网络监控

绝大多数的现代操作系统都提供了对底层网络数据包捕获的机制,在捕获机制之上可以建立网络监控(Network Monitoring)应用软件。网络监控也常简称为sniffer,其最初的目的在于对网络通信情况进行监控,以对网络的一些异常情况进行调试处理。但随着互连网的快速普及和网络攻击行为的频繁出现,保护网络的运行安全也成为监控软件的另一个重要目的。例如,网络监控在路由器,防火墙、入侵检查等方面使用也很广泛。除此而外,它也是一种比较有效的黑客手段,例如,美国政府安全部门的"肉食动物"计划。

包捕获机制

从广义的角度上看,一个包捕获机制包含三个主要部分:最底层是针对特定操作系统的包捕获机制,最高层是针对用户程序的接口,第三部分是包过滤机制。

不同的操作系统实现的底层包捕获机制可能是不一样的,但从形式上看大同小异。数据包常规的传输路径依次为网卡、设备驱动层、数据链路层、IP 层、传输层、最后到达应用程序。而包捕获机制是在数据链路层增加一个旁路处理,对发送和接收到的数据包做过滤/缓冲等相关处理,最后直接传递到应用程序。值得注意的是,包捕获机制并不影响操作系统对数据包的网络栈处理。对用户程序而言,包捕获机制提供了一个统一的接口,使用户程序只需要简单的调用若干函数就能获得所期望的数据包。这样一来,针对特定操作系统的捕获机制对用户透明,使用户程序有比较好的可移植性。包过滤机制是对所捕获到的数据包根据用户的要求进行筛选,最终只把满足过滤条件的数据包传递给用户程序。

Libpcap 应用程序框架

Libpcap 提供了系统独立的用户级别网络数据包捕获接口,并充分考虑到应用程序的可移植性。Libpcap 可以在绝大多数类 unix 平台下工作,参考资料 A 中是对基于 libpcap 的网络应用程序的一个详细列表。在 windows 平台下,一个与libpcap 很类似的函数包 winpcap 提供捕获功能,其官方网站是http://winpcap.polito.it/。

Libpcap 软件包可从 http://www.tcpdump.org/ 下载,然后依此执行下列三条命令即可安装,但如果希望 libpcap 能在 linux 上正常工作,则必须使内核支持"packet"协议,也即在编译内核时打开配置选项 CONFIG_PACKET(选项缺省为打开)。

./configure
./make
./make install

libpcap 源代码由 20 多个 C 文件构成,但在 Linux 系统下并不是所有文件都用到。可以通过查看命令 make 的输出了解实际所用的文件。本文所针对的libpcap 版本号为 0.8.3,网络类型为常规以太网。Libpcap 应用程序从形式上看很简单,下面是一个简单的程序框架:

char * device; /* 用来捕获数据包的网络接口的名称 */
pcap_t * p; /* 捕获数据包句柄,最重要的数据结构 */
struct bpf_program fcode; /* BPF 过滤代码结构 */
/* 第一步:查找可以捕获数据包的设备 */
device = pcap_lookupdev(errbuf)/* 第二步:创建捕获句柄,准备进行捕获 */
p = pcap_open_live(device, 8000, 1, 500, errbuf)/* 第三步:如果用户设置了过滤条件,则编译和安装过滤代码 */
pcap_compile(p, &fcode, filter_string, 0, netmask)pcap_setfilter(p, &fcode)/* 第四步:进入(死)循环,反复捕获数据包 */
for( ; ; )
{
while((ptr = (char *)(pcap_next(p, &hdr))) == NULL);/* 第五步:对捕获的数据进行类型转换,转化成以太数据包类型 */
eth = (struct libnet_ethernet_hdr *)ptr;
/* 第六步:对以太头部进行分析,判断所包含的数据包类型,做进一步的处理 */
if(eth->ether_type == ntohs(ETHERTYPE_IP)) 
…………
if(eth->ether_type == ntohs(ETHERTYPE_ARP)) 
…………
}/* 最后一步:关闭捕获句柄,一个简单技巧是在程序初始化时增加信号处理函数,
以便在程序退出前执行本条代码 */
pcap_close(p)

检查网络设备

libpcap 程序的第一步通常是在系统中找到合适的网络接口设备。网络接口在Linux 网络体系中是一个很重要的概念,它是对具体网络硬件设备的一个抽象,在它的下面是具体的网卡驱动程序,而其上则是网络协议层。Linux 中最常见的接口设备名 eth0 和 lo。Lo 称为回路设备,是一种逻辑意义上的设备,其主要目的是为了调试网络程序之间的通讯功能。eth0 对应了实际的物理网卡,在真实网络环境下,数据包的发送和接收都要通过 eht0。如果计算机有多个网卡,则还可以有更多的网络接口,如 eth1,eth2 等等。调用命令 ifconfig 可以列出当前所有活跃的接口及相关信息,注意对 eth0 的描述中既有物理网卡的 MAC 地址,也有网络协议的 IP 地址。查看文件 /proc/net/dev 也可获得接口信息。

Libpcap 中检查网络设备中主要使用到的函数关系如下图:
在这里插入图片描述
libpcap 调用 pcap_lookupdev() 函数获得可用网络接口的设备名。首先利用函数 getifaddrs() 获得所有网络接口的地址,以及对应的网络掩码、广播地址、目标地址等相关信息,再利用 add_addr_to_iflist()、add_or_find_if()、get_instance() 把网络接口的信息增加到结构链表 pcap_if 中,最后从链表中提取第一个接口作为捕获设备。其中 get_instanced() 的功能是从设备名开始,找第一个是数字的字符,做为接口的实例号。网络接口的设备号越小,则排在链表的越前面,因此,通常函数最后返回的设备名为 eth0。虽然 libpcap 可以工作在回路接口上,但显然 libpcap 开发者认为捕获本机进程之间的数据包没有多大意义。在检查网络设备操作中,主要用到的数据结构和代码如下:

    /* libpcap 自定义的接口信息链表 [pcap.h] */
struct pcap_if 
{
struct pcap_if *next; 
char *name; /* 接口设备名 */
char *description; /* 接口描述 *//*接口的 IP 地址, 地址掩码, 广播地址,目的地址 */
struct pcap_addr addresses; 
bpf_u_int32 flags;  /* 接口的参数 */
};
char * pcap_lookupdev(register char * errbuf)
{pcap_if_t *alldevs;……pcap_findalldevs(&alldevs, errbuf);……strlcpy(device, alldevs->name, sizeof(device));}

打开网络设备

当设备找到后,下一步工作就是打开设备以准备捕获数据包。Libpcap 的包捕获是建立在具体的操作系统所提供的捕获机制上,而 Linux 系统随着版本的不同,所支持的捕获机制也有所不同。

2.0 及以前的内核版本使用一个特殊的 socket 类型 SOCK_PACKET,调用形式是 socket(PF_INET, SOCK_PACKET, int protocol),但 Linux 内核开发者明确指出这种方式已过时。Linux 在 2.2 及以后的版本中提供了一种新的协议簇 PF_PACKET 来实现捕获机制。PF_PACKET 的调用形式为 socket(PF_PACKET, int socket_type, int protocol),其中 socket 类型可以是 SOCK_RAW 和 SOCK_DGRAM。SOCK_RAW 类型使得数据包从数据链路层取得后,不做任何修改直接传递给用户程序,而 SOCK_DRRAM 则要对数据包进行加工(cooked),把数据包的数据链路层头部去掉,而使用一个通用结构 sockaddr_ll 来保存链路信息。

