度,其他样本的梯度保持不变,然后求得所有梯度的平均值,进而更新了参数。
如此,每一轮更新仅需计算一个样本的梯度,计算成本等同于SG,但收敛速度快得多。
梯度下降优化算法综述
(1)FG方法由于它每轮更新都要使用全体数据集,故花费的时间成本最多,内存存储最大。
(2)SAG在训练初期表现不佳,优化速度较慢。这是因为常将初始梯度设为0,而SAG每轮梯度更新都结合了上一轮梯度值。
(3)综合考虑迭代次数和运行时间,SG表现性能都很好,能在训练初期快速摆脱初始梯度值,快速将平均损失函数降到很低。但要注意,在使用SG方法时要慎重选择步长,否则容易错过最优解。
(4)mini-batch结合了SG的“胆大”和FG的“心细”,它的表现也正好居于SG和FG二者之间。在目前的机器学习领域,mini-batch是使用最多的梯度下降算法,正是因为它避开了FG运算效率低成本大和SG收敛效果不稳定的缺点。

线性回归api再介绍

  • sklearn.linear_model.LinearRegression(fit_intercept=True)
    • 通过正规方程优化
    • fit_intercept:是否计算偏置
    • LinearRegression.coef_:回归系数
    • LinearRegression.intercept_:偏置
  • sklearn.linear_model.SGDRegressor(loss=“squared_loss”, fit_intercept=True, learning_rate =‘invscaling’, eta0=0.01)
    • SGDRegressor类实现了随机梯度下降学习,它支持不同的loss函数和正则化惩罚项来拟合线性回归模型。
    • loss:损失类型
      • loss=”squared_loss”: 普通最小二乘法
    • fit_intercept:是否计算偏置
    • learning_rate : string, optional
      • 学习率填充
      • ‘constant’: eta = eta0
      • ‘optimal’: eta = 1.0 / (alpha * (t + t0)) [default]
      • ‘invscaling’: eta = eta0 / pow(t, power_t)
        • power_t=0.25:存在父类当中
      • 对于一个常数值的学习率来说,可以使用learning_rate=’constant’ ,并使用eta0来指定学习率。
    • SGDRegressor.coef_:回归系数
    • SGDRegressor.intercept_:偏置

案例:波士顿房价预测

  • 数据集
    在这里插入图片描述
    在这里插入图片描述
  • 使用正规方程求解
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression  # 正规方程优化
from sklearn.metrics import mean_squared_error# 1.获取数据
data = load_boston()# 2.数据处理-数据集划分
x_train,x_test,y_train,y_test = train_test_split(data.data,data.target,test_size=0.2,random_state=10)# 3.特征工作-标准化
# 实例化转换器
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test)# 4.机器学习-线性回归
# 4.1构建模型
# 实例化估计器
estimator = LinearRegression()
# 4.2训练模型
estimator.fit(x_train,y_train)# 5.模型评估-MSE均方误差
# 衡量预测值和真实值的差距
# 5.1 获取预测值
y_predict = estimator.predict(x_test)
# MSE
mean_squared_error(y_pred=y_predict,y_true=y_test)

回归性能评估
均方误差(Mean Squared Error)MSE)评价机制:
在这里插入图片描述
注:yi为预测值,¯y为真实值
sklearn.metrics.mean_squared_error(y_true, y_pred)
均方误差回归损失

  • y_true:真实值

  • y_pred:预测值

  • return:浮点数结果

  • 梯度下降法求解

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import SGDRegressor  # 梯度下降
from sklearn.metrics import mean_squared_error# 1.数据获取
data_T = load_boston()# 2.数据处理-数据集划分
x_train,x_test,y_train,y_test = train_test_split(data_T.data,data_T.target,test_size=0.2,random_state=10)# 3.特征工程-标准化
transform = StandardScaler()
x_train = transform.fit_transform(x_train)
x_test = transform.fit_transform(x_test)# 4.机器学习-线性回归
# 4.1模型建立
estimator = SGDRegressor(max_iter=1000,tol=0.0001) # max_iter最大迭代次数 ,tol可接收的梯度最小值
# 4.2训练模型
estimator.fit(x_train,y_train)# 5.模型评估
y_predict = estimator.predict(x_test)
# MSE 
mean_squared_error(y_pred=y_predict,y_true=y_test)

欠拟合和过拟合

  • 过拟合:一个假设在训练数据上能够获得比其他假设更好的拟合, 但是在测试数据集上却不能很好地拟合数据,此时认为这个假设出现了过拟合的现象。(模型过于复杂)
  • 欠拟合:一个假设在训练数据上不能获得更好的拟合,并且在测试数据集上也不能很好地拟合数据,此时认为这个假设出现了欠拟合的现象。(模型过于简单)

