https://blog.csdn.net/sinat_17456165/article/details/106184711

在深度学习的很多工作中(例如目标检测、图像分割),融合不同尺度的特征是提高性能的一个重要手段。低层特征分辨率更高,包含更多位置、细节信息,但是由于经过的卷积更少,其语义性更低,噪声更多。高层特征具有更强的语义信息,但是分辨率很低,对细节的感知能力较差。如何将两者高效融合,取其长处,弃之糟泊,是改善分割模型的关键。

很多工作通过融合多层来提升检测和分割的性能,按照融合与预测的先后顺序,分类为早融合(Early fusion)和晚融合(Late fusion)。

早融合(Early fusion): 先融合多层的特征,然后在融合后的特征上训练预测器(只在完全融合之后,才统一进行检测)。这类方法也被称为skip connection,即采用concat、add操作。这一思路的代表是Inside-Outside Net(ION)和HyperNet。两个经典的特征融合方法:

(1)concat:系列特征融合,直接将两个特征进行连接。两个输入特征x和y的维数若为p和q,输出特征z的维数为p+q;

(2)add:并行策略,将这两个特征向量组合成复向量,对于输入特征x和y,z = x + iy,其中i是虚数单位。

晚融合(Late fusion):通过结合不同层的检测结果改进检测性能(尚未完成最终的融合之前,在部分融合的层上就开始进行检测,会有多层的检测,最终将多个检测结果进行融合)。这一类研究思路的代表有两种:

(1)feature不融合,多尺度的feture分别进行预测,然后对预测结果进行综合,如Single Shot MultiBox Detector (SSD) , Multi-scale CNN(MS-CNN)

(2)feature进行金字塔融合,融合后进行预测,如Feature Pyramid Network(FPN)等。

接下来,主要对晚融合方法进行归纳总结。

Feature Pyramid Network(FPN)

论文地址

https://arxiv.org/abs/1612.03144

FPN(Feature Pyramid Network)算法同时利用低层特征高分辨率和高层特征的高语义信息,通过融合这些不同层的特征达到预测的效果。并且预测是在每个融合后的特征层上单独进行的,这和常规的特征融合方式不同。

FPN将深层信息上采样,与浅层信息逐元素地相加,从而构建了尺寸不同的特征金字塔结构,性能优越,现已成为目标检测算法的一个标准组件。FPN的结构如下所示。

  • 自下而上:最左侧为普通的卷积网络,默认使用ResNet结构,用作提取语义信息。C1代表了ResNet的前几个卷积与池化层,而C2至C5分别为不同的ResNet卷积组,这些卷积组包含了多个Bottleneck结构,组内的特征图大小相同,组间大小递减。

  • 自上而下:首先对C5进行1×1卷积降低通道数得到P5,然后依次进行上采样得到P4、P3和P2,目的是得到与C4、C3与C2长宽相同的特征,以方便下一步进行逐元素相加。这里采用2倍最邻近上采样,即直接对临近元素进行复制,而非线性插值。

  • 横向连接(Lateral Connection):目的是为了将上采样后的高语义特征与浅层的定位细节特征进行融合。高语义特征经过上采样后,其长宽与对应的浅层特征相同,而通道数固定为256,因此需要对底层特征C2至C4进行11卷积使得其通道数变为256,然后两者进行逐元素相加得到P4、P3与P2。由于C1的特征图尺寸较大且语义信息不足,因此没有把C1放到横向连接中。

  • 卷积融合:在得到相加后的特征后,利用3×3卷积对生成的P2至P4再进行融合,目的是消除上采样过程带来的重叠效应,以生成最终的特征图。

FPN对于不同大小的RoI,使用不同的特征图,大尺度的RoI在深层的特征图上进行提取,如P5,小尺度的RoI在浅层的特征图上进行提取,如P2。FPN的代码实现如下:

  1. import torch.nn as nnimport torch.nn.functional as Fimport math

  2. class Bottleneck(nn.Module):    expansion = 4    def __init__(self, in_planes, planes, stride=1, downsample=None):        super(Bottleneck, self).__init__()        self.bottleneck = nn.Sequential(                nn.Conv2d(in_planes, planes, 1, bias=False),                nn.BatchNorm2d(planes),                nn.ReLU(inplace=True),                nn.Conv2d(planes, planes, 3, stride, 1, bias=False),                nn.BatchNorm2d(planes),                nn.ReLU(inplace=True),                nn.Conv2d(planes, self.expansion * planes, 1, bias=False),                nn.BatchNorm2d(self.expansion * planes),            )        self.relu = nn.ReLU(inplace=True)        self.downsample = downsample    def forward(self, x):        identity = x        out = self.bottleneck(x)        if self.downsample is not None:            identity = self.downsample(x)        out += identity        out = self.relu(out)        return out

