一.synchronized的缺陷

  synchronized是java中的一个关键字,也就是说是Java语言内置的特性。那么为什么会出现Lock呢?

  在上面一篇文章中,我们了解到如果一个代码块被synchronized修饰了,当一个线程获取了对应的锁,并执行该代码块时,其他线程便只能一直等待,等待获取锁的线程释放锁,而这里获取锁的线程释放锁只会有两种情况:

  1)获取锁的线程执行完了该代码块,然后线程释放对锁的占有;

  2)线程执行发生异常,此时JVM会让线程自动释放锁。

  那么如果这个获取锁的线程由于要等待IO或者其他原因(比如调用sleep方法)被阻塞了,但是又没有释放锁,其他线程便只能干巴巴地等待,试想一下,这多么影响程序执行效率。

  因此就需要有一种机制可以不让等待的线程一直无期限地等待下去(比如只等待一定的时间或者能够响应中断),通过Lock就可以办到。

  再举个例子:当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。

  但是采用synchronized关键字来实现同步的话,就会导致一个问题:

  如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。

  因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,通过Lock就可以办到。

  另外,通过Lock可以知道线程有没有成功获取到锁。这个是synchronized无法办到的。

  总结一下,也就是说Lock提供了比synchronized更多的功能。但是要注意以下几点:

  1)Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;

  2)Lock和synchronized有一点非常大的不同,采用synchronized不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。

二.java.util.concurrent.locks包下常用的类

  下面我们就来探讨一下java.util.concurrent.locks包中常用的类和接口。

  1.Lock

  首先要说明的就是Lock,通过查看Lock的源码可知,Lock是一个接口:

1

2

3

4

5

6

7

8

public interface Lock {void lock();void lockInterruptibly() throws InterruptedException;boolean tryLock();boolean tryLock(long time, TimeUnit unit) throws InterruptedException;void unlock();Condition newCondition();
}

}

   下面来逐个讲述Lock接口中每个方法的使用,lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。newCondition()这个方法暂且不在此讲述,会在后面的线程协作一文中讲述。

  在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?

  首先lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。

  由于在前面讲到如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此一般来说,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。通常使用Lock来进行同步的话,是以下面这种形式去使用的:

1

2

3

4

5

6

7

8

9

Lock lock = ...;

lock.lock();

try{

    //处理任务

}catch(Exception ex){

     

}finally{

    lock.unlock();   //释放锁

}

  tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。

  tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。

  所以,一般情况下通过tryLock来获取锁时是这样使用的:

1

2

3

4

5

6

7

8

9

10

11

12

Lock lock = ...;

if(lock.tryLock()) {

     try{

         //处理任务

     }catch(Exception ex){

         

     }finally{

         lock.unlock();   //释放锁

     

}else {

    //如果不能获取锁,则直接做其他事情

}

   lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。也就使说,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。

  由于lockInterruptibly()的声明中抛出了异常,所以lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出InterruptedException。

  因此lockInterruptibly()一般的使用形式如下:

1

2

3

4

5

6

7

8

9

public void method() throws InterruptedException {

    lock.lockInterruptibly();

    try {  

     //.....

    }

    finally {

        lock.unlock();

    }  

}

  注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因为本身在前面的文章中讲过单独调用interrupt()方法不能中断正在运行过程中的线程,只能中断阻塞过程中的线程。

  因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,只有进行等待的情况下,是可以响应中断的。

  而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。

  2.ReentrantLock

  ReentrantLock,意思是“可重入锁”,关于可重入锁的概念在下一节讲述。ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。下面通过一些实例看具体看一下如何使用ReentrantLock。

  例子1,lock()的正确使用方法

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

public class Test {

    private ArrayList<Integer> arrayList = new ArrayList<Integer>();

    public static void main(String[] args)  {

        final Test test = new Test();

         

        new Thread(){

            public void run() {

                test.insert(Thread.currentThread());

            };

        }.start();

         

        new Thread(){

            public void run() {

                test.insert(Thread.currentThread());

            };

        }.start();

    }  

     

    public void insert(Thread thread) {

        Lock lock = new ReentrantLock();    //注意这个地方

        lock.lock();

        try {

            System.out.println(thread.getName()+"得到了锁");

            for(int i=0;i<5;i++) {

                arrayList.add(i);

            }

        catch (Exception e) {

            // TODO: handle exception

        }finally {

            System.out.println(thread.getName()+"释放了锁");

            lock.unlock();

        }

    }

}

   各位朋友先想一下这段代码的输出结果是什么?