欠拟合原因以及解决办法
原因:学习到数据的特征过少
解决办法:

  • 添加其他特征项,有时候我们模型出现欠拟合的时候是因为特征项不够导致的,可以添加其他特征项来很好地解决。例如,“组合”、“泛化”、“相关性”三类特征是特征添加的重要手段,无论在什么场景,都可以照葫芦画瓢,总会得到意想不到的效果。除上面的特征之外,“上下文特征”、“平台特征”等等,都可以作为特征添加的首选项。
  • 添加多项式特征,这个在机器学习算法里面用的很普遍,例如将线性模型通过添加二次项或者三次项使模型泛化能力更强。

过拟合原因以及解决办法
原因:原始特征过多,存在一些嘈杂特征, 模型过于复杂是因为模型尝试去兼顾各个测试数据点
解决办法:

  • 重新清洗数据,导致过拟合的一个原因也有可能是数据不纯导致的,如果出现了过拟合就需要我们重新清洗数据。
  • 增大数据的训练量,还有一个原因就是我们用于训练的数据量太小导致的,训练数据占总数据的比例过小。
  • 正则化
  • 减少特征维度,防止维灾难

正则化

在学习的时候,数据提供的特征有些影响模型复杂度或者这个特征的数据点异常较多,所以算法在学习的时候尽量减少这个特征的影响(甚至删除某个特征的影响),就是正则化.

正则化类别

  • L2正则化
    • 作用:可以使得其中一些W的都很小,都接近于0,削弱某个特征的影响
    • 优点:越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合现象
    • Ridge回归
  • L1正则化
    • 作用:可以使得其中一些W的值直接为0,删除这个特征的影响
    • LASSO回归

正则化线性模型

Ridge Regression (岭回归,又名 Tikhonov regularization)

岭回归是线性回归的正则化版本,即在原来的线性回归的 cost function 中添加正则项(regularization term):
在这里插入图片描述
以达到在拟合数据的同时,使模型权重尽可能小的目的,岭回归代价函数:
在这里插入图片描述
α=0:岭回归退化为线性回归

Lasso Regression(Lasso 回归)

Lasso 回归是线性回归的另一种正则化版本,正则项为权值向量的ℓ1范数。
Lasso回归的代价函数 :
在这里插入图片描述
注意

  • Lasso Regression 的代价函数在 θi=0处是不可导的.
  • 解决方法:在θi=0处用一个次梯度向量(subgradient vector)代替梯度,如下式
  • Lasso Regression 的次梯度向量
    在这里插入图片描述
    Lasso Regression 有一个很重要的性质是:倾向于完全消除不重要的权重。
    例如:当α 取值相对较大时,高阶多项式退化为二次甚至是线性:高阶多项式特征的权重被置为0。
    也就是说,Lasso Regression 能够自动进行特征选择,并输出一个稀疏模型(只有少数特征的权重是非零的)。

Elastic Net (弹性网络)

弹性网络在岭回归和Lasso回归中进行了折中,通过 混合比(mix ratio) r 进行控制:

  • r=0:弹性网络变为岭回归
  • r=1:弹性网络便为Lasso回归

弹性网络的代价函数 :
在这里插入图片描述

  • 常用:岭回归
  • 假设只有少部分特征是有用的:
    • 弹性网络
    • Lasso
    • 一般来说,弹性网络的使用更为广泛。因为在特征维度高于训练样本数,或者特征是强相关的情况下,Lasso回归的表现不太稳定。

api:

from sklearn.linear_model import Ridge, ElasticNet, Lasso

线性回归的改进-岭回归

  • sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True,solver=“auto”, normalize=False)
    • 具有l2正则化的线性回归
    • alpha:正则化力度,也叫 λ
      • λ取值:0~1 1~10
    • solver:会根据数据自动选择优化方法
    • sag:如果数据集、特征都比较大,选择该随机梯度下降优化
    • normalize:数据是否进行标准化
      • normalize=False:可以在fit之前调用preprocessing.StandardScaler标准化数据
    • Ridge.coef_:回归权重
    • Ridge.intercept_:回归偏置

Ridge方法相当于SGDRegressor(penalty=‘l2’, loss=“squared_loss”),只不过SGDRegressor实现了一个普通的随机梯度下降学习,推荐使用Ridge(实现了SAG)

  • sklearn.linear_model.RidgeCV(_BaseRidgeCV, RegressorMixin)
    • 具有l2正则化的线性回归,可以进行交叉验证
    • coef_:回归系数
class _BaseRidgeCV(LinearModel):def __init__(self, alphas=(0.1, 1.0, 10.0),fit_intercept=True, normalize=False,scoring=None,cv=None, gcv_mode=None,store_cv_values=False):