  3. class FPN(nn.Module):    def __init__(self, layers):        super(FPN, self).__init__()        self.inplanes = 64        self.conv1 = nn.Conv2d(3, 64, 7, 2, 3, bias=False)        self.bn1 = nn.BatchNorm2d(64)        self.relu = nn.ReLU(inplace=True)        self.maxpool = nn.MaxPool2d(3, 2, 1)

  4.        self.layer1 = self._make_layer(64, layers[0])        self.layer2 = self._make_layer(128, layers[1], 2)        self.layer3 = self._make_layer(256, layers[2], 2)        self.layer4 = self._make_layer(512, layers[3], 2)        self.toplayer = nn.Conv2d(2048, 256, 1, 1, 0)

  5.        self.smooth1 = nn.Conv2d(256, 256, 3, 1, 1)        self.smooth2 = nn.Conv2d(256, 256, 3, 1, 1)        self.smooth3 = nn.Conv2d(256, 256, 3, 1, 1)

  6.        self.latlayer1 = nn.Conv2d(1024, 256, 1, 1, 0)        self.latlayer2 = nn.Conv2d( 512, 256, 1, 1, 0)        self.latlayer3 = nn.Conv2d( 256, 256, 1, 1, 0)

  7.    def _make_layer(self, planes, blocks, stride=1):        downsample  = None        if stride != 1 or self.inplanes != Bottleneck.expansion * planes:            downsample  = nn.Sequential(                nn.Conv2d(self.inplanes, Bottleneck.expansion * planes, 1, stride, bias=False),                nn.BatchNorm2d(Bottleneck.expansion * planes)            )        layers = []        layers.append(Bottleneck(self.inplanes, planes, stride, downsample))        self.inplanes = planes * Bottleneck.expansion        for i in range(1, blocks):            layers.append(Bottleneck(self.inplanes, planes))        return nn.Sequential(*layers)

  8.    def _upsample_add(self, x, y):        _,_,H,W = y.shape        return F.upsample(x, size=(H,W), mode='bilinear') + y

  9.    def forward(self, x):

  10.        c1 = self.maxpool(self.relu(self.bn1(self.conv1(x))))        c2 = self.layer1(c1)        c3 = self.layer2(c2)        c4 = self.layer3(c3)        c5 = self.layer4(c4)

  11.        p5 = self.toplayer(c5)        p4 = self._upsample_add(p5, self.latlayer1(c4))        p3 = self._upsample_add(p4, self.latlayer2(c3))        p2 = self._upsample_add(p3, self.latlayer3(c2))

  12.        p4 = self.smooth1(p4)        p3 = self.smooth2(p3)        p2 = self.smooth3(p2)        return p2, p3, p4, p5

PANet(Path Aggregation Network)

论文地址:

https://arxiv.org/abs/1803.01534

代码地址:

https://github.com/ShuLiu1993/PANet

1、缩短信息路径和用低层级的准确定位信息增强特征金字塔,创建了自下而上的路径增强

2、为了恢复每个建议区域和所有特征层级之间被破坏的信息,作者开发了适应性特征池化(adaptive feature pooling)技术,可以将所有特征层级中的特征整合到每个建议区域中,避免了任意分配的结果。

3、全连接融合层:使用一个小型fc层用于补充mask预测

自下而上的路径增强

Bottom-up Path Augemtation的提出主要是考虑到网络的浅层特征对于实例分割非常重要,不难想到浅层特征中包含大量边缘形状等特征,这对实例分割这种像素级别的分类任务是起到至关重要的作用的。因此,为了保留更多的浅层特征,论文引入了Bottom-up Path Augemtation。

红色的箭头表示在FPN中,因为要走自底向上的过程,浅层的特征传递到顶层需要经过几十个甚至上百个网络层,当然这取决于BackBone网络用的什么,因此经过这么多层传递之后,浅层的特征信息丢失就会比较严重。

