Deep Cocktail Network: Multi-source Unsupervised Domain Adaptation with Category Shift

SUMMARY@ 2020/5/12


文章目录

  • 1. Method abstract
    • during training, two alternating adaptation steps:
  • 2. Motivation
  • 3. Challenges /Problem to be solved
  • 4. Contribution
  • 5. Related work
    • 5.1 Unsupervised domain adaptation with single source
    • 5.2 Domain adaptation with multiple sources
    • 5.3 two branches of transfer learning closely relate to MDA (supervised)
  • 6. Settings
  • 7. Compared with Open Set DA
  • 8. DCTN: framework details
    • 8.1 Feature extractor FF
    • 8.2 (Multi-source) domain discriminator DD
    • 8.3 (Multi-source) category classifier CC
    • 8.4 Target classification operator
    • 8.5 Connection to distribution weighted combining rule
  • 9 Learning
    • 9.1 Pre-training C and F
    • 9.2 Multi-way Adversarial Adaptation
    • Online hard domain batch mining
    • 9.3 Target Discriminative Adaptation
  • 10. Experiments
    • 10.1 Benchmarks
    • 10.2 Evaluations in the vanilla(common) setting
    • 10.3 Evaluations in the category shift setting
  • 11. Further Analysis
    • 11.1 Feature visualization.
    • 11.2 Ablation study
    • 11.3 Convergence analysis

1. Method abstract

Inspired by the distribution weighted combining rule in [33], the target distribution can be represented as the weighted combination of the multi-source distributions.

An ideal target predictor can be obtained by integrating all source predictions based on the corresponding source distribution weights.

  • besides of the feature extractor
  • DCTN also includes a (multi-source) category classifier to predict the class from different sources
  • and a (multi-source) domain discriminator to produce multiple source-target-specific perplexity scores as the approximation of source distribution weights.

during training, two alternating adaptation steps:

  • domain discriminator: The multi-way adversarial adaptation implicitly reduces domain shifts among
    those sources.

    • deploys multi-way adversarial learning to minimize the discrepancy between the target and each of the multiple source domains,
    • also predict the source-specific perplexity scores to denote the possibilities that a target sample belongs to different source domains.
  • feature extractor and the category classifier

    • The multi-source category classifiers are integrated with the perplexity scores to classify target
      sample, and the pseudo-labeled target samples together with source samples are utilized to update the multi-source category classifier and the feature extractor

2. Motivation

This paper focuses on the problem of multi-source domain adaptation, where there is category shift between diverse sources.

Category shift is a new protocol in MDA, where domain shift and categorical disalignment co-exist among the sources.

This paper aims at domain shift and category shift all together.

3. Challenges /Problem to be solved

  • cannot simply apply same UDA via combining all source domains since there are possible domain shifts among sources
  • eliminate the distribution discrepancy between target and each source maybe too strict, and harmful.
  • category shift in sources

4. Contribution

    1. We present a novel and realistic MDA protocol termed category shift that relaxes the requirement on the shared category set among any source domains.
    1. Inspired from the distribution weighted combining rule, we proposed the deep cocktail network (DCTN) together with the alternating adaptation algorithm to learn transferable and discriminative representation.
    1. We conduct comprehensive experiments on three well-known benchmarks, and testify our model in both the vanilla and the category shift settings. Our method has achieved the state of the art across most transfer tasks.

5. Related work

5.1 Unsupervised domain adaptation with single source

  • domain discrepancy based methods: reduce the domain shift across the source and the target
  • domain discrepancy based methods
  • deep-model-based
  • adversarial learning based
  • others: semi-supervised method [42], domain reconstruction [14], duality [19], alignments [9] [50] [44], manifold learning [15], tensor methods [24],[31], etc.

5.2 Domain adaptation with multiple sources

  • originates from A-SVM[49]
  • shallow models[8] [22] [27]
  • theoretical
    • learning bound for multi source DA[3]
    • distribution weighted combining rule[33]

5.3 two branches of transfer learning closely relate to MDA (supervised)

  • continual transfer learning (CTL) [43] ,[39].
    • CTLs train the learner to sequentially master multiple tasks across multiple domains.
  • domain generalization (DG)
    • uses the existing multiple labeled domains for training regardless of the unlabeled target samples.[13, 35]

6. Settings

  • Suppose the classifier for each source domain is known

  • Vanilla MDA: samples from diverse sources share a same category set

  • Category Shift: categories from different sources might be also different

  • NN different underlying source distributions {psj(x,y)}j=1N\{p_{\mathbf s_j}(x,y)\}_{j=1}^N

    • Xsj={xisj}i=1XsjX_{s_{j}}=\left\{x_{i}^{s_{j}}\right\}_{i=1}^{\left|X_{s_{j}}\right|}
    • Ysj={yisj}i=1YsjY_{s_{j}}=\left\{y_{i}^{s_{j}}\right\}_{i=1}^{\left|Y_{s_{j}}\right|}
  • 1 target distribution pt(x,y)p_t(x,y), no label

    • Xt={xit}i=1XtX_{t}=\left\{x_{i}^{t}\right\}_{i=1}^{\left|X_{t}\right|}
  • training set ensemble: N+1N+1 datasets

  • testing set: from target distribution

  • target domain get labeled by the union of all categories in those sources

    Ct=j=1NCsj\mathcal{C}_{t}=\bigcup\limits_{j=1}^{N} \mathcal{C}_{s_{j}}

7. Compared with Open Set DA

  • The uncommon classes are unified as a negative category called “unknown”.

  • In contrast, category shift consider the specific disaligned categories among multiple sources to enrich the classification in transfer.