案例:岭回归-波士顿房价预测

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import SGDRegressor
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import Ridge# 1数据获取
data = load_boston()# 2.数据处理,划分数据集
x_train,x_test,y_train,y_test = train_test_split(data.data,data.target,test_size=0.2,random_state=10)# 3.特征工程-标准化
transform = StandardScaler()
x_train = transform.fit_transform(x_train)
x_test = transform.fit_transform(x_test)# 4.机器学习
# 4.1模型建立
# Rideg(alpha=正则化力度),正则化力度越小,越接近0,权重系数越大
estimator = Ridge(alpha=1.0)
# 4.2模型训练
estimator.fit(x_train,y_train)# 5.模型评估
y_predict = estimator.predict(x_test)print("预测值为:\n", y_predict)
print("模型中的系数为:\n", estimator.coef_)
print("模型中的偏置为:\n", estimator.intercept_)# 均方误差
error = mean_squared_error(y_test, y_predict)
print("误差为:\n", error)

在这里插入图片描述

  • 正则化力度越大,权重系数会越小
  • 正则化力度越小,权重系数会越大

模型的保存和加载

sklearn模型的保存和加载API

  • from sklearn.externals import joblib
    • 保存:joblib.dump(estimator, ‘test.pkl’)
    • 加载:estimator = joblib.load(‘test.pkl’)
def load_dump_demo():"""线性回归:岭回归:return:"""# 1.获取数据data = load_boston()# 2.数据集划分x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)# 3.特征工程-标准化transfer = StandardScaler()x_train = transfer.fit_transform(x_train)x_test = transfer.fit_transform(x_test)# 4.机器学习-线性回归(岭回归)# # 4.1 模型训练# estimator = Ridge(alpha=1)# estimator.fit(x_train, y_train)## # 4.2 模型保存# joblib.dump(estimator, "./data/test.pkl")# 4.3 模型加载estimator = joblib.load("./data/test.pkl")# 5.模型评估# 5.1 获取系数等值y_predict = estimator.predict(x_test)print("预测值为:\n", y_predict)print("模型中的系数为:\n", estimator.coef_)print("模型中的偏置为:\n", estimator.intercept_)# 5.2 评价# 均方误差error = mean_squared_error(y_test, y_predict)print("误差为:\n", error)

逻辑回归

逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的联系。由于算法的简单和高效,在实际中应用非常广泛。

逻辑回归的原理

逻辑回归的输入就是一个线性回归的结果。
在这里插入图片描述
激活函数
sigmoid函数
在这里插入图片描述
判断标准

  • 回归的结果输入到sigmoid函数当中
  • 输出结果:[0, 1]区间中的一个概率值,默认为0.5为阈值
    在这里插入图片描述
    逻辑回归最终的分类是通过属于某个类别的概率值来判断是否属于某个类别,并且这个类别默认标记为1(正例),另外的一个类别会标记为0(反例)。(方便损失计算)
    输出结果解释(重要):假设有两个类别A,B,并且假设我们的概率值为属于A(1)这个类别的概率值。现在有一个样本的输入到逻辑回归输出结果0.6,那么这个概率值超过0.5,意味着我们训练或者预测的结果就是A(1)类别。那么反之,如果得出结果为0.3那么,训练或者预测结果就为B(0)类别。
    在这里插入图片描述

损失以及优化 损失

损失

逻辑回归的损失,称之为对数似然损失,公式如下:
分开类别:
在这里插入图片描述
在这里插入图片描述
综合完整损失函数
在这里插入图片描述
在这里插入图片描述

优化

同样使用梯度下降优化算法,去减少损失函数的值。这样去更新逻辑回归前面对应算法的权重参数,提升原本属于1类别的概率,降低原本是0类别的概率。

逻辑回归api

sklearn.linear_model.LogisticRegression(solver=‘liblinear’, penalty=‘l2’, C = 1.0)

  • solver可选参数:{‘liblinear’, ‘sag’, ‘saga’,‘newton-cg’, ‘lbfgs’},
    • 默认: ‘liblinear’;用于优化问题的算法。
    • 对于小数据集来说,“liblinear”是个不错的选择,而“sag”和’saga’对于大型数据集会更快。
    • 对于多类问题,只有’newton-cg’, ‘sag’, 'saga’和’lbfgs’可以处理多项损失;“liblinear”仅限于“one-versus-rest”分类。
  • penalty:正则化的种类
  • C:正则化力度