绿色的箭头表作者添加了一个Bottom-up Path Augemtation结构,这个结构本身不到10层,这样浅层特征经过原始FPN中的横向连接到P2然后再从P2沿着Bottom-up Path Augemtation传递到顶层,经过的层数不到10层,能较好的保存浅层特征信息。注意,这里的N2和P2表示同一个特征图。 但N3,N4,N5和P3,P4,P5不一样,实际上N3,N4,N5是P3,P4,P5融合后的结果。

Bottom-up Path Augemtation的详细结构如下图所示,经过一个尺寸为

,步长为的卷积之后,特征图尺寸减小为原来的一半然后和这个特征图做add操作,得到的结果再经过一个卷积核尺寸为,的卷积层得到

Bottom-up Path Augemtation详细结构

适应性特征池化(adaptive feature pooling)

论文指出,在Faster-RCNN系列的标检测或分割算法中,RPN网络得到的ROI需要经过ROI Pooling或ROI Align提取ROI特征,这一步操作中每个ROI所基于的特征都是单层特征,FPN同样也是基于单层特征,因为检测头是分别接在每个尺度上的。

本文提出的Adaptive Feature Pooling则是将单层特征换成多层特征,即每个ROI需要和多层特征(论文中是4层)做ROI Align的操作,然后将得到的不同层的ROI特征融合在一起,这样每个ROI特征就融合了多层特征。

RPN网络获得的每个ROI都要分别和

特征层做ROI Align操作,这样个ROI就提取到4个不同的特征图,然后将4个不同的特征图融合在一起就得到最终的特征,后续的分类和回归都是基于此最终的特征进行。

全连接融合层(Fully-Connected Fusion)

全连接融合层对原有的分割支路(FCN)引入一个前景二分类的全连接支路,通过融合这两条支路的输出得到更加精确的分割结果。这个模块的具体实现如图所示。

Fully-Connected Fusion模块

从图中可以看到这个结构主要是在原始的Mask支路(即带deconv那条支路)的基础上增加了下面那个支路做融合。增加的这个支路包含

个的卷积层,然后接一个全连接层,再经过reshape操作得到维度和上面支路相同的前背景Mask,即是说下面这个支路做的就是前景和背景的二分类,输出维度类似于文中说的。而上面的支路输出维度类似,其中

代表数据集目标类别数。最终,这两条支路的输出Mask做融合以获得更加精细的最终结果。

MLFPN

MLFPN来自《M2det: A single-shot object detector based on multi-level feature pyramid network》。

论文地址:

https://arxiv.org/abs/1811.04533

代码地址:

https://github.com/qijiezhao/M2Det

之前的特征金字塔目标检测网络共有的两个问题是:

1、原本 backbone 是用于目标分类的网络,导致用于目标检测的语义特征不足;

2、每个用于目标检测的特征层主要或者仅仅是由单级特征层(single-level layers)构成,也就是仅仅包含了单级信息

这种思想导致一个很严重的问题,对分类子网络来说更深更高的层更容易区分,对定位的回归任务来说使用更低更浅的层比较好。此外,底层特征更适合描述具有简单外观的目标,而高层特征更适合描述具有复杂外观的目标。在实际中,具有相似大小目标实例的外观可能非常不同。例如一个交通灯和一个远距离的人可能具有可以比较的尺寸,但是人的外表更加复杂。因此,金字塔中的每个特征图主要或者仅仅由单层特征构成可能会导致次优的检测性能。

为了更好地解决目标检测中尺度变化带来的问题,M2det提出一种更有效的特征金字塔结构MLFPN, 其大致流程如下图所示:首先,对主干网络提取到的特征进行融合;然后通过TUM和FFM提取更有代表性的Multi-level&Mutli-scale特征;最后通过SFAM融合多级特征,得到多级特征金字塔用于最终阶段的预测。M2Det使用主干网络+MLFPN来提取图像特征,然后采用类似SSD的方式预测密集的包围框和类别得分,通过NMS得到最后的检测结果。

如上图所示,MLFPN主要有3个模块组成:

1)特征融合模块FFM;

2)细化U型模块TUM;

3)尺度特征聚合模块SFAM.