使用 2.0 版本内核捕获数据包存在多个问题:首先,SOCK_PACKET 方式使用结构 sockaddr_pkt 来保存数据链路层信息,但该结构缺乏包类型信息;其次,如果参数 MSG_TRUNC 传递给读包函数 recvmsg()、recv()、recvfrom() 等,则函数返回的数据包长度是实际读到的包数据长度,而不是数据包真正的长度。Libpcap 的开发者在源代码中明确建议不使用 2.0 版本进行捕获。

相对 2.0 版本 SOCK_PACKET 方式,2.2 版本的 PF_PACKET 方式则不存在上述两个问题。在实际应用中,用户程序显然希望直接得到"原始"的数据包,因此使用 SOCK_RAW 类型最好。但在下面两种情况下,libpcap 不得不使用 SOCK_DGRAM 类型,从而也必须为数据包合成一个"伪"链路层头部(sockaddr_ll)。

  • 某些类型的设备数据链路层头部不可用:例如 Linux 内核的 PPP 协议实现代码对 PPP 数据包头部的支持不可靠。
  • 在捕获设备为"any"时:所有设备意味着 libpcap对所有接口进行捕获,为了使包过滤机制能在所有类型的数据包上正常工作,要求所有的数据包有相同的数据链路头部。

打开网络设备的主函数是 pcap_open_live()[pcap-linux.c],其任务就是通过给定的接口设备名,获得一个捕获句柄:结构 pcap_t。pcap_t 是大多数 libpcap 函数都要用到的参数,其中最重要的属性则是上面讨论到的三种 socket 方式中的某一种。首先我们看看 pcap_t 的具体构成。

struct pcap [pcap-int.h]
{ int fd; /* 文件描述字,实际就是 socket *//* 在 socket 上,可以使用 select() 和 poll() 等 I/O 复用类型函数 */int selectable_fd; int snapshot; /* 用户期望的捕获数据包最大长度 */int linktype; /* 设备类型 */int tzoff;      /* 时区位置,实际上没有被使用 */int offset; /* 边界对齐偏移量 */int break_loop; /* 强制从读数据包循环中跳出的标志 */struct pcap_sf sf; /* 数据包保存到文件的相关配置数据结构 */struct pcap_md md; /* 具体描述如下 */int bufsize; /* 读缓冲区的长度 */u_char buffer; /* 读缓冲区指针 */u_char *bp;int cc;u_char *pkt;/* 相关抽象操作的函数指针,最终指向特定操作系统的处理函数 */int (*read_op)(pcap_t *, int cnt, pcap_handler, u_char *);int (*setfilter_op)(pcap_t *, struct bpf_program *);int (*set_datalink_op)(pcap_t *, int);int (*getnonblock_op)(pcap_t *, char *);int (*setnonblock_op)(pcap_t *, int, char *);int (*stats_op)(pcap_t *, struct pcap_stat *);void (*close_op)(pcap_t *);/*如果 BPF 过滤代码不能在内核中执行,则将其保存并在用户空间执行 */struct bpf_program fcode; /* 函数调用出错信息缓冲区 */char errbuf[PCAP_ERRBUF_SIZE + 1]; /* 当前设备支持的、可更改的数据链路类型的个数 */int dlt_count;/* 可更改的数据链路类型号链表,在 linux 下没有使用 */int *dlt_list;/* 数据包自定义头部,对数据包捕获时间、捕获长度、真实长度进行描述 [pcap.h] */struct pcap_pkthdr pcap_header; 
};
/* 包含了捕获句柄的接口、状态、过滤信息  [pcap-int.h] */
struct pcap_md {
/* 捕获状态结构  [pcap.h] */
struct pcap_stat stat;  int use_bpf; /* 如果为1,则代表使用内核过滤*/ u_long  TotPkts; u_long  TotAccepted; /* 被接收数据包数目 */ u_long  TotDrops;   /* 被丢弃数据包数目 */ long    TotMissed;  /* 在过滤进行时被接口丢弃的数据包数目 */long    OrigMissed; /*在过滤进行前被接口丢弃的数据包数目*/
#ifdef linuxint sock_packet; /* 如果为 1,则代表使用 2.0 内核的 SOCK_PACKET 模式 */int timeout;    /* pcap_open_live() 函数超时返回时间*/ int clear_promisc; /* 关闭时设置接口为非混杂模式 */ int cooked;     /* 使用 SOCK_DGRAM 类型 */int lo_ifindex; /* 回路设备索引号 */char *device;   /* 接口设备名称 */ /* 以混杂模式打开 SOCK_PACKET 类型 socket 的 pcap_t 链表*/
struct pcap *next;  
#endif
};

函数 pcap_open_live() 的调用形式是 pcap_t * pcap_open_live(const char *device, int snaplen, int promisc, int to_ms, char *ebuf),其中如果 device 为 NULL 或"any",则对所有接口捕获,snaplen 代表用户期望的捕获数据包最大长度,promisc 代表设置接口为混杂模式(捕获所有到达接口的数据包,但只有在设备给定的情况下有意义),to_ms 代表函数超时返回的时间。本函数的代码比较简单,其执行步骤如下:

  • 为结构 pcap_t 分配空间并根据函数入参对其部分属性进行初试化。
  • 分别利用函数 live_open_new() 或 live_open_old() 尝试创建 PF_PACKET 方式或 SOCK_PACKET 方式的 socket,注意函数名中一个为"new",另一个为"old"。
  • 根据 socket 的方式,设置捕获句柄的读缓冲区长度,并分配空间。
  • 为捕获句柄 pcap_t 设置 linux 系统下的特定函数,其中最重要的是读数据包函数和设置过滤器函数。(注意到这种从抽象模式到具体模式的设计思想在 linux 源代码中也多次出现,如 VFS 文件系统)handle->read_op = pcap_read_linux; handle->setfilter_op = pcap_setfilter_linux;