 View Code

  也许有朋友会问,怎么会输出这个结果?第二个线程怎么会在第一个线程释放锁之前得到了锁?原因在于,在insert方法中的lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么理所当然每个线程执行到lock.lock()处获取的是不同的锁,所以就不会发生冲突。

  知道了原因改起来就比较容易了,只需要将lock声明为类的属性即可。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

public class Test {

    private ArrayList<Integer> arrayList = new ArrayList<Integer>();

    private Lock lock = new ReentrantLock();    //注意这个地方

    public static void main(String[] args)  {

        final Test test = new Test();

         

        new Thread(){

            public void run() {

                test.insert(Thread.currentThread());

            };

        }.start();

         

        new Thread(){

            public void run() {

                test.insert(Thread.currentThread());

            };

        }.start();

    }  

     

    public void insert(Thread thread) {

        lock.lock();

        try {

            System.out.println(thread.getName()+"得到了锁");

            for(int i=0;i<5;i++) {

                arrayList.add(i);

            }

        catch (Exception e) {

            // TODO: handle exception

        }finally {

            System.out.println(thread.getName()+"释放了锁");

            lock.unlock();

        }

    }

}

   这样就是正确地使用Lock的方法了。

  例子2,tryLock()的使用方法

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

public class Test {

    private ArrayList<Integer> arrayList = new ArrayList<Integer>();

    private Lock lock = new ReentrantLock();    //注意这个地方

    public static void main(String[] args)  {

        final Test test = new Test();

         

        new Thread(){

            public void run() {

                test.insert(Thread.currentThread());

            };

        }.start();

         

        new Thread(){

            public void run() {

                test.insert(Thread.currentThread());

            };

        }.start();

    }  

     

    public void insert(Thread thread) {

        if(lock.tryLock()) {

            try {

                System.out.println(thread.getName()+"得到了锁");

                for(int i=0;i<5;i++) {

                    arrayList.add(i);

                }

            catch (Exception e) {

                // TODO: handle exception

            }finally {

                System.out.println(thread.getName()+"释放了锁");

                lock.unlock();

            }

        else {

            System.out.println(thread.getName()+"获取锁失败");

        }

    }

}

   输出结果:

 View Code

  例子3,lockInterruptibly()响应中断的使用方法:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

public class Test {

    private Lock lock = new ReentrantLock();   

    public static void main(String[] args)  {

        Test test = new Test();

        MyThread thread1 = new MyThread(test);

        MyThread thread2 = new MyThread(test);

        thread1.start();

        thread2.start();

         

        try {

            Thread.sleep(2000);

        catch (InterruptedException e) {

            e.printStackTrace();

        }

        thread2.interrupt();

    }  

     

    public void insert(Thread thread) throws InterruptedException{

        lock.lockInterruptibly();   //注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将InterruptedException抛出

        try {  

            System.out.println(thread.getName()+"得到了锁");

            long startTime = System.currentTimeMillis();

            for(    ;     ;) {

                if(System.currentTimeMillis() - startTime >= Integer.MAX_VALUE)

                    break;

                //插入数据

            }

        }

        finally {

            System.out.println(Thread.currentThread().getName()+"执行finally");

            lock.unlock();

            System.out.println(thread.getName()+"释放了锁");

        }  

    }

}

 

class MyThread extends Thread {

    private Test test = null;

    public MyThread(Test test) {

        this.test = test;

    }

    @Override

    public void run() {

         

        try {

            test.insert(Thread.currentThread());

        catch (InterruptedException e) {

            System.out.println(Thread.currentThread().getName()+"被中断");

        }

    }

}

  运行之后,发现thread2能够被正确中断。

  3.ReadWriteLock

  ReadWriteLock也是一个接口,在它里面只定义了两个方法:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

public interface ReadWriteLock {

    /**

     * Returns the lock used for reading.

     *

     * @return the lock used for reading.

     */

    Lock readLock();

 

    /**

     * Returns the lock used for writing.

     *

     * @return the lock used for writing.