默认将类别数量少的当做正例
LogisticRegression方法相当于 SGDClassifier(loss=“log”, penalty=" "),SGDClassifier实现了一个普通的随机梯度下降学习。而使用LogisticRegression(实现了SAG)

案例:癌症分类预测

  • 数据集
    在这里插入图片描述
    数据描述
    (1)699条样本,共11列数据,第一列用语检索的id,后9列分别是与肿瘤
    相关的医学特征,最后一列表示肿瘤类型的数值。
    (2)包含16个缺失值,用”?”标出。
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression# 1.获取数据
names = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape','Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin','Normal Nucleoli', 'Mitoses', 'Class']data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",names=names)
data.head()

在这里插入图片描述

# 2.基本数据处理
# 2.1 缺失值处理
data = data.replace(to_replace="?", value=np.NaN)
data = data.dropna()
# 2.2 确定特征值,目标值
x = data.iloc[:, 1:10]
x.head()
y = data["Class"]
y.head()
# 2.3 分割数据
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)# 3.特征工程(标准化)
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)# 4.机器学习(逻辑回归)
estimator = LogisticRegression()
estimator.fit(x_train, y_train)# 5.模型评估
y_predict = estimator.predict(x_test)
y_predict
estimator.score(x_test, y_test)

分类评估方法

混淆矩阵

在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适用于多分类)

在这里插入图片描述

精确率(Precision)与召回率(Recall)

精确率:预测结果为正例样本中真实为正例的比例
在这里插入图片描述
召回率:真实为正例的样本中预测结果为正例的比例(查得全,对正样本的区分能力)
在这里插入图片描述

F1-score

还有其他的评估标准,F1-score,反映了模型的稳健型
在这里插入图片描述

分类评估报告api

sklearn.metrics.classification_report(y_true, y_pred, labels=[], target_names=None )

  • y_true:真实目标值
  • y_pred:估计器预测目标值
  • labels:指定类别对应的数字
  • target_names:目标类别名称
  • return:每个类别精确率与召回率
# 获取预测值
y_predict = estimator.predict(x_test)# classification_report(y_true,y_pred,labels=以什么标记正例和假例, target_names=正假例标签名)
res = classification_report(y_true=y_test,y_pred=y_predict,labels=(2,4),target_names=('良性','恶性'))
print(res) # str类型

在这里插入图片描述

ROC曲线与AUC指标

TPR与FPR

  • TPR = TP / (TP + FN) 正例召回率
    • 所有真实类别为1的样本中,预测类别为1的比例
  • FPR = FP / (FP + TN) 1-假例召回率
    • 所有真实类别为0的样本中,预测类别为1的比例

ROC曲线

ROC曲线的横轴就是FPRate,纵轴就是TPRate,当二者相等时,表示的意义则是:对于不论真实类别是1还是0的样本,分类器预测为1的概率是相等的,此时AUC为0.5
在这里插入图片描述
在这里插入图片描述

AUC指标

  • AUC的概率意义是随机取一对正负样本,正样本得分大于负样本的概率
  • AUC的最小值为0.5,最大值为1,取值越高越好
  • AUC=1,完美分类器,采用这个预测模型时,不管设定什么阈值都能得出完美预测。绝大多数预测的场合,不存在完美分类器。
  • 0.5<AUC<1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。
    最终AUC的范围在[0.5, 1]之间,并且越接近1越好

AUC计算API

from sklearn.metrics import roc_auc_score

  • sklearn.metrics.roc_auc_score(y_true, y_score)
    • 计算ROC曲线面积,即AUC值
    • y_true:每个样本的真实类别,必须为0(反例),1(正例)标记
    • y_score:预测得分,可以是正类的估计概率、置信值或者分类器方法的返回值
# 0.5~1之间,越接近于1约好
y_test = np.where(y_test > 2.5, 1, 0)print("AUC指标:", roc_auc_score(y_test, y_predict)

AUC只能用来评价二分类
AUC非常适合评价样本不平衡中的分类器性能

ROC曲线的绘制

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. 微信小程序入门(六)常见内置组件 Text组件 Button组件解析 open-type的取值 View组件 Image组件 Input组件 scroll-view组件 共同属性

    目录Text组件Button组件解析open-type的取值View组件Image组件介绍Input组件的介绍scroll-view组件介绍共同属性 Text组件 Text组件用于显示文本, 类似于span标签, 是行内元素<!--pages/text/text.wxml--> <text>Hello world\n</text> <text>你好小程序…...

    2024/3/14 1:40:08
  2. SQL(4)- 过滤数据

    where 过滤数据,条件筛选select prod_price from products where prod_price=199; select prod_price from products where prod_price<199 order by prod_price; order by(排序)要在where(筛选)之后。 select prod_name from products where prod_name!=apple; elec…...