下面我们依次分析 2.2 和 2.0 内核版本下的 socket 创建函数。

static int
live_open_new(pcap_t *handle, const char *device, int promisc,int to_ms, char *ebuf)
{
/* 如果设备给定,则打开一个 RAW 类型的套接字,否则,打开 DGRAM 类型的套接字 */
sock_fd = device ?socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL)): socket(PF_PACKET, SOCK_DGRAM, htons(ETH_P_ALL));
/* 取得回路设备接口的索引 */
handle->md.lo_ifindex = iface_get_id(sock_fd, "lo", ebuf);
/* 如果设备给定,但接口类型未知或是某些必须工作在加工模式下的特定类型,则使用加工模式 */
if (device) {
/* 取得接口的硬件类型 */
arptype = iface_get_arptype(sock_fd, device, ebuf); 
/* linux 使用 ARPHRD_xxx 标识接口的硬件类型,而 libpcap 使用DLT_xxx
来标识。本函数是对上述二者的做映射变换,设置句柄的链路层类型为
DLT_xxx,并设置句柄的偏移量为合适的值,使其与链路层头部之和为 4 的倍数,目的是边界对齐 */
map_arphrd_to_dlt(handle, arptype, 1);
/* 如果接口是前面谈到的不支持链路层头部的类型,则退而求其次,使用 SOCK_DGRAM 模式 */
if (handle->linktype == xxx) 
{
close(sock_fd);
sock_fd = socket(PF_PACKET, SOCK_DGRAM, htons(ETH_P_ALL));
}
/* 获得给定的设备名的索引 */
device_id = iface_get_id(sock_fd, device, ebuf);/* 把套接字和给定的设备绑定,意味着只从给定的设备上捕获数据包 */
iface_bind(sock_fd, device_id, ebuf)} else { /* 现在是加工模式 */
handle->md.cooked = 1;
/* 数据包链路层头部为结构 sockaddr_ll, SLL 大概是结构名称的简写形式 */
handle->linktype = DLT_LINUX_SLL;device_id = -1;}/* 设置给定设备为混杂模式 */
if (device && promisc) 
{
memset(&mr, 0, sizeof(mr));
mr.mr_ifindex = device_id;
mr.mr_type = PACKET_MR_PROMISC;
setsockopt(sock_fd, SOL_PACKET, PACKET_ADD_MEMBERSHIP, 
&mr, sizeof(mr))}
/* 最后把创建的 socket 保存在句柄 pcap_t 中 */
handle->fd = sock_fd;}
/* 2.0 内核下函数要简单的多,因为只有唯一的一种 socket 方式 */
static int
live_open_old(pcap_t *handle, const char *device, int promisc,int to_ms, char *ebuf)
{
/* 首先创建一个SOCK_PACKET类型的 socket */
handle->fd = socket(PF_INET, SOCK_PACKET, htons(ETH_P_ALL));/* 2.0 内核下,不支持捕获所有接口,设备必须给定 */
if (!device) {
strncpy(ebuf, "pcap_open_live: The \"any\" device isn't supported on 2.0[.x]-kernel systems", PCAP_ERRBUF_SIZE);
break;
}/* 把 socket 和给定的设备绑定 */
iface_bind_old(handle->fd, device, ebuf)/*以下的处理和 2.2 版本下的相似,有所区别的是如果接口链路层类型未知,则 libpcap 直接退出 */arptype = iface_get_arptype(handle->fd, device, ebuf);
map_arphrd_to_dlt(handle, arptype, 0);
if (handle->linktype == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE, "unknown arptype %d", arptype);
break;
}
/* 设置给定设备为混杂模式 */
if (promisc) {
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
ioctl(handle->fd, SIOCGIFFLAGS, &ifr);
ifr.ifr_flags |= IFF_PROMISC;
ioctl(handle->fd, SIOCSIFFLAGS, &ifr)}
}

比较上面两个函数的代码,还有两个细节上的区别。首先是 socket 与接口绑定所使用的结构:老式的绑定使用了结构 sockaddr,而新式的则使用了 2.2 内核中定义的通用链路头部层结构 sockaddr_ll。

iface_bind_old(int fd, const char *device, char *ebuf)
{
struct sockaddr saddr;
memset(&saddr, 0, sizeof(saddr));
strncpy(saddr.sa_data, device, sizeof(saddr.sa_data));
bind(fd, &saddr, sizeof(saddr))}
iface_bind(int fd, int ifindex, char *ebuf)
{
struct sockaddr_ll  sll;
memset(&sll, 0, sizeof(sll));
sll.sll_family = AF_PACKET;
sll.sll_ifindex = ifindex;
sll.sll_protocol    = htons(ETH_P_ALL);
bind(fd, (struct sockaddr *) &sll, sizeof(sll)}

第二个是在 2.2 版本中设置设备为混杂模式时,使用了函数 setsockopt(),以及新的标志 PACKET_ADD_MEMBERSHIP 和结构 packet_mreq。我估计这种方式主要是希望提供一个统一的调用接口,以代替传统的(混乱的)ioctl 调用。

struct packet_mreq
{
int             mr_ifindex;    /* 接口索引号 */
unsigned short  mr_type;       /* 要执行的操作(号) */
unsigned short  mr_alen;       /* 地址长度 */
unsigned char   mr_address[8]; /* 物理层地址 */ 
};

用户应用程序接口

Libpcap 提供的用户程序接口比较简单,通过反复调用函数pcap_next()[pcap.c] 则可获得捕获到的数据包。下面是一些使用到的数据结构:

/* 单个数据包结构,包含数据包元信息和数据信息 */
struct singleton [pcap.c]
{
struct pcap_pkthdr hdr; /* libpcap 自定义数据包头部 */
const u_char * pkt; /* 指向捕获到的网络数据 */
};
/* 自定义头部在把数据包保存到文件中也被使用 */
struct pcap_pkthdr 
{struct timeval ts; /* 捕获时间戳 */ bpf_u_int32 caplen; /* 捕获到数据包的长度 */bpf_u_int32 len; /* 数据包的真正长度 */
}
/* 函数 pcap_next() 实际上是对函数 pcap_dispatch()[pcap.c] 的一个包装 */
const u_char * pcap_next(pcap_t *p, struct pcap_pkthdr *h)
{
struct singleton s;
s.hdr = h;
/*入参"1"代表收到1个数据包就返回;回调函数 pcap_oneshot() 是对结构 singleton 的属性赋值 */
if (pcap_dispatch(p, 1, pcap_oneshot, (u_char*)&s) <= 0)
return (0);
return (s.pkt); /* 返回数据包缓冲区的指针 */
}

pcap_dispatch() 简单的调用捕获句柄 pcap_t 中定义的特定操作系统的读数据函数:return p->read_op(p, cnt, callback, user)。在 linux 系统下,对应的读函数为 pcap_read_linux()(在创建捕获句柄时已定义 [pcap-linux.c]),而pcap_read_linux() 则是直接调用 pcap_read_packet()([pcap-linux.c])。

pcap_read_packet() 的中心任务是利用了 recvfrom() 从已创建的 socket 上读数据包数据,但是考虑到 socket 可能为前面讨论到的三种方式中的某一种,因此对数据缓冲区的结构有相应的处理,主要表现在加工模式下对伪链路层头部的合成。具体代码分析如下:

static int
pcap_read_packet(pcap_t *handle, pcap_handler callback, u_char *userdata)
{
/* 数据包缓冲区指针 */
u_char * bp;
/* bp 与捕获句柄 pcap_t 中 handle->buffer
之间的偏移量,其目的是为在加工模式捕获情况下,为合成的伪数据链路层头部留出空间 */
int offset;
/* PACKET_SOCKET 方式下,recvfrom() 返回 scokaddr_ll 类型,而在SOCK_PACKET 方式下,
返回 sockaddr 类型 */
#ifdef HAVE_PF_PACKET_SOCKETS struct sockaddr_ll  from;struct sll_header   * hdrp;
#elsestruct sockaddr     from;
#endif
socklen_t       fromlen;
int         packet_len, caplen;
/* libpcap 自定义的头部 */
struct pcap_pkthdr  pcap_header;
#ifdef HAVE_PF_PACKET_SOCKETS
/* 如果是加工模式,则为合成的链路层头部留出空间 */
if (handle->md.cooked)
offset = SLL_HDR_LEN;
/* 其它两中方式下,链路层头部不做修改的被返回,不需要留空间 */
else
offset = 0;
#else
offset = 0;
#endif
bp = handle->buffer + handle->offset;/* 从内核中接收一个数据包,注意函数入参中对 bp 的位置进行修正 */
packet_len = recvfrom( handle->fd, bp + offset,
handle->bufsize - offset, MSG_TRUNC,
(struct sockaddr *) &from, &fromlen);#ifdef HAVE_PF_PACKET_SOCKETS/* 如果是回路设备,则只捕获接收的数据包,而拒绝发送的数据包。显然,我们只能在 PF_PACKET
方式下这样做,因为 SOCK_PACKET 方式下返回的链路层地址类型为
sockaddr_pkt,缺少了判断数据包类型的信息。*/
if (!handle->md.sock_packet &&
from.sll_ifindex == handle->md.lo_ifindex &&
from.sll_pkttype == PACKET_OUTGOING)
return 0;
#endif
#ifdef HAVE_PF_PACKET_SOCKETS
/* 如果是加工模式,则合成伪链路层头部 */
if (handle->md.cooked) {
/* 首先修正捕包数据的长度,加上链路层头部的长度 */
packet_len += SLL_HDR_LEN;hdrp = (struct sll_header *)bp;/* 以下的代码分别对伪链路层头部的数据赋值 */
hdrp->sll_pkttype = xxx;
hdrp->sll_hatype = htons(from.sll_hatype);
hdrp->sll_halen = htons(from.sll_halen);
memcpy(hdrp->sll_addr, from.sll_addr, 
(from.sll_halen > SLL_ADDRLEN) ? 
SLL_ADDRLEN : from.sll_halen);
hdrp->sll_protocol = from.sll_protocol;
}
#endif/* 修正捕获的数据包的长度,根据前面的讨论,SOCK_PACKET 方式下长度可能是不准确的 */
caplen = packet_len;
if (caplen > handle->snapshot)
caplen = handle->snapshot;
/* 如果没有使用内核级的包过滤,则在用户空间进行过滤*/
if (!handle->md.use_bpf && handle->fcode.bf_insns) {
if (bpf_filter(handle->fcode.bf_insns, bp,
packet_len, caplen) == 0)
{
/* 没有通过过滤,数据包被丢弃 */
return 0;
}
}
/* 填充 libpcap 自定义数据包头部数据:捕获时间,捕获的长度,真实的长度 */
ioctl(handle->fd, SIOCGSTAMP, &pcap_header.ts);
pcap_header.caplen  = caplen;
pcap_header.len     = packet_len;/* 累加捕获数据包数目,注意到在不同内核/捕获方式情况下数目可能不准确 */
handle->md.stat.ps_recv++;
/* 调用用户定义的回调函数 */
callback(userdata, &pcap_header, bp);
}

数据包过滤机制

大量的网络监控程序目的不同,期望的数据包类型也不同,但绝大多数情况都都只需要所有数据包的一(小)部分。例如:对邮件系统进行监控可能只需要端口号为 25(smtp)和 110(pop3) 的 TCP 数据包,对 DNS 系统进行监控就只需要端口号为 53 的 UDP 数据包。包过滤机制的引入就是为了解决上述问题,用户程序只需简单的设置一系列过滤条件,最终便能获得满足条件的数据包。包过滤操作可以在用户空间执行,也可以在内核空间执行,但必须注意到数据包从内核空间拷贝到用户空间的开销很大,所以如果能在内核空间进行过滤,会极大的提高捕获的效率。内核过滤的优势在低速网络下表现不明显,但在高速网络下是非常突出的。在理论研究和实际应用中,包捕获和包过滤从语意上并没有严格的区分,关键在于认识到捕获数据包必然有过滤操作。基本上可以认为,包过滤机制在包捕获机制中占中心地位。

包过滤机制实际上是针对数据包的布尔值操作函数,如果函数最终返回 true,则通过过滤,反之则被丢弃。形式上包过滤由一个或多个谓词判断的并操作(AND)和或操作(OR)构成,每一个谓词判断基本上对应了数据包的协议类型或某个特定值,例如:只需要 TCP 类型且端口为 110 的数据包或 ARP 类型的数据包。包过滤机制在具体的实现上与数据包的协议类型并无多少关系,它只是把数据包简单的看成一个字节数组,而谓词判断会根据具体的协议映射到数组特定位置的值。如判断ARP类型数据包,只需要判断数组中第 13、14 个字节(以太头中的数据包类型)是否为 0X0806。从理论研究的意思上看,包过滤机制是一个数学问题,或者说是一个算法问题,其中心任务是如何使用最少的判断操作、最少的时间完成过滤处理,提高过滤效率。

BPF

Libpcap 重点使用 BPF(BSD Packet Filter)包过滤机制,BPF 于 1992 年被设计出来,其设计目的主要是解决当时已存在的过滤机制效率低下的问题。BPF的工作步骤如下:当一个数据包到达网络接口时,数据链路层的驱动会把它向系统的协议栈传送。但如果 BPF 监听接口,驱动首先调用 BPF。BPF 首先进行过滤操作,然后把数据包存放在过滤器相关的缓冲区中,最后设备驱动再次获得控制。注意到BPF是先对数据包过滤再缓冲,避免了类似 sun 的 NIT 过滤机制先缓冲每个数据包直到用户读数据时再过滤所造成的效率问题。参考资料D是关于 BPF 设计思想最重要的文献。

BPF 的设计思想和当时的计算机硬件的发展有很大联系,相对老式的过滤方式CSPF(CMU/Stanford Packet Filter)它有两大特点。1:基于寄存器的过滤机制,而不是早期内存堆栈过滤机制,2:直接使用独立的、非共享的内存缓冲区。同时,BPF 在过滤算法是也有很大进步,它使用无环控制流图(CFG control flow graph),而不是老式的布尔表达式树(boolean expression tree)。布尔表达式树理解上比较直观,它的每一个叶子节点即是一个谓词判断,而非叶子节点则为 AND 操作或 OR操作。CSPF 有三个主要的缺点。1:过滤操作使用的栈在内存中被模拟,维护栈指针需要使用若干的加/减等操作,而内存操作是现代计算机架构的主要瓶颈。2:布尔表达式树造成了不需要的重复计算。3:不能分析数据包的变长头部。BPF 使用的CFG 算法实际上是一种特殊的状态机,每一节点代表了一个谓词判断,而左右边分别对应了判断失败和成功后的跳转,跳转后又是谓词判断,这样反复操作,直到到达成功或失败的终点。CFG 算法的优点在于把对数据包的分析信息直接建立在图中,从而不需要重复计算。直观的看,CFG 是一种"快速的、一直向前"的算法。

过滤代码的编译

BPF 对 CFG 算法的代码实现非常复杂,它使用伪机器方式。BPF 伪机器是一个轻量级的,高效的状态机,对 BPF 过滤代码进行解释处理。BPF 过滤代码形式为"opcode jt jf k",分别代表了操作码和寻址方式、判断正确的跳转、判断失败的跳转、操作使用的通用数据域。BPF 过滤代码从逻辑上看很类似于汇编语言,但它实际上是机器语言,注意到上述 4 个域的数据类型都是 int 和 char 型。显然,由用户来写过滤代码太过复杂,因此 libpcap 允许用户书写高层的、容易理解的过滤字符串,然后将其编译为BPF代码。