     */

    Lock writeLock();

}

   一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。下面的ReentrantReadWriteLock实现了ReadWriteLock接口。

  4.ReentrantReadWriteLock

  ReentrantReadWriteLock里面提供了很多丰富的方法,不过最主要的有两个方法:readLock()和writeLock()用来获取读锁和写锁。

  下面通过几个例子来看一下ReentrantReadWriteLock具体用法。

  假如有多个线程要同时进行读操作的话,先看一下synchronized达到的效果:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

public class Test {

    private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();

     

    public static void main(String[] args)  {

        final Test test = new Test();

         

        new Thread(){

            public void run() {

                test.get(Thread.currentThread());

            };

        }.start();

         

        new Thread(){

            public void run() {

                test.get(Thread.currentThread());

            };

        }.start();

         

    }  

     

    public synchronized void get(Thread thread) {

        long start = System.currentTimeMillis();

        while(System.currentTimeMillis() - start <= 1) {

            System.out.println(thread.getName()+"正在进行读操作");

        }

        System.out.println(thread.getName()+"读操作完毕");

    }

}

   这段程序的输出结果会是,直到thread1执行完读操作之后,才会打印thread2执行读操作的信息。

 View Code

  而改成用读写锁的话:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

public class Test {

    private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();

     

    public static void main(String[] args)  {

        final Test test = new Test();

         

        new Thread(){

            public void run() {

                test.get(Thread.currentThread());

            };

        }.start();

         

        new Thread(){

            public void run() {

                test.get(Thread.currentThread());

            };

        }.start();

         

    }  

     

    public void get(Thread thread) {

        rwl.readLock().lock();

        try {

            long start = System.currentTimeMillis();

             

            while(System.currentTimeMillis() - start <= 1) {

                System.out.println(thread.getName()+"正在进行读操作");

            }

            System.out.println(thread.getName()+"读操作完毕");

        finally {

            rwl.readLock().unlock();

        }

    }

}

   此时打印的结果为:

 View Code

  说明thread1和thread2在同时进行读操作。

  这样就大大提升了读操作的效率。

  不过要注意的是,如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。

  如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程会一直等待释放写锁。

  关于ReentrantReadWriteLock类中的其他方法感兴趣的朋友可以自行查阅API文档。

  5.Lock和synchronized的选择

  总结来说,Lock和synchronized有以下几点不同:

  1)Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现;

  2)synchronized在发生异常时,会自动释放线程占有的锁,因此不会导致死锁现象发生;而Lock在发生异常时,如果没有主动通过unLock()去释放锁,则很可能造成死锁现象,因此使用Lock时需要在finally块中释放锁;

  3)Lock可以让等待锁的线程响应中断,而synchronized却不行,使用synchronized时,等待的线程会一直等待下去,不能够响应中断;

  4)通过Lock可以知道有没有成功获取锁,而synchronized却无法办到。

  5)Lock可以提高多个线程进行读操作的效率。

  在性能上来说,如果竞争资源不激烈,两者的性能是差不多的,而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。

三.锁的相关概念介绍

  在前面介绍了Lock的基本使用,这一节来介绍一下与锁相关的几个概念。

  1.可重入锁

  如果锁具备可重入性,则称作为可重入锁。像synchronized和ReentrantLock都是可重入锁,可重入性在我看来实际上表明了锁的分配机制:基于线程的分配,而不是基于方法调用的分配。举个简单的例子,当一个线程执行到某个synchronized方法时,比如说method1,而在method1中会调用另外一个synchronized方法method2,此时线程不必重新去申请锁,而是可以直接执行方法method2。

  看下面这段代码就明白了:

1

2

3

4

5

6

7

8

9

class MyClass {

    public synchronized void method1() {

        method2();

    }

     

    public synchronized void method2() {

         

    }

}

   上述代码中的两个方法method1和method2都用synchronized修饰了,假如某一时刻,线程A执行到了method1,此时线程A获取了这个对象的锁,而由于method2也是synchronized方法,假如synchronized不具备可重入性,此时线程A需要重新申请锁。但是这就会造成一个问题,因为线程A已经持有了该对象的锁,而又在申请获取该对象的锁,这样就会线程A一直等待永远不会获取到的锁。

  而由于synchronized和Lock都具备可重入性,所以不会发生上述现象。

  2.可中断锁

  可中断锁:顾名思义,就是可以相应中断的锁。

  在Java中,synchronized就不是可中断锁,而Lock是可中断锁。

  如果某一线程A正在执行锁中的代码,另一线程B正在等待获取该锁,可能由于等待时间过长,线程B不想等待了,想先处理其他事情,我们可以让它中断自己或者在别的线程中中断它,这种就是可中断锁。