首先, FFMv1对主干网络提取到的浅层和深层特征进行融合,得到base feature;

其次,堆叠多个TUM和FFMv2,每个TUM可以产生多个不同scale的feature map,每个FFMv2融合base feature和上一个TUM的输出,并给到下一个TUM作为输入(更高level)。

最后,SFAM通过scale-wise拼接和channel-wise attention来聚合multi-level&multi-scale的特征。

  • 特征融合模块FFM

FFM用于融合M2Det中不同级别的特征,先通过1x1卷积压缩通道数,再进行拼接。

FFM1 用于融合深层和和浅层特征,为 MLFPN 提供基本输入的特征层(Base Feature);由于 M2Det 使用了 VGG 作为 backbone,因此 FFM1 取出了 Conv4_3 和 Conv5_3 作为输入:FFMv1使用两种不同scale的feature map作为输入,所以在拼接操作之前加入了上采样操作来调整大小;

FFMv2用于融合 MLFPN 的基本输入(Base Feature)和上一个 TUM 模块的输出,两个输入的scale相同,所以比较简单。

  • 细化U型模块TUM

TUM使用了比FPN和RetinaNet更薄的U型网络。在上采样和元素相加操作之后加上1x1卷积来加强学习能力和保持特征平滑度。TUM中每个解码器的输出共同构成了该TUM的multi-scale输出。每个TUM的输出共同构成了multi-level&multi-scale特征,前面的TUM提供low level feature,后面的TUM提供high level feature。

TUM 的编码器(encoder)使用 3×3 大小、步长为 2 的卷积层进行特征提取,特征图不断缩小;解码器(decoder)同过双线性插值的方法将特征图放大回原大小。

  • 尺度特征聚合模块SFAM

SFAM旨在聚合TUMs产生的多级多尺度特征,以构造一个多级特征金字塔。在first stage,SFAM沿着channel维度将拥有相同scale的feature map进行拼接,这样得到的每个scale的特征都包含了多个level的信息。然后在second stage,借鉴SENet的思想,加入channel-wise attention,以更好地捕捉有用的特征。SFAM的细节如下图所示:

网络配置

M2Det的主干网络采用VGG-16和ResNet-101。

MLFPN的默认配置包含有8个TUM,每个TUM包含5个跨步卷积核5个上采样操作,所以每个TUM的输出包含了6个不同scale的特征。

在检测阶段,为6组金字塔特征每组后面添加两个卷积层,以分别实现位置回归和分类。

后处理阶段,使用soft-NMS来过滤无用的包围框。

ASFF:自适应特征融合方式

ASFF来自论文:《Learning Spatial Fusion for Single-Shot Object Detection》,也就是著名的yolov3-asff。

论文地址:

https://arxiv.org/pdf/1911.09516.pdf

代码地址:

https://github.com/ruinmessi/ASFF

金字塔特征表示法(FPN)是解决目标检测尺度变化挑战的常用方法。但是,对于基于FPN的单级检测器来说,不同特征尺度之间的不一致是其主要限制。因此这篇论文提出了一种新的数据驱动的金字塔特征融合方式,称之为自适应空间特征融合(ASFF)。它学习了在空间上过滤冲突信息以抑制梯度反传的时候不一致的方法,从而改善了特征的比例不变性,并且推理开销降低。借助ASFF策略和可靠的YOLOV3 BaseLine,在COCO数据集上实现了45FPS/42.4%AP以及29FPS/43.9%AP。

ASFF简要思想就是:原来的FPN add方式现在变成了add基础上多了一个可学习系数,该参数是自动学习的,可以实现自适应融合效果,类似于全连接参数。 

以ASFF-3为例,图中的绿色框描述了如何将特征进行融合,其中X1,X2,X3分别为来自level,level2,level3的特征,与为来自不同层的特征乘上权重参数α3,β3和γ3并相加,就能得到新的融合特征ASFF-3,如下面公式所示:

因为采用相加的方式,所以需要相加时的level1~3层输出的特征大小相同,且通道数也要相同,需要对不同层的feature做upsample或downsample并调整通道数。对于需要upsample的层,比如想得到ASFF3,需要将level1调整至和level3尺寸一致,采用的方式是先通过1×1卷积调整到与level3通道数一致,再用插值的方式resize到相同大小;而对于需要downsample的层,比如想得到ASFF1,此时对于level2到level1只需要用一个3×3,stride=2的卷积就可以了,如果是level3到level1则需要在3×3卷积的基础上再加一个stride=2的maxpooling,这样就能调整level3和level1尺寸一致。