Libpcap 使用了 4 个源程序 gencode.c、optimize.c、grammar.c、scanner.c完成编译操作,其中前两个实现了对过滤字符串的编译和优化,后两个主要是为编译提供从协议相关过滤条件到协议无关(的字符数组)位置信息的映射,并且它们由词汇分析器生成器 flex 和 bison 生成。参考资料 C 有对此两个工具的讲解。

flex -Ppcap_ -t scanner.l > $$.scanner.c; mv $$.scanner.c scanner.c
bison -y -p pcap_ -d grammar.y
mv y.tab.c grammar.c
mv y.tab.h tokdefs.h

编译过滤字符串调用了函数 pcap_compile()[getcode.c],形式为:

int pcap_compile(pcap_t *p, struct bpf_program *program,char *buf, int optimize, bpf_u_int32 mask)

其中 buf 指向用户过滤字符串,编译后的 BPF 代码存在在结构 bpf_program中,标志 optimize 指示是否对 BPF 代码进行优化。

/* [pcap-bpf.h] */
struct bpf_program {
u_int bf_len; /* BPF 代码中谓词判断指令的数目 */
struct bpf_insn *bf_insns; /* 第一个谓词判断指令 */
};/* 谓词判断指令结构,含意在前面已描述 [pcap-bpf.h] */
struct bpf_insn {
u_short code;
u_char  jt;
u_char  jf;
bpf_int32 k;
};

过滤代码的安装

前面我们曾经提到,在内核空间过滤数据包对整个捕获机制的效率是至关重要的。早期使用 SOCK_PACKET 方式的 Linux 不支持内核过滤,因此过滤操作只能在用户空间执行(请参阅函数 pcap_read_packet() 代码),在《UNIX 网络编程(第一卷)》(参考资料 B)的第 26 章中对此有明确的描述。不过现在看起来情况已经发生改变,linux 在 PF_PACKET 类型的 socket 上支持内核过滤。Linux 内核允许我们把一个名为 LPF(Linux Packet Filter) 的过滤器直接放到 PF_PACKET 类型 socket 的处理过程中,过滤器在网卡接收中断执行后立即执行。LSF 基于 BPF 机制,但两者在实现上有略微的不同。实际代码如下:

/* 在包捕获设备上附加 BPF 代码 [pcap-linux.c]*/
static int
pcap_setfilter_linux(pcap_t *handle, struct bpf_program *filter)
{
#ifdef SO_ATTACH_FILTER
struct sock_fprog   fcode;
int can_filter_in_kernel;
int err = 0;
#endif
/* 检查句柄和过滤器结构的正确性 */
if (!handle)
return -1;
if (!filter) {
strncpy(handle->errbuf, "setfilter: No filter specified",
sizeof(handle->errbuf));
return -1;
}
/* 具体描述如下 */ 
if (install_bpf_program(handle, filter) < 0)
return -1;
/* 缺省情况下在用户空间运行过滤器,但如果在内核安装成功,则值为 1 */
handle->md.use_bpf = 0;/* 尝试在内核安装过滤器 */
#ifdef SO_ATTACH_FILTER
#ifdef USHRT_MAX
if (handle->fcode.bf_len > USHRT_MAX) {
/*过滤器代码太长,内核不支持 */
fprintf(stderr, "Warning: Filter too complex for kernel\n");
fcode.filter = NULL;
can_filter_in_kernel = 0;
} else
#endif /* USHRT_MAX */
{
/* linux 内核设置过滤器时使用的数据结构是 sock_fprog,/
/* 而不是 BPF 的结构 bpf_program ,因此应做结构之间的转换 */
switch (fix_program(handle, &fcode)) {/* 严重错误,直接退出 */
case -1:
default: 
return -1;/* 通过检查,但不能工作在内核中 */
case 0: 
can_filter_in_kernel = 0;
break;
/* BPF 可以在内核中工作 */
case 1: 
can_filter_in_kernel = 1;
break;
}
}
/* 如果可以在内核中过滤,则安装过滤器到内核中 */
if (can_filter_in_kernel) {
if ((err = set_kernel_filter(handle, &fcode)) == 0)
{
/* 安装成功 !!! */
handle->md.use_bpf = 1;
}
else if (err == -1) /* 出现非致命性错误 */
{
if (errno != ENOPROTOOPT && errno != EOPNOTSUPP) {
fprintf(stderr, "Warning: Kernel filter failed:%s\n",pcap_strerror(errno));
}
}
}
/* 如果不能在内核中使用过滤器,则去掉曾经可能在此 socket
上安装的内核过滤器。主要目的是为了避免存在的过滤器对数据包过滤的干扰 */
if (!handle->md.use_bpf)
reset_kernel_filter(handle);[pcap-linux.c]
#endif 
}
/* 把 BPF 代码拷贝到 pcap_t 数据结构的 fcode 上 */
int install_bpf_program(pcap_t *p, struct bpf_program *fp)
{
size_t prog_size;
/* 首先释放可能已存在的 BPF 代码 */ 
pcap_freecode(&p->fcode);
/* 计算过滤代码的长度,分配内存空间 */
prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
p->fcode.bf_len = fp->bf_len;
p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
if (p->fcode.bf_insns == NULL) {
snprintf(p->errbuf, sizeof(p->errbuf),
"malloc: %s", pcap_strerror(errno));
return (-1);
}
/* 把过滤代码保存在捕获句柄中 */
memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);return (0);
}
/* 在内核中安装过滤器 */
static int set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode)
{
int total_filter_on = 0;
int save_mode;
int ret;
int save_errno;
/*在设置过滤器前,socket 的数据包接收队列中可能已存在若干数据包。当设置过滤器后,
这些数据包极有可能不满足过滤条件,但它们不被过滤器丢弃。这意味着,
传递到用户空间的头几个数据包不满足过滤条件。注意到在用户空间过滤这不是问题,
因为用户空间的过滤器是在包进入队列后执行的。Libpcap
解决这个问题的方法是在设置过滤器之前,首先读完接收队列中所有的数据包。
具体步骤如下。*//*为了避免无限循环的情况发生(反复的读数据包并丢弃,但新的数据包不停的到达),*/
/*首先设置一个过滤器,阻止所有的包进入 */setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
&total_fcode, sizeof(total_fcode)/* 保存 socket 当前的属性 */
save_mode = fcntl(handle->fd, F_GETFL, 0);
/* 设置 socket 它为非阻塞模式 */
fcntl(handle->fd, F_SETFL, save_mode | O_NONBLOCK)/* 反复读队列中的数据包,直到没有数据包可读。这意味着接收队列已被清空 */
while (recv(handle->fd, &drain, sizeof drain, MSG_TRUNC) >= 0)/* 恢复曾保存的 socket 属性 */
fcntl(handle->fd, F_SETFL, save_mode);/* 现在安装新的过滤器 */
setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
fcode, sizeof(*fcode));
}
/* 释放 socket 上可能有的内核过滤器 */
static int reset_kernel_filter(pcap_t *handle)
{
int dummy;
return setsockopt(handle->fd, SOL_SOCKET, SO_DETACH_FILTER,
&dummy, sizeof(dummy));
}

linux 在安装和卸载过滤器时都使用了函数 setsockopt(),其中标志SOL_SOCKET 代表了对 socket 进行设置,而 SO_ATTACH_FILTER 和 SO_DETACH_FILTER 则分别对应了安装和卸载。下面是 linux 2.4.29 版本中的相关代码:

[net/core/sock.c]
#ifdef CONFIG_FILTER
case SO_ATTACH_FILTER:
……
/* 把过滤条件结构从用户空间拷贝到内核空间 */
if (copy_from_user(&fprog, optval, sizeof(fprog)))
break;
/* 在 socket 上安装过滤器 */
ret = sk_attach_filter(&fprog, sk);……
case SO_DETACH_FILTER:
/* 使用自旋锁锁住 socket */
spin_lock_bh(&sk->lock.slock);
filter = sk->filter;
/* 如果在 socket 上有过滤器,则简单设置为空,并释放过滤器内存 */
if (filter) {
sk->filter = NULL;
spin_unlock_bh(&sk->lock.slock);
sk_filter_release(sk, filter);
break;
}
spin_unlock_bh(&sk->lock.slock);
ret = -ENONET;
break;
#endif

上面出现的 sk_attach_filter() 定义在 net/core/filter.c,它把结构sock_fprog 转换为结构 sk_filter, 最后把此结构设置为 socket 的过滤器:sk->filter = fp。

其他代码

libpcap 还提供了其它若干函数,但基本上是提供辅助或扩展功能,重要性相对弱一点。我个人认为,函数 pcap_dump_open() 和 pcap_open_offline() 可能比较有用,使用它们能把在线的数据包写入文件并事后进行分析处理。

总结

1994 年 libpcap 的第一个版本被发布,到现在已有 11 年的历史,如今libpcap 被广泛的应用在各种网络监控软件中。Libpcap 最主要的优点在于平台无关性,用户程序几乎不需做任何改动就可移植到其它 unix 平台上;其次,libpcap也能适应各种过滤机制,特别对BPF的支持最好。分析它的源代码,可以学习开发者优秀的设计思想和实现技巧,也能了解到(linux)操作系统的网络内核实现,对个人能力的提高有很大帮助。

原文链接:https://www.ibm.com/developerworks/cn/linux/l-libpcap/index.html

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. 怎样利用SEO开展网络危机公关?

    我们一直说互联网技术的是一把双刃剑,好的层面是互联网技术使的人与人之间空间间距足以减少,另外也让大家的時间更为的随意。但不太好的一面就是说信息内容散播的速率太快,这一针对有着好口碑的企业而言,好知名品牌的快速散播自然是好的,可是假如哪一天在网上遮天盖地的出…...

    2024/4/28 0:38:52
  2. 第五章 Spring 容器高级主题

    5.1 Spring 容器技术内幕 5.1.1 内部工作机制 Spring 的 AbstractApplicationContext 是 ApplicationContext 抽象实现类,该抽象类的 refresh() 方法定义了 Spring 容器在加载配置文件后的各项处理过程1.初始化 BeanFactory:根据配置文件实例化 BeanFactory,getBeanFactory(…...

    2024/4/28 1:48:05
  3. 各种加密算法内部原理实现

    众所周知数据对于一个公司来说,非常重要,一旦数据泄露,公司将面临非常大的威胁,因此对数据加密非常有必要,保证数据的安全性。1 加密算法的基本原理加密算法目前主流分为对称加密,不对称加密,散列加密。1.1 对称加密对称加密是指加密和解密使用相同密钥的加密算法,常见…...

    2024/4/17 15:16:35
  4. BitCherry的矫正与突围——技术型公链的迷失和商业型公链的崛起

    十多年后,中本聪所提出“一种点对点的电子现金系统”仍被视为经典的技术案例,而其背后中本聪关于“以技术为核心”的理念也正影响着更多区块链项目的设计者。BTC,EOS,ETH……无论你是否承认我们已大步迈进数字经济的时代,你总能说出这几个熟悉的的名字。也正是在这样的时代…...

    2024/4/16 14:21:06
  5. 第四章 在 IoC 容器中装配 Bean

    4.1 Spring 配置概述 4.1.1 Spring 容器高层视图Spring容器成功启动的必备条件Spring 框架的类包都已经放到应用程序的类路径下 应用程序为 Spring 提供完备的 Bean 配置信息 Bean 的类都已经放到应用程序的类路径下Bean 在Spring中加载的过程1、Bean 配置信息定义了 Bean 的实…...

    2024/4/20 8:35:13
  6. 23种设计模式汇总

    设计模式 23种设计模式,一个没少。比较常用的:单例、工厂、适配器、装饰者、代理、观察者这几个模式。其他的做了解。 创建型模式 单例模式 作用:确保一个类只有一个实例,只对外提供一个访问该实例的全局访问点。 特征: 1、无法通过new得到实例,构造器是被private修饰的 …...

    2024/4/16 14:21:06
  7. LeetCode # 452 投飞镖刺破气球

    在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以y坐标并不重要,因此只要知道开始和结束的x坐标就足够了。开始坐标总是小于结束坐标。平面内最多存在104个气球。一支弓箭可以沿着x轴从不同点完全垂直地…...

    2024/4/24 8:41:47
  8. JS 中提高代码质量/速度小技巧

    JS 中提高代码质量/速度小技巧 1. 类型强制转换 1.1 string强制转换为数字 可以用*1来转化为数字(实际上是调用.valueOf方法) 然后使用Number.isNaN来判断是否为NaN,或者使用 a !== a 来判断是否为NaN,因为 NaN !== NaN 32 * 1 // 32 ds * 1 // NaN nu…...

    2024/4/24 8:41:48
  9. 03-GitLab简单使用

    GitLab简单使用 1 登录系统 系统安装完成后,在浏览器中输入: http://yourip:8081 进行登录说明:开发私服一般使用ip地址 端口号默认为80,但管理员可能修改了端口号,比如此处使用的是8081 管理员使用root身份登录,初次登录需要修改密码 没有账号可以点击register进行注册普…...

    2024/4/24 8:41:45
  10. 程序设计实习MOOC 指针练习:指向指针的指针

    描述 程序填空使得输出指定结果 #include <iostream> using namespace std; int main() {int x,y,z;x = 10;y = 20;z = 30;int * a[3] = { &x, &y,&z};for( // 在此处补充你的代码 p < a + 3; ++p) cout<< * (*p) << endl;return 0;}输入 无…...

    2024/4/24 8:41:52
  11. 将跳转的页面写在iframe中,执行完成后跳出

    现状:a页面的js会调用 window.location.href = url 来跳转到 b 页面,然后 b执行完后会跳转到另一个页面。 需求:b页面的执行情况隐藏。 方法:使用iframe,调用b的url放到iframe中,然后b页面写一个跳出iframe的方法。<iframe id="diagnosisIframe" name="…...

    2024/4/24 8:41:47
  12. 美团研发岗笔试真题练习(编程题4)——最大矩形

    题目描述 给定一个仅包含 0 和 1 的二维二进制矩阵,找出只包含 1 的最大矩形,并返回其面积。 输入描述: 输入一个仅包含’0’和’1’的二维字符数组。 第一行输入左大括号{,最后一行输入右大扩号}。 中间每行输入只包含’0’和’1’的字符数组*(字符数组的长度不超过20),…...