  在前面演示lockInterruptibly()的用法时已经体现了Lock的可中断性。

  3.公平锁

  公平锁即尽量以请求锁的顺序来获取锁。比如同是有多个线程在等待一个锁,当这个锁被释放时,等待时间最久的线程(最先请求的线程)会获得该所,这种就是公平锁。

  非公平锁即无法保证锁的获取是按照请求锁的顺序进行的。这样就可能导致某个或者一些线程永远获取不到锁。

  在Java中,synchronized就是非公平锁,它无法保证等待的线程获取锁的顺序。

  而对于ReentrantLock和ReentrantReadWriteLock,它默认情况下是非公平锁,但是可以设置为公平锁。

  看一下这2个类的源代码就清楚了:

  

  在ReentrantLock中定义了2个静态内部类,一个是NotFairSync,一个是FairSync,分别用来实现非公平锁和公平锁。

  我们可以在创建ReentrantLock对象时,通过以下方式来设置锁的公平性:

1

ReentrantLock lock = new ReentrantLock(true);

   如果参数为true表示为公平锁,为fasle为非公平锁。默认情况下,如果使用无参构造器,则是非公平锁。

  

  另外在ReentrantLock类中定义了很多方法,比如:

  isFair()        //判断锁是否是公平锁

  isLocked()    //判断锁是否被任何线程获取了

  isHeldByCurrentThread()   //判断锁是否被当前线程获取了

  hasQueuedThreads()   //判断是否有线程在等待该锁

  在ReentrantReadWriteLock中也有类似的方法,同样也可以设置为公平锁和非公平锁。不过要记住,ReentrantReadWriteLock并未实现Lock接口,它实现的是ReadWriteLock接口。

  4.读写锁

  读写锁将对一个资源(比如文件)的访问分成了2个锁,一个读锁和一个写锁。

  正因为有了读写锁,才使得多个线程之间的读操作不会发生冲突。

  ReadWriteLock就是读写锁,它是一个接口,ReentrantReadWriteLock实现了这个接口。

  可以通过readLock()获取读锁,通过writeLock()获取写锁。

  上面已经演示过了读写锁的使用方法,在此不再赘述。

艹丿Kiss莮
发布了3 篇原创文章 · 获赞 0 · 访问量 1312
私信关注
查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. 常用字体名称中文对应英文

    宋体 SimSun 黑体 SimHei 微软雅黑 Microsoft YaHei 微软正黑体 Microsoft JhengHei 新宋体 NSimSun 新细明体 PMingLiU 细明体 MingLiU 标楷体 DFKai-SB 仿宋 FangSong 楷体 KaiTi 仿宋_GB2312 FangSong_GB2312 楷体_GB2312 KaiTi_GB2312 宋体:SimSuncss中中文字体(font-fam…...

    2024/4/23 4:23:54
  2. 1688API开发系列:item_search_img - 按图搜索1688商品(拍立淘)API 返回值说明

    为了进行电商平台1688的API开发,首先我们需要做下面几件事情。 1)开发者注册一个账号 2)然后为每个淘宝应用注册一个应用程序键(App Key) 。 3)下载1688API的SDK并掌握基本的API基础知识和调用 4)利用SDK接口和对象,传入AppKey或者必要的时候获取并传入SessionKey来进行…...

    2024/4/23 4:24:07
  3. ERP(用友)-账套管理

    点赞收藏分享文章举报开心小麻雀发布了7 篇原创文章 获赞 1 访问量 3480私信关注...

    2024/4/23 4:24:35
  4. Ajax跨域解决

    在前端开发过程中,将常出现前端代码和后台服务不在一个服务器的情况,这时候前端js代码调用后台接口,会出现跨域问题。 1、这里的域是通过URL的头部来识别的。浏览器并不会去尝试判断相同的ip地址对应着两个域或者两个域是否在同一个ip上。URL的头部指window.location.protoc…...

    2024/4/21 0:05:21
  5. jquery设置下拉菜单

    jQuery代码 1,引用jQuery库 2,show方法 3,hide方法 <script type="text/javascript"> $function(){ $(".navmeau").mouseover(function(){ $(this).children("ul").show(); }) $(".navmeau").mouseout(function(){ $(this).…...