8. DCTN: framework details

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lxYJA9mW-1590145338545)(DCTN%20deep%20cocktail%20network/image-20200513104324521.png)]

8.1 Feature extractor FF

  • deep convolution nets as the backbone
  • share weights: map all images from N sources and target into a common feature space
  • employ adversarial learning to obtain the optimal mapping
    • because it can successfully learn both domain-invariant features and each target-source-specific relations.

8.2 (Multi-source) domain discriminator DD

  • NN source-specific discriminators: {Dsj}j=1N\left\{D_{s_j}\right\}_{j=1}^{N}

  • Given image xx from the source jj or the target domain, the domain discriminator DD receives the features F(x)F(x), classifies whether from the source jj or the target

  • for the data flow from each target instance xtx_t, the domain discriminators DD yields the NN source-specific discriminative results
    {Dsj(F(xt))}j=1N \left\{D_{s_j}(F(x^t))\right\}_{j=1}^{N}

  • target-source perplexity scores
    Scf(xt;F,Dsj)=log(1Dsj(F(xt)))+αsj \mathcal{S}_{c f}\left(x^{t} ; F, D_{s_{j}}\right)=-\log \left(1-D_{s_{j}}\left(F\left(x^{t}\right)\right)\right)+\alpha_{s_{j}}
    αsj\alpha_{s_{j}} is the source-specific concentration constant, It is obtained by averaging the source jj discriminator losses over XsjX_{s_j}.

    in supplementary, different score, different α\alpha:

    αsj=1NTiNT(Dsj(1F(xisj)))2 \alpha_{s_{j}}=\frac{1}{N_{T}} \sum_{i}^{N_{T}}\left(D_{s_{j}}\left(1-F\left(x_{i}^{s_{j}}\right)\right)\right)^{2}

    NTN_T denotes how many times the target samples have been visited to train our model

    xisjx_{i}^{s_{j}} denotes the source j instance come along with the coupled target instances in the adversarial learning.

8.3 (Multi-source) category classifier CC

  • a multi-output net composed by NN source-specific predictors {Csj}j=1N\left\{C_{s_j}\right\}_{j=1}^{N}

  • Each predictor is softmax classifier

  • for the image from source jj: only the value from CsjC_{s_j} get activated and provides the gradient for training

  • For a target image xtx_t instead, all source-specific predictors provide NN categorization results {Csj(F(xt))}j=1N\{C_{s_j} (F(x_t))\}^N_{j =1}to the target classification operator.

8.4 Target classification operator

  • for each target feature F(xt)F(x_t), the target classification operator takes each source perplexity score Scf(xt;F,Dsj)\mathcal{S}_{c f}\left(x^{t} ; F, D_{s_{j}}\right) to re-weight the corresponding source-specific prediction {Csj(F(xt))}\{C_{s_j} (F(x_t))\}

    the confidence xtx_t belongs to cc presents as

Confidence(cxt):=cCsjScf(xt;F,Dsj)cCskScf(xt;F,Dsk)Csj(cF(xt))where cj=1NCsj(2) Confidence \left(c | x^{t}\right):=\sum_{c \in \mathcal{C}_{s_{j}}} \frac{\mathcal{S}_{c f}\left(x^{t} ; F, D_{s_{j}}\right)}{\sum\limits_{c \in \mathcal{C}_{s_{k}}} \mathcal{S}_{c f}\left(x^{t} ; F, D_{s_{k}}\right)} C_{s_{j}}\left(c | F\left(x^{t}\right)\right) \\ where\ c\in\bigcup_{j=1}^{N} \mathcal{C}_{s_{j}}\tag{2}

  • Csj(cF(xt))C_{s_{j}}\left(c | F\left(x^{t}\right)\right) denotes the softmax value of source jj corresponding to class cc
  • cCsj\sum\limits_{c\in \mathcal C_{s_j}} means only those sources with class cc can join the perplexity score weighting.
  • cCsk\sum\limits_{c\in \mathcal C_{s_k}} means all the sources

8.5 Connection to distribution weighted combining rule

  • In the distribution weighted combining rule [33], the target distribution is treated as a mixture of the multi-source distributions with the coefficients by normalized source distributions weighted by unknown positive {λj}j=1N\{\lambda_j\}_{j=1}^N, namely Dt(x)=cCskNλkDsk(x)\mathcal{D}_{t}(x)=\sum_{c \in \mathcal{C}_{s_k}}^{N} \lambda_{k} \mathcal{D}_{s_{k}}(x)

hλ(x)=i=1kλiDi(x)j=1kλjDj(x)hi(x) h_{\lambda}(x)=\sum_{i=1}^{k} \frac{\lambda_{i} D_{i}(x)}{\sum_{j=1}^{k} \lambda_{j} D_{j}(x)} h_{i}(x)

note that the hypothesis is one-dimension output hi(x)Rh_i(x)\in \mathbb R

  • in this paper

The ideal target classifier presents as the weighted combination of source classifiers.

Note that here each classifier for each source CsjC_{s_j} is a multi output softmax result.
Ct(cxt)=cCsλjDsj(xt)cCskλkDsk(xt)Csj(cF(xt)) C_{t}\left(c | x^{t}\right)=\sum_{c \in \mathcal{C}_{s}} \frac{\lambda_{j} \mathcal{D}_{s_{j}}\left(x^{t}\right)}{\sum_{c \in \mathcal{C}_{s_{k}}} \lambda_{k} \mathcal{D}_{s_{k}}\left(x^{t}\right)} C_{s_{j}}\left(c | F\left(x^{t}\right)\right)
with the increase of the probability that xtx_t from source jj, Dsj(F(xt))1,Dsj(xt)1D_{s_{j}}\left(F\left(x^{t}\right)\right)\rightarrow 1,\mathcal D_{s_{j}}\left(x^{t}\right)\rightarrow 1

so λjDsj(xt)Scf(xt;F,Dsj)=log(1Dsj(F(xt)))+αsj\lambda_{j} \mathcal{D}_{s_{j}}\left(x^{t}\right) \propto\mathcal{S}_{c f}\left(x^{t} ; F, D_{s_{j}}\right)=-\log \left(1-D_{s_{j}}\left(F\left(x^{t}\right)\right)\right)+\alpha_{s_{j}}

  • 所以用score代替了distribution的weighting
  • target images should be categorized by the classifiers from multiple sources, with whose features more similar to target, the source classifiers’ prediction are more trustful

9 Learning

9.1 Pre-training C and F

  • take all source images to jointly train the feature extractor F and the category classifier C

  • pseudo label for target: Those networks and the target classification operator then predict categories for all target images and annotate those with high confidences.