对于权重参数α,β和γ,则是通过resize后的level1~level3的特征图经过1×1的卷积得到的。并且参数α,β和γ经过concat之后通过softmax使得他们的范围都在[0,1]内并且和为1:

具体步骤可以概况为:

1、首先对于第l级特征图输出cxhxw,对其余特征图进行上下采样操作,得到同样大小和channel的特征图,方便后续融合 

2、对处理后的3个层级特征图输出,输入到1x1xn的卷积中(n是预先设定的),得到3个空间权重向量,每个大小是nxhxw 

3、然后通道方向拼接得到3nxhxw的权重融合图 

4、为了得到通道为3的权重图,对上述特征图采用1x1x3的卷积,得到3xhxw的权重向量 

5、在通道方向softmax操作,进行归一化,将3个向量乘加到3个特征图上面,得到融合后的cxhxw特征图 

6、采用3x3卷积得到输出通道为256的预测输出层

为什么ASFF有效?

文章通过梯度和反向传播来解释为什么ASFF会有效。首先以最基本的YOLOv3为例,加入FPN后通过链式法则我们知道在backward的时候梯度是这样计算的:

其中因为不同尺度的层之间的尺度变换无非就是up-sampling或者down-sampling,因此这一项通常为固定值,为了简化表达式我们可以设置为1,,则上面的式子变成了:

进一步的,这一项相当于对输出特征的activation操作,其导数也将为固定值,同理,我们可以将他们的值简化为1,则表达式进一步简化成了:

假设level1(i,j)对应位置feature map上刚好有物体并且为正样本,那其他level上对应(i,j)位置上可能刚好为负样本,这样反传过程中梯度既包含了正样本又包含了负样本,这种不连续性会对梯度结果造成干扰,并且降低训练的效率。而通过ASFF的方式,反传的梯度表达式就变成了:

我们可以通过权重参数来控制,比如刚才那种情况,另α2和α3=0,则负样本的梯度不会结果造成干扰。另外这也解释了为什么特征融合的权重参数来源于输出特征+卷积,因为融合的权重参数和特征是息息相关的。

Bi-FPN

 BiFPN来自论文:《EfficientDet: Scalable and efficient object detection 》。BiFPN思想和ASFF非常类似,也是可学习参数的自适应加权融合,但是比ASFF更加复杂。

论文地址:

https://arxiv.org/abs/1901.01892

代码地址:

https://github.com/google/automl/tree/master/efficientdet(Google官方)

https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch(高星PyTorch复现)

EfficientDet的方法论和创新性围绕两个关键挑战:

  • 更好地融合多层特征。这个毋庸置疑,肯定是从 FPN 发展过来的,至于 Bi 就是双向,原始的FPN实现的自顶向下(top-down)融合,所谓的BiFPN就是两条路线既有top-down也有down-top。在融合过程中,之前的一些模型方法没有考虑到各级特征对融合后特征的g共享度问题,即之前模型认为各级特征的贡献度相同,而本文作者认为它们的分辨率不同,其对融合后特征的贡献度不同,因此在特征融合阶段引入了weight。

  • 模型缩放。这个主要灵感来自于 EfficientNet,即在基线网络上同时对多个维度进行缩放(一般都是放大),这里的维度体现在主干网络、特征网络、以及分类/回归网络全流程的整体架构上整体网络由主干网络、特征网络以及分类/回归网络组成,可以缩放的维度比 EfficientNet 多得多,所以用网络搜索方式不合适了,作者提出一些启发式方法。

BiFPN

BiFPN的思想其实是基于路径增强FPN(PANet)的思想,在自顶向下特征融合之后紧接着自底向上再融合一遍。在图2中文章列举了三类FPN以及BiFPN。图2(a) 是传统FPN,图2(b)是PANet,图2(c)是利用网络自动搜索的方式生成的不规则特征融合模块,且这个模块可以重复叠加使用【即堆叠同样的模块,不停地使用相同的结构融合多层特征】。可以看到,PANet可以看做一个naïve的双向FPN。

BiFPN针对PANet的改进点主要有三个:

  • 削减了一些边。BiFPN删除了只有一个入度的节点,因为这个节点和前一个节点的信息是相同的【因为没有别的新的信息传进来】,这样就祛除了一些冗余计算。

  • 增加了一些边。BiFPN增加了一些跳跃连接【可以理解为residual连接,图2(d)中横向曲线3个连接】,这些连接由同一层的原始特征节点【即没有经历自顶向下融合的特征】连接到输出节点【参与自底向上特征融合】。

  • 将自顶向下和自底向上融合构造为一个模块,使其可以重复堆叠,增强信息融合【有了一种递归神经网络的赶脚】。PANet只有一层自顶向下和一层自底向上。

而对于特征融合的计算,BiFPN也做了改进。传统融合计算一般就是把输入特征图resize到相同尺寸然后相加【或相乘,或拼接】。但是BiFPN考虑到不同特征的贡献可能不同,所以考虑对输入特征加权。文章中把作者们对如何加权的探索过程也列了出来。

  • 首先尝试简单加权相加,对权值不做约束。这样得到的实验结果还可以,但是没有约束的权值会造成训练困难和崩溃。

  • 然后为了归一化权值,作者尝试了用softmax操作把权值归一化到[0, 1]。虽然达到了归一化效果,但是softmax极大增加了GPU计算负担。

  • 最后,回归本质,不整什么指数计算了。直接权值除以所有权值加和(分母加了一个极小量防止除0)来归一化【也就是计算权值在整个权值中的比例】,同样把权值归一化到[0,1],性能并没有下降,还增加了计算速度。

BiFPN介绍的最后,作者还提醒大家注意在特征融合模块里为了进一步提高计算效率,卷积使用的是逐深度卷积【就是每个通道自成一个分组】,并在每个卷积之后加了BN和激活函数。

EfficientDet

EfficientDet使用在imagenet上预训练的EfficientNet作为backbone模型,并对网络中第3到第7层特征进行了BiFPN特征融合,用来检测和分类。

EfficientDet同样对模型进行了缩放。与EfficientNet对传统提升模型尺度方法的态度一样,文章认为传统提升模型尺度指示简单地针对单一维度【深度,宽度或分辨率】进行增加,而EfficientNet提出的符合缩放才是真香。EfficientDet提出了自己的符合缩放,要联合对backbone,BiFPN,预测模块,和输入分辨率进行缩放。然而仅仅对EfficientNet本身缩放的参数进行网格搜索就已经很贵了,对所有网络的所有维度进行网格搜索显然也是不可承受之重。所以EfficientDet用了一个“启发式”方法【在我看来是对每个网络的每个维度自定了一些简单的规则而已】。

  • Backbone依然遵循EfficientNet。

  • BiFPN的深度随系数ϕ线性增长,宽度随ϕ指数增长。而对宽度指数的底做了一个网格搜索,确定底为1.35 。

  • 对预测模块,宽度与BiFPN一致。深度随ϕ线性增长。

  • 输入分辨率也是随ϕ线性增长。

参考文章

https://zhuanlan.zhihu.com/p/93922612

https://blog.csdn.net/weixin_44936889/article/details/104269829

https://zhuanlan.zhihu.com/p/

https://blog.csdn.net/watermelon1123/article/details/103277773

涨分利器!攻克目标检测难点秘籍三,多尺度检测

“白话”目标检测系列:EfficientDet

https://zhuanlan.zhihu.com/p/141533907

查看全文
如若内容造成侵权/违法违规/事实不符,请联系编程学习网邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

相关文章

  1. java基础10---IO流

    一.File类的使用 1.File类的理解1.File类的一个对象,代表一个文件或一个文件目录(俗称:文件夹) 2 File类声明在java.io包下 3.File类中涉及到关于文件或文件目录的创建、删除、重命名、修改时间、文件大小等方法,并未涉及到写入或读取文件内容的操作。如果需要读取或写入文件…...

    2024/4/11 19:45:28
  2. 制造恶作剧切断TCP连接和进程之间的关联

    想不想再玩个恶作剧?? 很多运维发现系统中有tcp连接异常的时候,会使用netstat/ss命令找出tcp连接对应的处理进程,然后去找研发debug这个进程。比如: [root@localhost ~]# netstat -ntp Active Internet connections (w/o servers) Proto Recv-Q Send-Q Local Address …...