    2024/4/20 21:22:32
  6. nextTick机制

    Vue源码阅读 - 批量异步更新与nextTick原理额外:window.MessageChannel那些事今天要看的这个window.MessageChannel也是浏览器提供的一个异步操作的API。从MessageChannel名称上我们就能对其含义知晓个大概。消息通道-的确,这个接口允许我们创建一个新的消息通道,并通过它的…...

    2024/4/22 22:15:56
  7. VirtualBox安装Ubuntu 18.04.3LTS

    点赞收藏分享文章举报Warrior7发布了13 篇原创文章 获赞 3 访问量 1177私信关注...

    2024/4/20 9:56:45
  8. Pentaho 调用API根据指定路径下载文件

    Pentaho官网文档:https://help.pentaho.com/Documentation/8.2/Developer_Center/Embed_Pentaho_Server api : /pentaho/api/repos//generatedContent 这里的格式需要注意一下 代码如下: 工具类: public class HttpUtils {public static OutputStream doPostStream(String …...

    2024/4/20 5:14:46
  9. mac下MAT内存分析工具安装--独立版安装

    一、背景 在java程序运行中发生OOM的时候,我们可以使用强大的内存分析工具MAT进行问题跟踪,但由于习惯了使用idea开发,再为了MAT下载个eclipse太麻烦,所以安装MAT独立版。二、安装 下载地址:https://eclipse.org/mat/downloads.php选择自己系统相应的版本下载,下载完得到…...

    2024/4/21 15:09:19
  10. 小白 C++ 入门到大神发疯学习路线

    这篇文章实际上是我自己入门过程的总结,一个尽量少废话的C++入门指南。总结完忽然发现像个读书清单😄。 具体总结前,想先回答一个问题——要不要先学C,再学C++? 我作为小白时疑惑过这个问题,在此给后来的小白和当年的自己一个答案。 个人看法是,单就学习C++而言,直接学…...

    2024/4/1 15:59:25
  11. 13点值得注意的谷歌 JavaScript编写风格

    对于那些还不熟悉JavaScript的编写风格的人,谷歌提供了编写JavaScript的编写风格指南,谷歌风格指南 其中列出了编写干净、可理解代码的最佳风格实践。 对于编写有效的JavaScript来说,这些并不是硬性的、快速的规则,而只是在源文件中维护一致的、吸引人的样式选择的规则。这…...

    2024/4/13 21:48:20
  12. 解决rabbitMQ和kafka消息丢失问题

    目录1数据的丢失问题,可能出现在生产者、MQ、消费者中,咱们从 RabbitMQ 和 Kafka 分别来分析一下吧。解决方案:生产者弄丢了数据生产者将数据发送到 RabbitMQ 的时候,可能数据就在半路给搞丢了,因为网络问题啥的,都有可能。此时可以选择用 RabbitMQ 提供的事务功能,就是…...

    2024/4/23 3:40:28
  13. 身份证校验

    偶然看到的身份证校验,复制运行,以作记录:写的太6了package com.automic.swp.controller;/*** @ClassName: IDCartController* @Author: Mr_Dong先生* @Description: 身份证校验* @Date: 2019/12/13 16:07* @Version: 1.0*/import java.text.ParseException; import java.te…...

    2024/4/23 3:40:43
  14. PHP高性能分布式应用服务器框架-SwooleDistributed

    选择SD框架助力企业开发今年年底历时2年多的迭代,这是SD框架硕果满满的一年,通过不断的迭代和改进SD框架已经在圈内有良好的口碑,不少新生的框架借鉴了SD的设计思想,SD框架也被不少创业型公司和大型企业使用。SD框架到底是什么技术SD框架全称SwooleDistributed,从名称上看…...

    2024/4/18 19:45:36
  15. 是时候扔掉 Postman 了,试试 IntelliJ IDEA 自带的高能神器!

    前言 从postman到IDEA REST Client IDEA REST Client控制台 历史请求记录 构建HTTP请求脚本 环境区分 结果断言 结果值暂存 结语 前言 接口调试是每个软件开发从业者必不可少的一项技能,一个项目的的完成,可能接口测试调试的时间比真正开发写代码的时间还要多,几乎是每个开发…...

    2024/4/23 3:40:58
  16. C语言实现的简单公司职员信息管理系统

    项目需求设计要求功能选择可以用菜单来实现,用户根据自己 的选择进入不同的菜单程序不要求将信息保存到文件中,程序开始时职员信息为空,用户需要先增加职员信息,之后才可以实现查找、删除、浏览等功能。职员信息的关键字为职员的职员号,加入时职员号重复的记录不能加入。查…...