    2024/3/13 22:31:24
  3. cf Educational Codeforces Round 80 B. Yet Another Meme Problem

    原题: B. Yet Another Meme Problem time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output Try guessing the statement from this picture http://tiny.cc/ogyoiz. You are given two integers A and B, calculat…...

    2024/3/13 22:31:19
  4. 苹果手表出现,请在iphone 打开apple watch 应用,前生Passcode,轻点密码重试

    苹果手表出现,请在iphone 打开apple watch 应用,前生Passcode,轻点"重试密码",再试?该如何解决?step1: 将手表充足电量 step2: 开机键 Long Press ,然后出现下面画面step3: 长按滑动关机与SOS中间位置 ,然后会出现step4:这时选择抹掉所有内容和设置step5: 修…...

    2024/3/13 22:31:13
  5. webpack打包报错DeprecationWarning: Tapable.plugin is deprecated. Use new API on `.hooks` instead

    在使用extract-text-webpack-plugin给webpack打包时出现报错是因为这个插件现在不兼容webpack4x版本,可以使用最新的测试版本 下载最新测试版本 npm install extract-text-webpack-plugin@next...

    2024/3/14 1:40:05
  6. 十进制的0.1 为什么不能用二进制很好的表示?

    二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。…...

    2024/3/22 19:41:46
  7. Echarts数据可视化特效散点图点动态闪烁效果

    效果如下:Echarts数据可视化series-effectscatter特效散点图全解mytextStyle={color:"#333", //文字颜色fontStyle:"normal", //italic斜体 oblique倾斜fontWeight:"normal", //文字粗细bold bolder lighter…...

    2024/3/13 22:31:06
  8. 【JVM】垃圾回收的四大算法

    GC垃圾回收石头文学 https://www.10tou.com JVM大部分时候回收的都是新生代(伊甸区+幸存0区+幸存1区)。按照回收的区域可以分成两种类型:Minor GC和Full GC(MajorGC)。 Minor GC:只针对新生代区域的GC,大多数Java对象的存活率都不高,Minor GC非常频繁,回收速度快。 Fu…...

    2024/3/14 1:40:03
  9. Linux基础指令

    目录linux文件目录结构常用指令目录路径Linux 文件的基本操作新建复制删除移动文件与文件重命名查看文件date 命令使用 yum 命令 linux文件目录结构 Linux 是以树形目录结构的形式来构建整个系统的 命令行输入:/tree 查看常用指令 目录路径 在 Linux 里面使用 . 表示当前目录,…...

    2024/3/14 7:53:06
  10. Java内部类详解

    这篇讲的很好 转载: https://www.cnblogs.com/dolphin0520/p/3811445.html...

    2024/3/14 7:53:05
  11. 7zip移植到arm-linux平台

    1.下载源码 https://sourceforge.net/projects/p7zip/files/p7zip/ 我这里下载的是 p7zip_16.02_src_all.tar.bz2 2.解压修改makefile并完全编译 tar -xvf p7zip_16.02_src_all.tar.bz2解压源码包p7zip_9.20.1_src_all.tar.bz2后,进入源码包,会发现有一个makefile和n多其它平…...

    2024/3/14 7:53:04
  12. 一文带你了解Linux操作系统

    文章目录Linux目录结构介绍Linux用户介绍Linux 常用命令介绍Linux文件操作Linux文件夹操作Linux 查询命令帮助语句 Linux目录结构介绍Linux用户介绍 Linux用户通常分为两类: 1.管理员用户(root); 2.普通用户(类似Windows上的普通用户)。 Linux登录系统后,默认当前所在目录为用…...

    2024/3/14 7:53:03
  13. Python基础知识点——深拷贝、浅拷贝

    预备知识一——python的变量及其存储python的一切变量都是对象,变量的存储,采用了引用语义的方式,存储的只是一个变量的值所在的内存地址,而不是这个变量的只本身 不管多么复杂的数据结构,浅拷贝都只会copy一层。 理解:两个人公用一张桌子,只要桌子不变,桌子上的菜发生…...

    2024/3/13 22:30:59
  14. 算法学习-题目-07-洛谷-P1151 子数整数

    算法学习-题目-07-洛谷-P1151 子数整数-2020-5-31 一、题目二、分析%和/的运用三、代码 #include <iostream> using namespace std; int main() {int n,a[6],num=0; cin >> n;for(int m=10000;m<=30000;m++){a[5]=m%10;a[4]=m/10%10;a[3]=m/100%10;a[2]=m/10…...