    2024/4/24 8:41:46
  13. 数据库系统概念笔记——第10章 存储和文件结构

    第10章 存储和文件结构 物理存储介质概述 大多数计算机系统中存在多种数据存储类型。可以根据访问数据的速度,购买介质时每单位数据的成本,以及介质的可靠性对这些存储介质进行分类。以下是几种有代表性的介质:高速缓冲存储器(cache)。高速缓冲存储器是最快最昂贵的存储介…...

    2024/4/24 8:41:42
  14. 按钮点击事件

    代码:按钮findViewBuId<Buttonandroid:id="@+id/mButton4"android:layout_width="wrap_content"android:layout_height="wrap_content"android:text="跳转"app:layout_constraintLeft_toLeftOf="parent"app:layout_cons…...

    2024/4/24 8:41:44
  15. 20120-5-26

    jquery 的划入划出效果 $(".col-md-4").hover(function(){$(this).show(); }, function() {$(this).hide(); });百度富文本编辑器.工具栏浮动高度,编辑器高度,工具栏是否浮动 UE.getEditor(container, {topOffset : 60, initialFrameHeight : 600, autoFloatEnabled:…...

    2024/4/24 8:41:42
  16. Java集合类之Collection接口,集合的“爸爸”接口了解一下?

    目录什么是集合?集合和数组有什么区别?Collection接口如何遍历集合中的元素 Hello!没技术的大灰狼又来了,今天和小伙伴分享一个Java项目开发中比较常用的存储数据的方法----集合。 想到集合,可能很多小伙伴都会想到数组,那么集合和数组又有什么样的区别呢?且听大灰狼一一…...

    2024/4/24 8:41:38
  17. iOS实战开发之获取当前设备的网络类型,2G/3G/4G/WIFI

    在开发过程中,或多或少的考虑到用户的网络环境来加载不同的资源,提供用户体验,也是一种提升用户体验的途径。但是,苹果官方的开发SDK中并没有明确的类或者是接口来帮助我们简易的获取这个信息,目前针对苹果官方提供的Reachability类进行扩展实现此功能。希望对于有需要的同…...

    2024/4/25 20:21:13
  18. LeetCode # 435 不重叠的区间个数

    给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。注意:可以认为区间的终点总是大于它的起点。 区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。示例 1:输入: [ [1,2], [2,3], [3,4], [1,3] ]输出: 1解释: 移除 [1,3] 后,剩下的区间没有重叠。…...

    2024/4/24 8:41:39
  19. 品优购电商系统开发第 7 章 六

    2.8 保存数据2.8.1 后端代码修改 pinyougou-sellergoods-interface 的 GoodsService.javapublic void update(Goods goods);修改 pinyougou-sellergoods-service 的 GoodsServiceImpl ,将 SKU 列表插入的代码提取出来,封装到私有方法中/** * 插入 SKU 列表数据 * @param goods…...

    2024/4/26 12:16:21
  20. 利用python爬取所有公司办公地址,并在百度地图个人开发平台标注。

    一、利用python爬取公司办公地址 IDLE编辑器,python3.8版本。 import requests from bs4 import BeautifulSoup import re import xlwt def getHTMLText(url, code=“utf-8”): kv={‘user-agent’:‘Mozilla/5.0’} try: r = requests.get(url,headers=kv) r.raise_for_statu…...

    2024/4/16 14:21:01

最新文章

  1. JAVA学习-Optional.Optional与Null

    java.util.Optional是 Java 8 引入的一个类&#xff0c;用于解决在方法返回值中可能出现的 null引用的问题。下面是关于 Optional 和 null 的概述&#xff0c;以及它们的特点、使用方法以及与其他概念的比较和高级应用。 1. null的概述&#xff1a; - null是 Java 中表示引用缺…...

    2024/4/28 12:37:40
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. 基于SSM的周边乡村旅游小程序

    系统实现 游客注册通过注册窗口&#xff0c;进行在线填写自己的账号、密码、姓名、年龄、手机、邮箱等&#xff0c;信息编辑完成后核对信息无误后进行选择注册&#xff0c;系统核对游客所输入的账号信息是否准确&#xff0c;核对信息准确无误后系统进入到操作界面。 游客登录通…...

    2024/4/27 9:24:25
  4. 【Java】假如把集合体系看作购物中心

    购物中心入口&#xff1a;Java集合框架 “Java集合广场”的购物中心&#xff0c;这是一个集合了各种奇特商店的地方&#xff0c;每个商店都充满了不同的宝藏&#xff08;数据结构&#xff09;。 一楼&#xff1a;基础集合区 - Collection接口 一楼是基础集合区&#xff0c;这…...

    2024/4/24 3:27:38
  5. OpenHarmony开发-连接开发板调试应用

    在 OpenHarmony 开发过程中&#xff0c;连接开发板进行应用调试是一个关键步骤&#xff0c;只有在真实的硬件环境下&#xff0c;我们才能测试出应用更多的潜在问题&#xff0c;以便后续我们进行优化。本文详细介绍了连接开发板调试 OpenHarmony 应用的操作步骤。 首先&#xf…...

    2024/4/27 20:51:51
  6. 【外汇早评】美通胀数据走低,美元调整

    原标题:【外汇早评】美通胀数据走低,美元调整昨日美国方面公布了新一期的核心PCE物价指数数据,同比增长1.6%,低于前值和预期值的1.7%,距离美联储的通胀目标2%继续走低,通胀压力较低,且此前美国一季度GDP初值中的消费部分下滑明显,因此市场对美联储后续更可能降息的政策…...

    2024/4/26 18:09:39
  7. 【原油贵金属周评】原油多头拥挤,价格调整

    原标题:【原油贵金属周评】原油多头拥挤,价格调整本周国际劳动节,我们喜迎四天假期,但是整个金融市场确实流动性充沛,大事频发,各个商品波动剧烈。美国方面,在本周四凌晨公布5月份的利率决议和新闻发布会,维持联邦基金利率在2.25%-2.50%不变,符合市场预期。同时美联储…...

    2024/4/28 3:28:32
  8. 【外汇周评】靓丽非农不及疲软通胀影响

    原标题:【外汇周评】靓丽非农不及疲软通胀影响在刚结束的周五,美国方面公布了新一期的非农就业数据,大幅好于前值和预期,新增就业重新回到20万以上。具体数据: 美国4月非农就业人口变动 26.3万人,预期 19万人,前值 19.6万人。 美国4月失业率 3.6%,预期 3.8%,前值 3…...

    2024/4/26 23:05:52
  9. 【原油贵金属早评】库存继续增加,油价收跌

    原标题:【原油贵金属早评】库存继续增加,油价收跌周三清晨公布美国当周API原油库存数据,上周原油库存增加281万桶至4.692亿桶,增幅超过预期的74.4万桶。且有消息人士称,沙特阿美据悉将于6月向亚洲炼油厂额外出售更多原油,印度炼油商预计将每日获得至多20万桶的额外原油供…...