  • Since the domain discriminator hasn’t been trained, we take the uniform distribution simplex weight as the perplexity scores to the target classification operator.

  • Finally, we obtain the pre-trained feature extractor and category classifier via further fine-tuning them with sources and the pseudo-labeled target images.

    In object recognition, we initiate our DCTN by following the same way of DAN (start with an AlexNet model pretrained on ImageNet 2012 and fine-tune it).

    In terms of digit recognition, we perform DCTN learning from scratch.

9.2 Multi-way Adversarial Adaptation

ref: ADDA论文Adversarial Discriminative Domain Adaptation

  • original GAN:(M means mapping / feature extractor)
    LadvD(Xs,Xt,Ms,Mt)=ExsXs[logD(Ms(xs))]ExtXt[log(1D(Mt(xt)))] \begin{array}{c} \mathcal{L}_{\mathrm{adv}_{D}}\left(\mathbf{X}_{s}, \mathbf{X}_{t}, M_{s}, M_{t}\right)= \\ -\mathbb{E}_{\mathbf{x}_{s} \sim \mathbf{X}_{s}}\left[\log D\left(M_{s}\left(\mathbf{x}_{s}\right)\right)\right] \\ -\mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log \left(1-D\left(M_{t}\left(\mathbf{x}_{t}\right)\right)\right)\right] \end{array}

LadvM=LadvD \mathcal{L}_{\mathrm{adv}_{M}}=-\mathcal{L}_{\mathrm{adv}_{D}}

minDLadvD(Xs,Xt,Ms,Mt)minMs,MtLadvM(Xs,Xt,D) \begin{array}{c} \min _{D} \mathcal{L}_{\mathrm{adv}_{D}}\left(\mathbf{X}_{s}, \mathbf{X}_{t}, M_{s}, M_{t}\right) \\ \min _{M_{s}, M_{t}} \mathcal{L}_{\mathrm{adv}_{M}}\left(\mathbf{X}_{s}, \mathbf{X}_{t}, D\right) \end{array}

  • change method 1: early on during training the discriminator converges quickly, causing the gradient to vanish, change the generator objective, splits the optimization into two independent objectives, one for the generator and one for the discriminator,
    LadvM(Xs,Xt,D)=ExtXt[logD(Mt(xt))](**) \mathcal{L}_{\mathrm{adv}_{M}}\left(\mathbf{X}_{s}, \mathbf{X}_{t}, D\right)=-\mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log D\left(M_{t}\left(\mathbf{x}_{t}\right)\right)\right] \tag{**}

  • change method 2: in the setting where both distributions are changing, this objective will lead to oscillation–when the mapping converges to its optimum, the discriminator can simply flip the sign of its prediction in response.

    Tzeng et al. instead proposed the domain confusion objective, under which the mapping is trained using a cross-entropy loss function against a uniform distribution

    This loss ensures that the adversarial discriminator views the two domains identically.

    confuse就是要让它“半信半疑”,让source和target经过mapping的marginal distribution尽量接近。来自source和target的可能性都接近一半(或者说相当于source和target中的样本的真实domain标签都是来自1和0的可能性占一半,这样最小化这个差异的交叉熵损失函数,得到的mapping后的source和target分布就都是接近均均分布,可以认为source和target被map成很相似的domain,DA的任务就完成了)

    LadvM(Xs,Xt,D)=d{s,t}Exdxd[12logD(Md(xd))+12log(1D(Md(xd)))](*) \begin{array}{l} \mathcal{L}_{\mathrm{adv}_{M}}\left(\mathbf{X}_{s}, \mathbf{X}_{t}, D\right)= \begin{aligned} -\sum_{d \in\{s, t\}} & \mathbb{E}_{\mathbf{x}_{d} \sim \mathbf{x}_{d}}\left[\frac{1}{2} \log D\left(M_{d}\left(\mathbf{x}_{d}\right)\right)\right. \left.+\frac{1}{2} \log \left(1-D\left(M_{d}\left(\mathbf{x}_{d}\right)\right)\right)\right] \end{aligned} \end{array} \tag{*}

    注意:其实*式子在ADDA论文中结果没有用,只是用来说明related work,ADDA中用的还是(**);

    *式子是 Simultaneous Deep Transfer Across Domains and Tasks 文中提出来的;

    ADDA论文改了generator的优化目标为**。

in this paper

  • minmax adversarial domain adaptation
    minFmaxDV(F,D;Cˉ)=Ladv(F,D)+Lcls(F,Cˉ)(4) \min _{F} \max _{D} V(F, D ; \bar{C})=\mathcal{L}_{a d v}(F, D)+\mathcal{L}_{c l s}(F, \bar{C})\tag{4}

    • classifier CC is fixed as Cˉ\bar C to provide stable gradient values.
    • the first term denotes our adversarial mechanism
    • the second term is a multi-source classification losses.

The optimization based on Eq.4 works well for DD but not FF.