    2024/3/14 7:53:01
  15. 什么是Http无状态?Session、Cookie、Token三者之间的区别

    一、什么是HTTP无状态? 1.1定义: HTTP无状态协议,是指协议对于交互性场景没有记忆能力。 1.2举个例子: 在点击一个纯的html网页,请求获取服务器的html文件资源时,每次http请求都会返回同样的信息,因为这个是没有交互的,每一次的请求都是相互独立的。第一个请求和第二个…...

    2024/3/14 7:53:01
  16. canvas笔记-使用canvas画矩形及各样式(透明)

    程序运行截图如下:源码如下:<!DOCTYPE html> <html lang="en"> <head><meta charset="UTF-8"><title>Title</title> </head> <body><canvas id="canvas" style="border:1px solid #a…...

    2024/3/13 22:30:54
  17. JS红宝书读书笔记 — 4.变量&作用域&内存

    4.变量、作用域和内存 4.1.基本类型和引用类型 4.1.1.动态的属性不能给基本类型的值添加属性 var name = ming; name.age = 27; alert(name.age); // undefined4.1.2.复制变量值基本类型复制值(栈内存) 引用类型复制地址(栈内存)4.1.3.传递参数按值传递传递值类型传递引用类型…...

    2024/3/14 7:52:58
  18. MySQL从删库到跑路(10):case when——国色天香、倾国倾城,给漂亮小姐姐分个类

    一生一代一篇文,争教两处销魂。上回说到,李有为跟着小卖部大爷,装逼界的传奇人物逼神阿六敦学了一招group by分组后自以为可以纵横天下,然而很快,他便发现人外有人、天外有天,强中还有强中手,一山还比一山高。本以为自己无敌于天下,可谁曾想自己却成了《天龙八部》里的…...

    2024/3/14 7:52:58
  19. 第一个excel VBA demo —— 添加信号并生成一段Verilog代码

    前言小时候记得excel里有一个神秘的赛车游戏,发现excel原来并不简单啊;之前我哥跟我讲excel可能是最牛逼的编程软件,但是当时我没信,现在我有点信了;工作后发现很多代码原来并不需要写,通过excel、xml直接生成还是爽爽的;最好的是,自带的编译器自动补全自动大小写转换自…...

    2024/3/22 9:01:15
  20. Python基础知识点——面向对象

    目录面向对象1. 方法2. 特性3. 属性4. 反射: hasattr、getattr、setattr 和 delattr 面向对象 简介: 面向对象编程(Object Oriented Programming-OOP) 是一种解决软件复用的设计和编程方法。 这种方法把软件系统中相近相似的操作逻辑和操作 应用数据、状态,以类的型式描述出来…...

    2024/3/14 7:52:56

最新文章

  1. c(RGDfK)-Biotin,生物素Biotin标记细胞穿膜环肽c(RGDfk)

    c(RGDfK)-Biotin&#xff0c;生物素Biotin标记细胞穿膜环肽c&#xff08;RGDfk&#xff09; 中文名称 &#xff1a;生物素Biotin标记c&#xff08;RGDfk&#xff09;环肽 英 文 名 &#xff1a;c(RGDfK)-Biotin 品 牌 &#xff1a;Tanshtech 单字母&#xff1…...

    2024/3/29 8:24:58
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. 小程序内多种直播方案对比

    我可以为您提供一个基于您提供信息的简单对比表&#xff0c;以便您对比视频号直播、小程序直播和三方SDK直播的不同特点和成本。在做出最终决定前&#xff0c;建议您还需要考虑直播质量、用户体验、后续支持和维护等因素。 特点/平台视频号直播小程序直播三方SDK直播直播方式通…...

    2024/3/29 6:55:01
  4. verilog设计-CDC:单bit脉冲快时钟域到慢时钟域

    一、前言 当单bit信号由快时钟域传递给慢时钟域时&#xff0c;快时钟域的异步信号最小可为快时钟信号的一个时钟周期脉冲&#xff0c;快时钟域的单时钟周期脉冲长度小于慢时钟域的时钟周期&#xff0c;很有可能该脉冲信号在慢时钟域的两个时钟上升沿之间&#xff0c;导致该脉冲…...

    2024/3/29 1:30:13
  5. Ubuntu 配置 kubernetes 学习环境,让外部访问 dashboard

    Ubuntu 配置 kubernetes 学习环境 一、安装 1. minikube 首先下载一下 minikube&#xff0c;这是一个单机版的 k8s&#xff0c;只需要有容器环境就可以轻松启动和学习 k8s。 首先你需要有Docker、QEMU、Hyperkit等其中之一的容器环境&#xff0c;以下使用 docker 进行。 对…...