    2024/4/11 19:45:27
  3. CoppeliaSim V4.1.0(V-Rep)简要说明

    CoppeliaSim V4.1.0(以前称为V-REP),是一种可扩展的机器人仿真工具包,每月下载量超过10万次。学生和大学等可以免费使用具有完整功能的CoppeliaSim,无需注册。一些新功能如下:内置ROS2 Foxy Fitzroy接口(支持主题,服务,行动,参数,TF2广播和图像传输)内置ROS Noetic…...

    2024/4/10 11:59:26
  4. JavaEE学习 day04

    今天,继续学习了JavaEE。学习了拦截器概念、拦截器使用、SSM图书管理系统_MiniUI、SSM图书管理系统_SSM框架搭建、SSM图书管理系统_建库建表。 总结一下一些需要注意的问题: 1.拦截器Interceptor: 依赖于web框架,在SpringMVC中就是依赖于SpringMVC框架。在实现上基于Java的…...

    2024/4/10 11:59:25
  5. VSCode 插件开发实例(WebView):微信读书 ^-^边撸代码边看小说^-^

    最终效果主要代码package.json{"name": "WeReadForVSCodeJackieZheng","repository": {"type": "git","url": "https://github.com/JackieZheng/WeReadForVSCode.git"},"displayName": "…...

    2024/4/18 12:54:00
  6. 代码控制浏览器全屏

    全屏var docElm = document.documentElement;//W3Cif(docElm.requestFullscreen) {docElm.requestFullscreen();}//FireFoxelse if(docElm.mozRequestFullScreen) {docElm.mozRequestFullScreen();}//Chrome等else if(docElm.webkitRequestFullScreen) {docElm.webkitRequestFu…...

    2024/4/19 2:27:28
  7. Xcelium基础使用

    @TOC## Xcelium基础使用 一,基础问答 二,option 三,help使用...

    2024/4/19 3:00:56
  8. springboot 拦截器&过滤器

    过滤器public class LogWebFilter implements Filter第一种 @Configuration public class FilterConfig {@Beanpublic FilterRegistrationBean registFilter() {FilterRegistrationBean registration = new FilterRegistrationBean();registration.setFilter(new LogCostFilter…...

    2024/4/10 11:59:21
  9. 网站服务 虚拟主机及论坛网站的发布

    网站简介 网站的名词解释 HTML 是超文本标记语言 网页 使用计算机语言如Java html5 php等语言编辑的文本 主页 网页中呈现于低用户的第一个页面 一般默认为index.html 网站 多个网页组合而成的一个服务器 URL 统一资源定位符 用于网页的访问 网站的架构 常见的分为两种LAM…...

    2024/4/10 11:59:21
  10. ubuntu18如何安装exe文件

    1、首先安装wine 2、cd xxx //xxx为exe下载的目录 3、wine aaa.exe //aaa为exe文件的名字 4、建议sudo apt-get install winetricks //用于exe文件的卸载 ok啦~~ 注意:winetricks中的.net文件不要安装,不然ubunut桌面图标会被强制对齐。也就是windows的格式。...

    2024/4/16 5:52:55
  11. Qt之事件处理机制

    思维导读一、事件简介二、QT事件产生三、Qt事件处理四、自定义事件和eventFilter示例 思维导读回到顶部一、事件简介QT程序是事件驱动的, 程序的每个动作都是由内部某个事件所触发。QT事件的发生和处理成为程序运行的主线,存在于程序整个生命周期。常见的QT事件类型如下:键盘事…...

    2024/4/11 19:45:26
  12. SpringBoot(十三)整合Druid

    Druid简介 Java程序很大一部分要操作数据库,为了提高性能操作数据库的时候,又不得不使用数据库连接池。 Druid 是阿里巴巴开源平台上一个数据库连接池实现,结合了 C3P0、DBCP 等 DB 池的优点,同时加入了日志监控。 Druid 可以很好的监控 DB 池连接和 SQL 的执行情况,天生就…...

    2024/4/19 3:36:29
  13. js实现图片库(改进版 实现了兼容和优化)

    html 部分 <ul id="imagegallery"><!--onclick="showPic(this); return false;":因为onclick时间处理函数所触发的js代码返回给他的值是false,所以a链接不会跳转--><li><a href="1/1.jpg" title="我好不好看"&…...

    2024/4/11 19:45:24
  14. 小学妹揪着让我教她JMeter性能测试,为了让她不再烦我,我总结了这些!!