Since the feature extractor learns the mapping from the multiple sources and the target, the domain distributions become simultaneously changing in adversary, which results in an oscillation then spoils our feature extractor.

when source and target feature mappings share their architectures, the domain confusion can be introduced to replace the adversarial objective, which performs stable to learn the mapping FF.

  • multidomain confusion loss
    Ladv(F,D)=1NjNExXsjLcf(x;F,Dsj)+ExXtLcf(x;F,Dsj)(6) \begin{array}{l} \mathcal{L}_{a d v}(F, D)=\frac{1}{N} \sum_{j}^{N} \mathbb{E}_{x \sim X_{s_{j}}} \mathcal{L}_{c f}\left(x ; F, D_{s_{j}}\right) +\mathbb{E}_{x \sim X_{t}} \mathcal{L}_{c f}\left(x ; F, D_{s_{j}}\right) \end{array} \tag{6}
    where
    Lcf(x;F,Dsj)=12logDsj(F(x))+12log(1Dsj(F(x)))(7) \begin{array}{c} \mathcal{L}_{c f}\left(x ; F, D_{s_{j}}\right)= \frac{1}{2} \log D_{s_{j}}(F(x))+\frac{1}{2} \log \left(1-D_{s_{j}}(F(x))\right) \end{array}\tag{7}
    i.e.
    Ladv(F,D)=1NjNExXsj[12logDsj(F(x))+12log(1Dsj(F(x)))]+1NjNExXt[12logDsj(F(x))+12log(1Dsj(F(x)))] \begin{array}{l} \mathcal{L}_{a d v}(F, D)=\frac{1}{N} \sum_{j}^{N} \mathbb{E}_{x \sim X_{s_{j}}} \Big[\frac{1}{2} \log D_{s_{j}}(F(x))+\frac{1}{2} \log \left(1-D_{s_{j}}(F(x))\right)\Big]\\ +\frac{1}{N} \sum_{j}^{N}\mathbb{E}_{x \sim X_{t}} \Big[\frac{1}{2} \log D_{s_{j}}(F(x))+\frac{1}{2} \log \left(1-D_{s_{j}}(F(x))\right)\Big] \end{array}
    和(*)的差别在于:

    • 没有负号

    • 是multi source所以有N个discriminator,每个对应一个source和target的域判别

    • *中是source和target的mapping不一样,这里是feature extractor一样

    • 本文中直接修改成了*是discriminator和generator公用的loss function(的相反数,因为为负数),表示的是target和每个source之间

      交叉熵表示的是两个分布之间的差异,注意交叉熵一定是正数的结果

      • 最大化6式,等价于最小化交叉熵损失,就是最优化discriminator

Online hard domain batch mining

  • samples from different sources are sometimes useless to improve the adaptation to the target, and as the training proceeds, more redundant source samples turn to draw back the whole model performance

  • minibatch: sample batch MM for target and each source domain

  • Each source target discriminator DsjD_{s_j}‘s loss is viewed as the degrees to distinguish MM xitx^t_i from the jjth source’ s MM samples

iMlogDsj(F(xisj))log(1Dsj(F(xit))) \sum_i^M - \log D_{s_{j}}(F(x_i^{s_j})) - \log \left(1-D_{s_{j}}(F(x_i^{t}))\right)

这里是交叉熵损失,是最原始GAN的形式。越大表示损失越大,表示对M个source样本和M个target样本的来自source jj 还是target domain的区分效果越差,即这个source jj的discriminator效果不好。

  • find hard source domain: feature extractor FF performs the worst to transform the target samples to confuse the jj^*th source

j=argmaxjN{iMlogDsj(F(xisj))log(1Dsj(F(xit)))}j=1N j^*= \mathrm{arg}\max_j^{N}\Big\{ \sum_i^M - \log D_{s_{j}}(F(x_i^{s_j})) - \log \left(1-D_{s_{j}} (F(x_i^{t}))\right) \Big\}_{j=1}^N

  • we use the source jj^* and the target samples in the minibatchto train the feature extractor

  • 以下是用于迭代更新、找到最好的feature extractor的算法1
    Ladvsj(F,D)=iMLcf(xisj;F,Dsj)+Lcf(xit;F,Dsj) \mathcal{L}_{a d v}^{s_j^*}(F, D)=\sum_{i}^{M} \mathcal{L}_{c f}\left(x_i^{s_j^*} ; F, D_{s_j^*}\right) +\mathcal{L}_{c f}\left(x_i^t ; F, D_{s_j^*}\right)

    minFmaxDV(F,D;Cˉ)=Ladvsj(F,D)+Lcls(F,Cˉ)(4) \min _{F} \max _{D} V(F, D ; \bar{C})=\mathcal{L}_{a d v}^{s_j^*}(F, D)+\mathcal{L}_{c l s}(F, \bar{C})\tag{4}

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZRWRqJY1-1590145338548)(DCTN%20deep%20cocktail%20network/image-20200514150029895.png)]

9.3 Target Discriminative Adaptation

  • Aided by the multi-way adversary, DCTN has been able to obtain good domain-invariant features, yet not surely classifiable in the target domain.