    2024/4/24 0:07:47
  17. 给用户赋予操作文件夹的所有权限(最高权限)

    sudo chmod -R 777 目录名 说明: -R 是指级联应用到目录里的所有子目录和文件 777 是所有用户都拥有最高权限(可自定权限码)点赞收藏分享文章举报weixin_45140509发布了2 篇原创文章 获赞 0 访问量 57私信关注...

    2024/4/23 3:40:17
  18. Spring session实现单点登陆

    Redis+Cookie+Jackson+Filter实现原生的单点登陆,对我们的业务是有入侵的因此,使用Spring Session实现的单点登陆不会对我们的业务进行入侵点赞收藏分享文章举报Richard678发布了229 篇原创文章 获赞 137 访问量 13万+私信关注...

    2024/4/24 8:35:28
  19. Java多线程进阶—— J.U.C之atomic框架:LongAdder

    一、LongAdder简介JDK1.8时,java.util.concurrent.atomic包中提供了一个新的原子类:LongAdder。 根据Oracle官方文档的介绍,LongAdder在高并发的场景下会比它的前辈————AtomicLong 具有更好的性能,代价是消耗更多的内存空间:那么,问题来了:为什么要引入LongAdder? …...

    2024/4/24 7:30:48
  20. 【转】linux日常运维工作

    Linux的使用环境也日趋成熟,各种开源产品络绎不绝,大有百花齐放的盛景,那么当Linux落地企业,回归工作时,我们还要面对这Linux运维方面的诸多问题,今天我们特意组织一场有关Linux 在企业运用当中交流分享活动。本次活动内容丰富,在此我们进行一下系统的梳理。一 Linux选择…...

    2024/4/23 5:42:37

最新文章

  1. springboot应用在linux环境获取resource目录下文件报错

    一现象&#xff1a; springboot应用在window环境中获取resource目录下文件路径正常&#xff0c;linux环境中获取resource目录下文件路径异常。 二代码&#xff1a; FileUtil.getAbsolutePath("templates/xx模板.xlsx"); 使用的是hutool提供的获取绝对路径的类&…...

    2024/4/24 10:42:24
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. Linux常用命令2

    1.shell 输出&#xff1a; echo 输出环境变量$PATH&#xff1a; echo $PATH 2.设置一个新的环境变量HELLO &#xff0c;值为 hello export HELLO"hello" 3.清除环境变量 HELLO unset HELLO 4. sed 命令&#xff08;按行筛选文本&#xff09; 显示web.xml 所…...

    2024/4/19 13:41:48
  4. 通过node 后端实现颜色窃贼 (取出某个图片的主体rgb颜色 )

    1.需求 我前端轮播图的背景色 想通过每一张轮播图片的颜色作为背景色 这样的话 需要通过一张图片 取出图片的颜色 这个工作通过前端去处理 也可以通过后端去处理 前端我试了试 color-thief 的插件 但是 这个插件是基于canvas 的模式来的 我需要在小程序中使用这个插件 而且是…...

    2024/4/23 20:44:14
  5. 【外汇早评】美通胀数据走低,美元调整

    原标题:【外汇早评】美通胀数据走低,美元调整昨日美国方面公布了新一期的核心PCE物价指数数据,同比增长1.6%,低于前值和预期值的1.7%,距离美联储的通胀目标2%继续走低,通胀压力较低,且此前美国一季度GDP初值中的消费部分下滑明显,因此市场对美联储后续更可能降息的政策…...

    2024/4/23 20:58:27
  6. 【原油贵金属周评】原油多头拥挤,价格调整

    原标题:【原油贵金属周评】原油多头拥挤,价格调整本周国际劳动节,我们喜迎四天假期,但是整个金融市场确实流动性充沛,大事频发,各个商品波动剧烈。美国方面,在本周四凌晨公布5月份的利率决议和新闻发布会,维持联邦基金利率在2.25%-2.50%不变,符合市场预期。同时美联储…...