    2024/4/27 4:00:35
  10. 【外汇早评】日本央行会议纪要不改日元强势

    原标题:【外汇早评】日本央行会议纪要不改日元强势近两日日元大幅走强与近期市场风险情绪上升,避险资金回流日元有关,也与前一段时间的美日贸易谈判给日本缓冲期,日本方面对汇率问题也避免继续贬值有关。虽然今日早间日本央行公布的利率会议纪要仍然是支持宽松政策,但这符…...

    2024/4/27 17:58:04
  11. 【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响

    原标题:【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响近日伊朗局势升温,导致市场担忧影响原油供给,油价试图反弹。此时OPEC表态稳定市场。据消息人士透露,沙特6月石油出口料将低于700万桶/日,沙特已经收到石油消费国提出的6月份扩大出口的“适度要求”,沙特将满…...

    2024/4/27 14:22:49
  12. 【外汇早评】美欲与伊朗重谈协议

    原标题:【外汇早评】美欲与伊朗重谈协议美国对伊朗的制裁遭到伊朗的抗议,昨日伊朗方面提出将部分退出伊核协议。而此行为又遭到欧洲方面对伊朗的谴责和警告,伊朗外长昨日回应称,欧洲国家履行它们的义务,伊核协议就能保证存续。据传闻伊朗的导弹已经对准了以色列和美国的航…...

    2024/4/28 1:28:33
  13. 【原油贵金属早评】波动率飙升,市场情绪动荡

    原标题:【原油贵金属早评】波动率飙升,市场情绪动荡因中美贸易谈判不安情绪影响,金融市场各资产品种出现明显的波动。随着美国与中方开启第十一轮谈判之际,美国按照既定计划向中国2000亿商品征收25%的关税,市场情绪有所平复,已经开始接受这一事实。虽然波动率-恐慌指数VI…...

    2024/4/27 9:01:45
  14. 【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试

    原标题:【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试美国和伊朗的局势继续升温,市场风险情绪上升,避险黄金有向上突破阻力的迹象。原油方面稍显平稳,近期美国和OPEC加大供给及市场需求回落的影响,伊朗局势并未推升油价走强。近期中美贸易谈判摩擦再度升级,美国对中…...

    2024/4/27 17:59:30
  15. 【原油贵金属早评】市场情绪继续恶化,黄金上破

    原标题:【原油贵金属早评】市场情绪继续恶化,黄金上破周初中国针对于美国加征关税的进行的反制措施引发市场情绪的大幅波动,人民币汇率出现大幅的贬值动能,金融市场受到非常明显的冲击。尤其是波动率起来之后,对于股市的表现尤其不安。隔夜美国股市出现明显的下行走势,这…...

    2024/4/25 18:39:16
  16. 【外汇早评】美伊僵持,风险情绪继续升温

    原标题:【外汇早评】美伊僵持,风险情绪继续升温昨日沙特两艘油轮再次发生爆炸事件,导致波斯湾局势进一步恶化,市场担忧美伊可能会出现摩擦生火,避险品种获得支撑,黄金和日元大幅走强。美指受中美贸易问题影响而在低位震荡。继5月12日,四艘商船在阿联酋领海附近的阿曼湾、…...

    2024/4/28 1:34:08
  17. 【原油贵金属早评】贸易冲突导致需求低迷,油价弱势

    原标题:【原油贵金属早评】贸易冲突导致需求低迷,油价弱势近日虽然伊朗局势升温,中东地区几起油船被袭击事件影响,但油价并未走高,而是出于调整结构中。由于市场预期局势失控的可能性较低,而中美贸易问题导致的全球经济衰退风险更大,需求会持续低迷,因此油价调整压力较…...

    2024/4/26 19:03:37
  18. 氧生福地 玩美北湖(上)——为时光守候两千年

    原标题:氧生福地 玩美北湖(上)——为时光守候两千年一次说走就走的旅行,只有一张高铁票的距离~ 所以,湖南郴州,我来了~ 从广州南站出发,一个半小时就到达郴州西站了。在动车上,同时改票的南风兄和我居然被分到了一个车厢,所以一路非常愉快地聊了过来。 挺好,最起…...

    2024/4/28 1:22:35
  19. 氧生福地 玩美北湖(中)——永春梯田里的美与鲜

    原标题:氧生福地 玩美北湖(中)——永春梯田里的美与鲜一觉醒来,因为大家太爱“美”照,在柳毅山庄去寻找龙女而错过了早餐时间。近十点,向导坏坏还是带着饥肠辘辘的我们去吃郴州最富有盛名的“鱼头粉”。说这是“十二分推荐”,到郴州必吃的美食之一。 哇塞!那个味美香甜…...

    2024/4/25 18:39:14
  20. 氧生福地 玩美北湖(下)——奔跑吧骚年!

    原标题:氧生福地 玩美北湖(下)——奔跑吧骚年!让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 啊……啊……啊 两…...

    2024/4/26 23:04:58
  21. 扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!

    原标题:扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!扒开伪装医用面膜,翻六倍价格宰客!当行业里的某一品项火爆了,就会有很多商家蹭热度,装逼忽悠,最近火爆朋友圈的医用面膜,被沾上了污点,到底怎么回事呢? “比普通面膜安全、效果好!痘痘、痘印、敏感肌都能用…...

    2024/4/27 23:24:42
  22. 「发现」铁皮石斛仙草之神奇功效用于医用面膜

    原标题:「发现」铁皮石斛仙草之神奇功效用于医用面膜丽彦妆铁皮石斛医用面膜|石斛多糖无菌修护补水贴19大优势: 1、铁皮石斛:自唐宋以来,一直被列为皇室贡品,铁皮石斛生于海拔1600米的悬崖峭壁之上,繁殖力差,产量极低,所以古代仅供皇室、贵族享用 2、铁皮石斛自古民间…...

    2024/4/28 5:48:52
  23. 丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者

    原标题:丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者【公司简介】 广州华彬企业隶属香港华彬集团有限公司,专注美业21年,其旗下品牌: 「圣茵美」私密荷尔蒙抗衰,产后修复 「圣仪轩」私密荷尔蒙抗衰,产后修复 「花茵莳」私密荷尔蒙抗衰,产后修复 「丽彦妆」专注医学护…...

    2024/4/26 19:46:12
  24. 广州械字号面膜生产厂家OEM/ODM4项须知!

    原标题:广州械字号面膜生产厂家OEM/ODM4项须知!广州械字号面膜生产厂家OEM/ODM流程及注意事项解读: 械字号医用面膜,其实在我国并没有严格的定义,通常我们说的医美面膜指的应该是一种「医用敷料」,也就是说,医用面膜其实算作「医疗器械」的一种,又称「医用冷敷贴」。 …...

    2024/4/27 11:43:08
  25. 械字号医用眼膜缓解用眼过度到底有无作用?

    原标题:械字号医用眼膜缓解用眼过度到底有无作用?医用眼膜/械字号眼膜/医用冷敷眼贴 凝胶层为亲水高分子材料,含70%以上的水分。体表皮肤温度传导到本产品的凝胶层,热量被凝胶内水分子吸收,通过水分的蒸发带走大量的热量,可迅速地降低体表皮肤局部温度,减轻局部皮肤的灼…...

    2024/4/27 8:32:30
  26. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  27. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  28. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  29. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  30. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  31. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  32. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  33. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  34. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  35. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  36. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  37. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  38. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  39. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  40. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  41. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  42. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  43. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  44. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  45. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57