  • auto-labeling strategy: annotate target samples, then jointly train our feature extractor and multi-source category classifier with source and target images by their (pseudo-) labels

  • classification losses from multiple source images and target images with pseudo labels

minF,CLcls(F,C)=jNE(x,y)(Xsj,Ysj)[L(Csj(F(x)),y)]+E(xt,y^)(Xtp,Ytp)[y^Cs^L(Cs^(F(xt)),y^)](8) \min _{F, C} \mathcal{L}_{c l s}(F, C)=\sum_{j}^{N} \mathbb{E}_{(x, y) \sim\left(X_{s_{j}}, Y_{s_{j}}\right)}\left[\mathcal{L}\left(C_{s_{j}}(F(x)), y\right)\right] +\mathbb{E}_{\left(x^{t}, \hat{y}\right) \sim\left(X_{t}^{p}, Y_{t}^{p}\right)}\left[\sum_{\hat{y} \in \mathcal{C}_{\hat{s}}} \mathcal{L}\left(C_{\hat{s}}\left(F\left(x^{t}\right)\right), \hat{y}\right)\right] \tag{8}

apply the target classification operator to assign pseudo labels, and the samples with the confidence higher than a preseted threshold will be selected into XtPX^P_t .

given a target instance xtx^t with pseudo-labeled class y^\hat y, we find those sources s^\hat s include this class (y^Cs^)(\hat y \in \mathcal C_{\hat s}), then update our network via the sum of the multi-source classification losses

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-drxczEjJ-1590145338549)(DCTN%20deep%20cocktail%20network/image-20200514155059169.png)]

10. Experiments

10.1 Benchmarks

  • 3 widely used UDA benchmarks
    • Office-31 [41]:
      • a object recognition benchmark with 31 categories and 4652 images unevenly spread in three visual domains A (Amazon), D (DSLR), W (Webcam).
    • ImageCLEF-DA:
      • 50 images in each category
      • totally 600 images for each domain
      • derives from ImageCLEF 2014 domain adaptation challenge, and is organized by selecting 12 object categories (aeroplane, bike bird, boat, bottle, bus, car, dog, horse, monitor, motorbike, and people) shared in the three famous real-world datasets, I (ImageNet ILSVRC 2012), P (Pascal VOC 2012), C (Caltech-256).
    • Digits-five
      • five digit image sets respectively sampled from following public datasets
        • mt (MNIST) [26]
        • mm (MNIST-M) [11]
        • sv(SVHN) [36]
        • up (USPS)
        • sy (Synthetic Digits) [11].
      • Towards the images in MNIST, MNIST-M, SVHN and Synthetic Digits, we draw 25000 for training and 9000 for testing in each dataset.
      • There are only 9298 images in USPS, so we choose the entire dataset as our domain.

10.2 Evaluations in the vanilla(common) setting

baseline

  • mullti source: two shallow methods

    • sparse FRAME (sFRAME) [46]
      • a non-stationary Markov random field model that reproduces the observed statistical properties of filter responses at a subset of selected locations, scales and orientations.
      • representing a wide variety of object patterns in natural images and that the learned models are useful for object classification.
    • SGF [16]
      • Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift.
  • single source models----> multi source: conventional (TCA, GFK)/ deep

    Since those methods perform in single-source setting, we introduce two MDA standards for different purposes

    • Source combine: all source domains are combined into a traditional single-source v.s. target setting.
      • The first standard testify whether the multi-source is valuable to exploit
    • Single best: in the multi-source domains, we report the single source transfer result best-performing in the test set.
      • whether we can further improve the best single source UDA via introducing another source transfer.
  • source only

    • as baselines in the Source combine and multisource standards
    • use all images from sources to train backbone-based multi-source classifiers and directly apply them to classify target images

10.3 Evaluations in the category shift setting

  • depart all categories into two non-overlapped class sets and define them as the private classes

    • overlap
    • disjoint
  • DAN also suffers negative transfer gains in most situations, which
    indicates the transferbility of DAN cripled in the category
    shift.

  • In contrast, DCTN reduces the performance drops compared to the model in the vanilla setting, and obtains positive transfer gains in all situations. It reveals that DCTN can resist the negative transfer caused by the category shift

11. Further Analysis

11.1 Feature visualization.

visualize the DCTN activations before and after adaptation.

  • DCTN can successfully learn transferable features with multiple sources
  • features learned by DCTN attains desirable discriminative property

11.2 Ablation study

  • The adversarial-only model excludes the pseudo labels and updates the category classifier with source samples.

  • The pseudo-only model forbids the adversary and categorize target samples with average multi-source results

  • without domain batch mining technique

11.3 Convergence analysis

despite of the frequent deviation, the classification loss, adversarial loss and testing error gradually converge.

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. Flex 布局

    Flex 布局 目录Flex 布局1. 基本概念2. 容器的属性2.1 设置在父盒子身上的属性2.1.1 属性决定主轴的方向(即项目的排列方向)2.1.2 flex-wrap属性(如何换行)2.1.3 flex-flow(flex-direction属性和flex-wrap属性的简写)2.1.4 justify-content属性(主轴上的对齐方式)2.1.5…...

    2024/4/30 22:35:37
  2. C#——《C#语言程序设计》实验报告——Windows桌面编程&文件与流——简易记事本

    一、实验目的掌握文件类的使用;掌握文件流的操作;掌握二进制数据、文本数据的读写;继续应用WPF技术进行界面编程。 二、实验内容写一个记事本程序: (1)设计界面,向窗体添加下拉式菜单、多格式文本框(RichTextBox)。(2)依次为“文件”下的“新建”、“打开”、“保存”…...

    2024/4/30 16:47:19
  3. 修饰符

    修饰符的分类权限修饰符状态修饰符finalfinal修饰局部变量staticstatic访问特点 修饰符的分类权限修饰符 状态修饰符权限修饰符修饰符 同一个类中 同一个包中子类无关类 不同包的子类 不同包的无关类private √默认 √ √protected √ √ √public √ √ √ √ 状态修饰符fina…...

    2024/4/30 23:39:08
  4. Android手游SDK那点事(五)支付插件开发

    前言 刚开始SDK的支付是调用h5接口,在web继承微信支付宝支付,原生的接入是在SDK内部接入,当你接入更多支付渠道的时候,你会发现你的SDK会变得很乱,各种各样的依赖包引入,这违背了前面说的SDK设计尽量少的引入第三方SDK的原则。所以使用支付插件 支付插件 一般app开发中插…...