    2024/4/23 13:30:22
  7. 【外汇周评】靓丽非农不及疲软通胀影响

    原标题:【外汇周评】靓丽非农不及疲软通胀影响在刚结束的周五,美国方面公布了新一期的非农就业数据,大幅好于前值和预期,新增就业重新回到20万以上。具体数据: 美国4月非农就业人口变动 26.3万人,预期 19万人,前值 19.6万人。 美国4月失业率 3.6%,预期 3.8%,前值 3…...

    2024/4/23 13:28:06
  8. 【原油贵金属早评】库存继续增加,油价收跌

    原标题:【原油贵金属早评】库存继续增加,油价收跌周三清晨公布美国当周API原油库存数据,上周原油库存增加281万桶至4.692亿桶,增幅超过预期的74.4万桶。且有消息人士称,沙特阿美据悉将于6月向亚洲炼油厂额外出售更多原油,印度炼油商预计将每日获得至多20万桶的额外原油供…...

    2024/4/20 23:26:47
  9. 【外汇早评】日本央行会议纪要不改日元强势

    原标题:【外汇早评】日本央行会议纪要不改日元强势近两日日元大幅走强与近期市场风险情绪上升,避险资金回流日元有关,也与前一段时间的美日贸易谈判给日本缓冲期,日本方面对汇率问题也避免继续贬值有关。虽然今日早间日本央行公布的利率会议纪要仍然是支持宽松政策,但这符…...

    2024/4/23 13:27:44
  10. 【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响

    原标题:【原油贵金属早评】欧佩克稳定市场,填补伊朗问题的影响近日伊朗局势升温,导致市场担忧影响原油供给,油价试图反弹。此时OPEC表态稳定市场。据消息人士透露,沙特6月石油出口料将低于700万桶/日,沙特已经收到石油消费国提出的6月份扩大出口的“适度要求”,沙特将满…...

    2024/4/19 11:57:53
  11. 【外汇早评】美欲与伊朗重谈协议

    原标题:【外汇早评】美欲与伊朗重谈协议美国对伊朗的制裁遭到伊朗的抗议,昨日伊朗方面提出将部分退出伊核协议。而此行为又遭到欧洲方面对伊朗的谴责和警告,伊朗外长昨日回应称,欧洲国家履行它们的义务,伊核协议就能保证存续。据传闻伊朗的导弹已经对准了以色列和美国的航…...

    2024/4/23 13:29:53
  12. 【原油贵金属早评】波动率飙升,市场情绪动荡

    原标题:【原油贵金属早评】波动率飙升,市场情绪动荡因中美贸易谈判不安情绪影响,金融市场各资产品种出现明显的波动。随着美国与中方开启第十一轮谈判之际,美国按照既定计划向中国2000亿商品征收25%的关税,市场情绪有所平复,已经开始接受这一事实。虽然波动率-恐慌指数VI…...

    2024/4/23 13:27:22
  13. 【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试

    原标题:【原油贵金属周评】伊朗局势升温,黄金多头跃跃欲试美国和伊朗的局势继续升温,市场风险情绪上升,避险黄金有向上突破阻力的迹象。原油方面稍显平稳,近期美国和OPEC加大供给及市场需求回落的影响,伊朗局势并未推升油价走强。近期中美贸易谈判摩擦再度升级,美国对中…...

    2024/4/23 13:28:42
  14. 【原油贵金属早评】市场情绪继续恶化,黄金上破

    原标题:【原油贵金属早评】市场情绪继续恶化,黄金上破周初中国针对于美国加征关税的进行的反制措施引发市场情绪的大幅波动,人民币汇率出现大幅的贬值动能,金融市场受到非常明显的冲击。尤其是波动率起来之后,对于股市的表现尤其不安。隔夜美国股市出现明显的下行走势,这…...

    2024/4/23 22:01:21
  15. 【外汇早评】美伊僵持,风险情绪继续升温

    原标题:【外汇早评】美伊僵持,风险情绪继续升温昨日沙特两艘油轮再次发生爆炸事件,导致波斯湾局势进一步恶化,市场担忧美伊可能会出现摩擦生火,避险品种获得支撑,黄金和日元大幅走强。美指受中美贸易问题影响而在低位震荡。继5月12日,四艘商船在阿联酋领海附近的阿曼湾、…...

    2024/4/23 13:29:23
  16. 【原油贵金属早评】贸易冲突导致需求低迷,油价弱势

    原标题:【原油贵金属早评】贸易冲突导致需求低迷,油价弱势近日虽然伊朗局势升温,中东地区几起油船被袭击事件影响,但油价并未走高,而是出于调整结构中。由于市场预期局势失控的可能性较低,而中美贸易问题导致的全球经济衰退风险更大,需求会持续低迷,因此油价调整压力较…...