    2024/3/28 11:29:25
  6. 【外汇早评】美通胀数据走低,美元调整

    原标题:【外汇早评】美通胀数据走低,美元调整昨日美国方面公布了新一期的核心PCE物价指数数据,同比增长1.6%,低于前值和预期值的1.7%,距离美联储的通胀目标2%继续走低,通胀压力较低,且此前美国一季度GDP初值中的消费部分下滑明显,因此市场对美联储后续更可能降息的政策…...

    2024/3/27 10:21:24
  7. 【原油贵金属周评】原油多头拥挤,价格调整

    原标题:【原油贵金属周评】原油多头拥挤,价格调整本周国际劳动节,我们喜迎四天假期,但是整个金融市场确实流动性充沛,大事频发,各个商品波动剧烈。美国方面,在本周四凌晨公布5月份的利率决议和新闻发布会,维持联邦基金利率在2.25%-2.50%不变,符合市场预期。同时美联储…...

    2024/3/24 20:11:25
  8. 【外汇周评】靓丽非农不及疲软通胀影响

    原标题:【外汇周评】靓丽非农不及疲软通胀影响在刚结束的周五,美国方面公布了新一期的非农就业数据,大幅好于前值和预期,新增就业重新回到20万以上。具体数据: 美国4月非农就业人口变动 26.3万人,预期 19万人,前值 19.6万人。 美国4月失业率 3.6%,预期 3.8%,前值 3…...

    2024/3/29 2:45:46
  9. 【原油贵金属早评】库存继续增加,油价收跌

    原标题:【原油贵金属早评】库存继续增加,油价收跌周三清晨公布美国当周API原油库存数据,上周原油库存增加281万桶至4.692亿桶,增幅超过预期的74.4万桶。且有消息人士称,沙特阿美据悉将于6月向亚洲炼油厂额外出售更多原油,印度炼油商预计将每日获得至多20万桶的额外原油供…...

    2024/3/24 20:11:23
  10. 【外汇早评】日本央行会议纪要不改日元强势

    原标题:【外汇早评】日本央行会议纪要不改日元强势近两日日元大幅走强与近期市场风险情绪上升,避险资金回流日元有关,也与前一段时间的美日贸易谈判给日本缓冲期,日本方面对汇率问题也避免继续贬值有关。虽然今日早间日本央行公布的利率会议纪要仍然是支持宽松政策,但这符…...

    2024/3/29 5:19:52
  11. 【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响

    原标题:【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响近日伊朗局势升温,导致市场担忧影响原油供给,油价试图反弹。此时OPEC表态稳定市场。据消息人士透露,沙特6月石油出口料将低于700万桶/日,沙特已经收到石油消费国提出的6月份扩大出口的“适度要求”,沙特将满…...

    2024/3/28 17:01:12
  12. 【外汇早评】美欲与伊朗重谈协议

    原标题:【外汇早评】美欲与伊朗重谈协议美国对伊朗的制裁遭到伊朗的抗议,昨日伊朗方面提出将部分退出伊核协议。而此行为又遭到欧洲方面对伊朗的谴责和警告,伊朗外长昨日回应称,欧洲国家履行它们的义务,伊核协议就能保证存续。据传闻伊朗的导弹已经对准了以色列和美国的航…...

    2024/3/24 5:55:47
  13. 【原油贵金属早评】波动率飙升,市场情绪动荡

    原标题:【原油贵金属早评】波动率飙升,市场情绪动荡因中美贸易谈判不安情绪影响,金融市场各资产品种出现明显的波动。随着美国与中方开启第十一轮谈判之际,美国按照既定计划向中国2000亿商品征收25%的关税,市场情绪有所平复,已经开始接受这一事实。虽然波动率-恐慌指数VI…...

    2024/3/29 1:13:26
  14. 【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试

    原标题:【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试美国和伊朗的局势继续升温,市场风险情绪上升,避险黄金有向上突破阻力的迹象。原油方面稍显平稳,近期美国和OPEC加大供给及市场需求回落的影响,伊朗局势并未推升油价走强。近期中美贸易谈判摩擦再度升级,美国对中…...

    2024/3/26 23:04:51
  15. 【原油贵金属早评】市场情绪继续恶化,黄金上破

    原标题:【原油贵金属早评】市场情绪继续恶化,黄金上破周初中国针对于美国加征关税的进行的反制措施引发市场情绪的大幅波动,人民币汇率出现大幅的贬值动能,金融市场受到非常明显的冲击。尤其是波动率起来之后,对于股市的表现尤其不安。隔夜美国股市出现明显的下行走势,这…...