    2024/4/23 15:53:52
  5. kotlin 之until,step,downTo,in等关键字

    kotlin中until的相当于 i=>min && i<maxfor (i in 1 until 5){println("$i")}//1,2,3,4kotlin中step的相当于 i++for (i in 2..10 step 3){println("$i")}kotlin中downTo的相当于 i–for (i in 10 downTo 1){println("$i")}kotlin…...

    2024/4/23 15:53:52
  6. JSP页面如何引用js文件?

    前端新手,项目环境为Springboot+SSM+maven。一.配置引用环境1.在application.properties文件中做如下配置定义static文件夹存放静态文件。2. jsp与js目录如下3.jsp代码与js引用4.js代码二.运行1.初始页面2.点击进入...

    2024/4/23 15:53:49
  7. FPGA初学者__个人学习笔记(一)

    简介 在学习FPGA时,整理的一些问题,慢慢积累,期待自己的进步。 个人邮箱: 1149025224@qq.com 欢迎交流! 笔记组合always块中用阻塞性,时序always块中用非阻塞性。 assign out_assign = sel_b1? sel_b2? b: a:a; #四个条件,三个结果。11,10 . 01 ,00。 组合电路输出必…...

    2024/4/23 15:53:47
  8. Linux防火墙常用命令

    1.查看防火墙状态: systemctl status firewalld 查看开机是否启动防火墙服务: systemctl is-enabled firewalld 2.临时关闭,立即生效: 开启:systemctl start firewalld 关闭:systemctl stop firewalld 3.永久开启, 重启后生效: 开启:systemctl enable firewalld 关闭:…...

    2024/4/17 0:44:58
  9. 算法—反转链表

    题目 实现单链表的逆转函数,输入一个链表,反转链表后,返回翻转之后的链表。 分析 利用三个指针:head,node,nodeNext node指向当前结点; head指向当前结点的前一个结点; nodeNext指向当前结点的后一个结点。先将head的next指向null;将head结点与node结点反转,并设置hea…...

    2024/4/17 0:45:22
  10. LeetCode59.螺旋矩阵II

    给定一个正整数 n,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。示例:输入: 3 输出: [[ 1, 2, 3 ],[ 8, 9, 4 ],[ 7, 6, 5 ] ]思路:https://leetcode-cn.com/problems/spiral-matrix-ii/solution/spiral-matrix-ii-mo-ni-fa-she-ding-bian-jie-q…...

    2024/4/17 0:44:46
  11. JS之math对象

    1.ceil 将目标数字向上取整 console.log(Math.floor(3.1));// 输出42.floor 将目标数字向下取整 console.log(Math.floor(3.1));//输出33.round 将目标数字四舍五入 console.log(Math.round(3.1));//输出3 console.log(Math.round(3.5));//输出44.abs 返回目标数字的绝对值…...

    2024/4/17 0:44:46
  12. Python学习笔记:同步对象event

    import threading,timeclass Boss(threading.Thread):def run(self):print("BOSS:今晚大家都要加班到22:00。")print(event.isSet()) # Falseevent.set()time.sleep(5)print("BOSS:<22:00>可以下班了。")print(event.isSet())event.set()class …...

    2024/4/17 0:45:04
  13. c++各类排序例子

    #include “stdio.h” #include"stdlib.h" #define MAX 4 void SequenceSearch(int *fp,int Length); void Search(int *fp,int length); void Sort(int *fp,int length); ================================================ 选择排序 输入:数组名称(也就是数组首地址…...

    2024/4/17 0:45:10
  14. Android P: 系统启动流程之init进程I

    Android P: 系统启动流程之init进程I1. 概述2. ueventd/watchdogd跳转及环境变量设置2.1 ueventd_main2.2 watchdogd_main2.3 install_reboot_signal_handlers3. 挂载文件系统并创建目录3.1 mount3.2 mknod3.3 其他命令4. 初始化日志输出、挂载分区设备4.1 InitKernelLogging4…...

    2024/4/17 0:45:04
  15. CommandLineRunner接口和ApplicationRunner接口

    作用 CommandLineRunner 接口和 ApplicationRunner 接口是在容器启动成功后的最后一步回调,可以在项目成功启动后做一些检查工作或执行一些任务。如果多个检查工作需要按照一定的顺序去执行,那么就需要在实体类上使用一个 @Order 注解(或者实现 Order 接口)来表明顺序(ord…...

    2024/4/19 10:46:55
  16. 只出现一次的最大数字

    题目描述2、解题思路 首先对每个数字出现次数统计 select num,count(num) from my_numbers group by num having count(num)=1然后找出最大的数字 select max(num) as num语法 SELECTmax(num) AS num FROM(select num,count (num) FROMmy_numbers GROUP BYnum HAVINGcout (num…...

    2024/4/23 15:53:49
  17. Android Thread 使用

    初始化 第一种:Thread thread = new Thread(new Runnable() { @Override public void run() { //业务逻辑 } }); 第二种:Thread thread = new Thread(); 第一种在Runnable中写业务逻辑; 第二种需要自己扩展Thread,并重写Thread的run(),在run中写业务逻辑; 自己写的Thread类…...

    2024/4/27 13:00:34
  18. MATLAB学习笔记(5)数据分析和统计

    本文为学习笔记,加油!!!A和B是指mn. . .p的多维矩阵,x是一个向量。 最大值和最小值 max(x) % 返回x中最大的元素值,如果x是复数,则返回max(abs(x))值。 max(A) % 返回一个含有A中第1维最大值的1n...p矩阵。对于二 维矩阵来说,返回一个行向量,它的第1个元素是A中第1列 …...