    2024/4/23 13:27:46
  17. 氧生福地 玩美北湖(上)——为时光守候两千年

    原标题:氧生福地 玩美北湖(上)——为时光守候两千年一次说走就走的旅行,只有一张高铁票的距离~ 所以,湖南郴州,我来了~ 从广州南站出发,一个半小时就到达郴州西站了。在动车上,同时改票的南风兄和我居然被分到了一个车厢,所以一路非常愉快地聊了过来。 挺好,最起…...

    2024/4/23 13:47:22
  18. 氧生福地 玩美北湖(中)——永春梯田里的美与鲜

    原标题:氧生福地 玩美北湖(中)——永春梯田里的美与鲜一觉醒来,因为大家太爱“美”照,在柳毅山庄去寻找龙女而错过了早餐时间。近十点,向导坏坏还是带着饥肠辘辘的我们去吃郴州最富有盛名的“鱼头粉”。说这是“十二分推荐”,到郴州必吃的美食之一。 哇塞!那个味美香甜…...

    2024/4/19 11:59:23
  19. 氧生福地 玩美北湖(下)——奔跑吧骚年!

    原标题:氧生福地 玩美北湖(下)——奔跑吧骚年!让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 让我们红尘做伴 活得潇潇洒洒 策马奔腾共享人世繁华 对酒当歌唱出心中喜悦 轰轰烈烈把握青春年华 啊……啊……啊 两…...

    2024/4/19 11:59:44
  20. 扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!

    原标题:扒开伪装医用面膜,翻六倍价格宰客,小姐姐注意了!扒开伪装医用面膜,翻六倍价格宰客!当行业里的某一品项火爆了,就会有很多商家蹭热度,装逼忽悠,最近火爆朋友圈的医用面膜,被沾上了污点,到底怎么回事呢? “比普通面膜安全、效果好!痘痘、痘印、敏感肌都能用…...

    2024/4/23 13:28:08
  21. 「发现」铁皮石斛仙草之神奇功效用于医用面膜

    原标题:「发现」铁皮石斛仙草之神奇功效用于医用面膜丽彦妆铁皮石斛医用面膜|石斛多糖无菌修护补水贴19大优势: 1、铁皮石斛:自唐宋以来,一直被列为皇室贡品,铁皮石斛生于海拔1600米的悬崖峭壁之上,繁殖力差,产量极低,所以古代仅供皇室、贵族享用 2、铁皮石斛自古民间…...

    2024/4/23 13:29:47
  22. 丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者

    原标题:丽彦妆\医用面膜\冷敷贴轻奢医学护肤引导者【公司简介】 广州华彬企业隶属香港华彬集团有限公司,专注美业21年,其旗下品牌: 「圣茵美」私密荷尔蒙抗衰,产后修复 「圣仪轩」私密荷尔蒙抗衰,产后修复 「花茵莳」私密荷尔蒙抗衰,产后修复 「丽彦妆」专注医学护…...

    2024/4/23 13:28:14
  23. 广州械字号面膜生产厂家OEM/ODM4项须知!

    原标题:广州械字号面膜生产厂家OEM/ODM4项须知!广州械字号面膜生产厂家OEM/ODM流程及注意事项解读: 械字号医用面膜,其实在我国并没有严格的定义,通常我们说的医美面膜指的应该是一种「医用敷料」,也就是说,医用面膜其实算作「医疗器械」的一种,又称「医用冷敷贴」。 …...

    2024/4/23 13:27:51
  24. 械字号医用眼膜缓解用眼过度到底有无作用?

    原标题:械字号医用眼膜缓解用眼过度到底有无作用?医用眼膜/械字号眼膜/医用冷敷眼贴 凝胶层为亲水高分子材料,含70%以上的水分。体表皮肤温度传导到本产品的凝胶层,热量被凝胶内水分子吸收,通过水分的蒸发带走大量的热量,可迅速地降低体表皮肤局部温度,减轻局部皮肤的灼…...

    2024/4/23 13:27:19
  25. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  26. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  27. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  28. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  29. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  30. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  31. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  32. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  33. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  34. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  35. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  36. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  37. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  38. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  39. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  40. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  41. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  42. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  43. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  44. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57