    2024/3/29 7:41:19
  16. 【外汇早评】美伊僵持,风险情绪继续升温

    原标题:【外汇早评】美伊僵持,风险情绪继续升温昨日沙特两艘油轮再次发生爆炸事件,导致波斯湾局势进一步恶化,市场担忧美伊可能会出现摩擦生火,避险品种获得支撑,黄金和日元大幅走强。美指受中美贸易问题影响而在低位震荡。继5月12日,四艘商船在阿联酋领海附近的阿曼湾、…...

    2024/3/24 20:11:18
  17. 【原油贵金属早评】贸易冲突导致需求低迷,油价弱势

    原标题:【原油贵金属早评】贸易冲突导致需求低迷,油价弱势近日虽然伊朗局势升温,中东地区几起油船被袭击事件影响,但油价并未走高,而是出于调整结构中。由于市场预期局势失控的可能性较低,而中美贸易问题导致的全球经济衰退风险更大,需求会持续低迷,因此油价调整压力较…...

    2024/3/28 9:10:53
  18. 氧生福地 玩美北湖(上)——为时光守候两千年

    原标题:氧生福地 玩美北湖(上)——为时光守候两千年一次说走就走的旅行,只有一张高铁票的距离~ 所以,湖南郴州,我来了~ 从广州南站出发,一个半小时就到达郴州西站了。在动车上,同时改票的南风兄和我居然被分到了一个车厢,所以一路非常愉快地聊了过来。 挺好,最起…...

    2024/3/29 0:49:46
  19. 氧生福地 玩美北湖(中)——永春梯田里的美与鲜

    原标题:氧生福地 玩美北湖(中)——永春梯田里的美与鲜一觉醒来,因为大家太爱“美”照,在柳毅山庄去寻找龙女而错过了早餐时间。近十点,向导坏坏还是带着饥肠辘辘的我们去吃郴州最富有盛名的“鱼头粉”。说这是“十二分推荐”,到郴州必吃的美食之一。 哇塞!那个味美香甜…...

    2024/3/24 20:11:15
  20. 氧生福地 玩美北湖(下)——奔跑吧骚年!

    原标题:氧生福地 玩美北湖(下)——奔跑吧骚年!让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 啊……啊……啊 两…...

    2024/3/27 7:12:50
  21. 扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!

    原标题:扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!扒开伪装医用面膜,翻六倍价格宰客!当行业里的某一品项火爆了,就会有很多商家蹭热度,装逼忽悠,最近火爆朋友圈的医用面膜,被沾上了污点,到底怎么回事呢? “比普通面膜安全、效果好!痘痘、痘印、敏感肌都能用…...

    2024/3/24 20:11:13
  22. 「发现」铁皮石斛仙草之神奇功效用于医用面膜

    原标题:「发现」铁皮石斛仙草之神奇功效用于医用面膜丽彦妆铁皮石斛医用面膜|石斛多糖无菌修护补水贴19大优势: 1、铁皮石斛:自唐宋以来,一直被列为皇室贡品,铁皮石斛生于海拔1600米的悬崖峭壁之上,繁殖力差,产量极低,所以古代仅供皇室、贵族享用 2、铁皮石斛自古民间…...

    2024/3/26 11:21:23
  23. 丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者

    原标题:丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者【公司简介】 广州华彬企业隶属香港华彬集团有限公司,专注美业21年,其旗下品牌: 「圣茵美」私密荷尔蒙抗衰,产后修复 「圣仪轩」私密荷尔蒙抗衰,产后修复 「花茵莳」私密荷尔蒙抗衰,产后修复 「丽彦妆」专注医学护…...

    2024/3/28 18:26:34
  24. 广州械字号面膜生产厂家OEM/ODM4项须知!

    原标题:广州械字号面膜生产厂家OEM/ODM4项须知!广州械字号面膜生产厂家OEM/ODM流程及注意事项解读: 械字号医用面膜,其实在我国并没有严格的定义,通常我们说的医美面膜指的应该是一种「医用敷料」,也就是说,医用面膜其实算作「医疗器械」的一种,又称「医用冷敷贴」。 …...

    2024/3/28 12:42:28
  25. 械字号医用眼膜缓解用眼过度到底有无作用?

    原标题:械字号医用眼膜缓解用眼过度到底有无作用?医用眼膜/械字号眼膜/医用冷敷眼贴 凝胶层为亲水高分子材料,含70%以上的水分。体表皮肤温度传导到本产品的凝胶层,热量被凝胶内水分子吸收,通过水分的蒸发带走大量的热量,可迅速地降低体表皮肤局部温度,减轻局部皮肤的灼…...

    2024/3/28 20:09:10
  26. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  27. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  28. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  29. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  30. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  31. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  32. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  33. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  34. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  35. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  36. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  37. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  38. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  39. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  40. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  41. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  42. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  43. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  44. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  45. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57