    2024/4/23 15:53:45
  19. OpenStack镜像制作系列4—Windows Server2019镜像

    本系列文章主要对如何制作OpenStack镜像的过程进行描述记录OpenStack镜像制作系列1—环境准备OpenStack镜像制作系列2—Windows7镜像OpenStack镜像制作系列3—Windows10镜像OpenStack镜像制作系列4—Windows Server2019镜像OpenStack镜像制作系列5—Linux镜像省略部分前序步骤,…...

    2024/4/23 15:53:46
  20. (14.1.2)小程序

    踩坑块元素width的默认值是父元素的100%,一般情况下不用设置就可以满足需求。height的默认值是里面内容的高度,也就是auto,一般写代码的时候也不需要给元素设置高度,如果设置了高度而且设置的高度不够的时候,就会出现元素重叠的情况重叠外面一层 position:relative;里面的 p…...

    2024/4/23 15:53:49

最新文章

  1. Leetcode 145:二叉树的后序遍历(迭代法)

    给你一棵二叉树的根节点 root &#xff0c;返回其节点值的 后序遍历 。 思路&#xff1a; 迭代法的思路是&#xff0c;使用栈&#xff0c;一层一层的将树节点遍历入栈。 比如下面这个树&#xff0c;使用迭代法&#xff0c;1&#xff09;第一层&#xff0c;让根节点入栈。2&a…...

    2024/4/30 23:54:51
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. JRT高效率开发

    得益于前期的基础投入&#xff0c;借助代码生成的加持&#xff0c;本来计划用一周实现质控物维护界面&#xff0c;实际用来四小时左右完成质控物维护主体&#xff0c;效率大大超过预期。 JRT从设计之初就是为了证明Spring打包模式不适合软件服务模式&#xff0c;觉得Spring打包…...

    2024/4/30 3:28:17
  4. 职场口才提升之道

    职场口才提升之道 在职场中&#xff0c;口才的重要性不言而喻。无论是与同事沟通协作&#xff0c;还是向上级汇报工作&#xff0c;亦或是与客户洽谈业务&#xff0c;都需要具备良好的口才能力。一个出色的职场人&#xff0c;除了拥有扎实的专业技能外&#xff0c;还应具备出色…...

    2024/4/30 2:24:19
  5. 【外汇早评】美通胀数据走低,美元调整

    原标题:【外汇早评】美通胀数据走低,美元调整昨日美国方面公布了新一期的核心PCE物价指数数据,同比增长1.6%,低于前值和预期值的1.7%,距离美联储的通胀目标2%继续走低,通胀压力较低,且此前美国一季度GDP初值中的消费部分下滑明显,因此市场对美联储后续更可能降息的政策…...

    2024/4/29 23:16:47
  6. 【原油贵金属周评】原油多头拥挤,价格调整

    原标题:【原油贵金属周评】原油多头拥挤,价格调整本周国际劳动节,我们喜迎四天假期,但是整个金融市场确实流动性充沛,大事频发,各个商品波动剧烈。美国方面,在本周四凌晨公布5月份的利率决议和新闻发布会,维持联邦基金利率在2.25%-2.50%不变,符合市场预期。同时美联储…...

    2024/4/30 18:14:14
  7. 【外汇周评】靓丽非农不及疲软通胀影响

    原标题:【外汇周评】靓丽非农不及疲软通胀影响在刚结束的周五,美国方面公布了新一期的非农就业数据,大幅好于前值和预期,新增就业重新回到20万以上。具体数据: 美国4月非农就业人口变动 26.3万人,预期 19万人,前值 19.6万人。 美国4月失业率 3.6%,预期 3.8%,前值 3…...

    2024/4/29 2:29:43
  8. 【原油贵金属早评】库存继续增加,油价收跌

    原标题:【原油贵金属早评】库存继续增加,油价收跌周三清晨公布美国当周API原油库存数据,上周原油库存增加281万桶至4.692亿桶,增幅超过预期的74.4万桶。且有消息人士称,沙特阿美据悉将于6月向亚洲炼油厂额外出售更多原油,印度炼油商预计将每日获得至多20万桶的额外原油供…...

    2024/4/30 18:21:48
  9. 【外汇早评】日本央行会议纪要不改日元强势

    原标题:【外汇早评】日本央行会议纪要不改日元强势近两日日元大幅走强与近期市场风险情绪上升,避险资金回流日元有关,也与前一段时间的美日贸易谈判给日本缓冲期,日本方面对汇率问题也避免继续贬值有关。虽然今日早间日本央行公布的利率会议纪要仍然是支持宽松政策,但这符…...

    2024/4/27 17:58:04
  10. 【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响

    原标题:【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响近日伊朗局势升温,导致市场担忧影响原油供给,油价试图反弹。此时OPEC表态稳定市场。据消息人士透露,沙特6月石油出口料将低于700万桶/日,沙特已经收到石油消费国提出的6月份扩大出口的“适度要求”,沙特将满…...

    2024/4/27 14:22:49
  11. 【外汇早评】美欲与伊朗重谈协议

    原标题:【外汇早评】美欲与伊朗重谈协议美国对伊朗的制裁遭到伊朗的抗议,昨日伊朗方面提出将部分退出伊核协议。而此行为又遭到欧洲方面对伊朗的谴责和警告,伊朗外长昨日回应称,欧洲国家履行它们的义务,伊核协议就能保证存续。据传闻伊朗的导弹已经对准了以色列和美国的航…...

    2024/4/28 1:28:33
  12. 【原油贵金属早评】波动率飙升,市场情绪动荡

    原标题:【原油贵金属早评】波动率飙升,市场情绪动荡因中美贸易谈判不安情绪影响,金融市场各资产品种出现明显的波动。随着美国与中方开启第十一轮谈判之际,美国按照既定计划向中国2000亿商品征收25%的关税,市场情绪有所平复,已经开始接受这一事实。虽然波动率-恐慌指数VI…...

    2024/4/30 9:43:09
  13. 【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试

    原标题:【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试美国和伊朗的局势继续升温,市场风险情绪上升,避险黄金有向上突破阻力的迹象。原油方面稍显平稳,近期美国和OPEC加大供给及市场需求回落的影响,伊朗局势并未推升油价走强。近期中美贸易谈判摩擦再度升级,美国对中…...

    2024/4/27 17:59:30
  14. 【原油贵金属早评】市场情绪继续恶化,黄金上破

    原标题:【原油贵金属早评】市场情绪继续恶化,黄金上破周初中国针对于美国加征关税的进行的反制措施引发市场情绪的大幅波动,人民币汇率出现大幅的贬值动能,金融市场受到非常明显的冲击。尤其是波动率起来之后,对于股市的表现尤其不安。隔夜美国股市出现明显的下行走势,这…...

    2024/4/25 18:39:16
  15. 【外汇早评】美伊僵持,风险情绪继续升温

    原标题:【外汇早评】美伊僵持,风险情绪继续升温昨日沙特两艘油轮再次发生爆炸事件,导致波斯湾局势进一步恶化,市场担忧美伊可能会出现摩擦生火,避险品种获得支撑,黄金和日元大幅走强。美指受中美贸易问题影响而在低位震荡。继5月12日,四艘商船在阿联酋领海附近的阿曼湾、…...

    2024/4/28 1:34:08
  16. 【原油贵金属早评】贸易冲突导致需求低迷,油价弱势

    原标题:【原油贵金属早评】贸易冲突导致需求低迷,油价弱势近日虽然伊朗局势升温,中东地区几起油船被袭击事件影响,但油价并未走高,而是出于调整结构中。由于市场预期局势失控的可能性较低,而中美贸易问题导致的全球经济衰退风险更大,需求会持续低迷,因此油价调整压力较…...

    2024/4/26 19:03:37
  17. 氧生福地 玩美北湖(上)——为时光守候两千年

    原标题:氧生福地 玩美北湖(上)——为时光守候两千年一次说走就走的旅行,只有一张高铁票的距离~ 所以,湖南郴州,我来了~ 从广州南站出发,一个半小时就到达郴州西站了。在动车上,同时改票的南风兄和我居然被分到了一个车厢,所以一路非常愉快地聊了过来。 挺好,最起…...

    2024/4/29 20:46:55
  18. 氧生福地 玩美北湖(中)——永春梯田里的美与鲜

    原标题:氧生福地 玩美北湖(中)——永春梯田里的美与鲜一觉醒来,因为大家太爱“美”照,在柳毅山庄去寻找龙女而错过了早餐时间。近十点,向导坏坏还是带着饥肠辘辘的我们去吃郴州最富有盛名的“鱼头粉”。说这是“十二分推荐”,到郴州必吃的美食之一。 哇塞!那个味美香甜…...

    2024/4/30 22:21:04
  19. 氧生福地 玩美北湖(下)——奔跑吧骚年!

    原标题:氧生福地 玩美北湖(下)——奔跑吧骚年!让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 啊……啊……啊 两…...

    2024/4/26 23:04:58
  20. 扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!

    原标题:扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!扒开伪装医用面膜,翻六倍价格宰客!当行业里的某一品项火爆了,就会有很多商家蹭热度,装逼忽悠,最近火爆朋友圈的医用面膜,被沾上了污点,到底怎么回事呢? “比普通面膜安全、效果好!痘痘、痘印、敏感肌都能用…...

    2024/4/27 23:24:42
  21. 「发现」铁皮石斛仙草之神奇功效用于医用面膜

    原标题:「发现」铁皮石斛仙草之神奇功效用于医用面膜丽彦妆铁皮石斛医用面膜|石斛多糖无菌修护补水贴19大优势: 1、铁皮石斛:自唐宋以来,一直被列为皇室贡品,铁皮石斛生于海拔1600米的悬崖峭壁之上,繁殖力差,产量极低,所以古代仅供皇室、贵族享用 2、铁皮石斛自古民间…...

    2024/4/28 5:48:52
  22. 丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者

    原标题:丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者【公司简介】 广州华彬企业隶属香港华彬集团有限公司,专注美业21年,其旗下品牌: 「圣茵美」私密荷尔蒙抗衰,产后修复 「圣仪轩」私密荷尔蒙抗衰,产后修复 「花茵莳」私密荷尔蒙抗衰,产后修复 「丽彦妆」专注医学护…...

    2024/4/30 9:42:22
  23. 广州械字号面膜生产厂家OEM/ODM4项须知!

    原标题:广州械字号面膜生产厂家OEM/ODM4项须知!广州械字号面膜生产厂家OEM/ODM流程及注意事项解读: 械字号医用面膜,其实在我国并没有严格的定义,通常我们说的医美面膜指的应该是一种「医用敷料」,也就是说,医用面膜其实算作「医疗器械」的一种,又称「医用冷敷贴」。 …...

    2024/4/30 9:43:22
  24. 械字号医用眼膜缓解用眼过度到底有无作用?

    原标题:械字号医用眼膜缓解用眼过度到底有无作用?医用眼膜/械字号眼膜/医用冷敷眼贴 凝胶层为亲水高分子材料,含70%以上的水分。体表皮肤温度传导到本产品的凝胶层,热量被凝胶内水分子吸收,通过水分的蒸发带走大量的热量,可迅速地降低体表皮肤局部温度,减轻局部皮肤的灼…...

    2024/4/30 9:42:49
  25. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  26. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  27. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  28. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  29. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  30. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  31. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  32. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  33. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  34. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  35. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  36. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  37. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  38. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  39. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  40. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  41. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  42. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  43. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  44. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57