    目录JMeter性能测试,完整入门篇2. Jmeter安装2.1 JDK安装2.2 JMeter安装3. 测试实例3.1 接口地址3.2 请求参数3.3 返回结果4. JMeter脚本编写4.1 添加线程组4.2 添加HTTP请求4.3 添加察看结果树4.4 添加用户自定义变量4.5 添加断言4.6 添加断言结果4.7 添加聚合报告5. 执行性能…...

    2024/4/11 19:45:23
  15. BASE64Encoder依赖的jar包配置方式

    Base64是一种能将任意Binary资料用64种字元组合成字串的方法,而这个Binary资料和字串资料彼此之间是可以互相转换的,十分方便。在实际应用上,Base64除了能将Binary资料可视化之外,也常用来表示字串加密过后的内容。 问题来源此时 无法使用BASE64Encoder 因为 BASE64Encoder…...

    2024/4/11 19:45:22
  16. Forsage智能合约矩阵规则

    以太坊仍然是区块链世界上最强大的协议之一。几乎所有dapp类别都实现了同比增长。高风险类别也不例外。它的每日活跃钱包和交易量创下历史新高。此外,2020年第二季度共提交了74份新的dapp,比上一季度高出两倍。在2020年第二季度,我们看到每日活跃钱包的季度收入大幅增长134%…...

    2024/4/11 19:45:22
  17. 第二代天神:克罗诺斯

    克罗诺斯成为第二代天神后,担心他的兄弟们觊觎宝座,故将独目巨人和百臂巨人关入了塔尔塔洛斯,后感觉还不够,将其他兄弟们也关进去了,只把姐妹种最漂亮年轻的瑞亚留在了身边并成为了他的妻子。克罗诺斯预测到将会被儿子种最为优秀的一个推翻,故想到了一个方法,将孩子关在…...

    2024/4/11 19:45:20
  18. Autoencoders的理解

    Autoencoders的理解 From paper “Unsupervised speech representation learning using WaveNet autoencoders” "Autoencoders: networks which are tasked with reconstructing their inputs. Autoencoders use an encoding network to extract a latent representation…...

    2024/4/12 20:58:05
  19. android-ndk-r10交叉编译libev(ubuntu16.04)

    android-ndk-r10交叉编译libev(ubuntu16.04)版本说明版本 作者 日期 备注0.1 loon 2020.8.18 初稿目录 文章目录android-ndk-r10交叉编译libev(ubuntu16.04)版本说明目录一、准备1、ndk下载2、libev下载二、ndk安装1、解压安装2、配置环境变量3、验证环境变量三、libev交叉编译…...

    2024/4/19 16:57:57
  20. USB Type-C PD快充简介

    一、Power Delivery—发展和进化Power Delivery的发展史: 2012年7月,Power Delivery 1.0,通过在VBUS上使用BFSK调制来协商供电; 2014年8月,Power Delivery 2.0 ,支持Type-C接口,通过CC线配置电源,支持额定的5V、9V、12V、20V电压,最大5A电流100W。 2015年12月,Power …...

    2024/4/16 14:18:13

最新文章

  1. 常用的 CSS 属性和布局技巧

    常用 CSS 属性&#xff1a; 1. 盒子模型 width、height&#xff1a;设置盒子的宽度和高度。 padding&#xff1a;内边距&#xff0c;指定盒子内容与边框之间的空间。 margin&#xff1a;外边距&#xff0c;指定盒子与周围元素之间的空间。 border&#xff1a;边框&#xff0c…...

    2024/4/20 2:15:41
  2. 梯度消失和梯度爆炸的一些处理方法

    在这里是记录一下梯度消失或梯度爆炸的一些处理技巧。全当学习总结了如有错误还请留言&#xff0c;在此感激不尽。 权重和梯度的更新公式如下&#xff1a; w w − η ⋅ ∇ w w w - \eta \cdot \nabla w ww−η⋅∇w 个人通俗的理解梯度消失就是网络模型在反向求导的时候出…...

    2024/3/20 10:50:27
  3. 蓝桥杯加训

    1.两只塔姆沃斯牛&#xff08;模拟&#xff09; 思路&#xff1a;人和牛都记录三个数据&#xff0c;当前坐标和走的方向&#xff0c;如果人和牛的坐标和方向走重复了&#xff0c;那就说明一直在绕圈圈&#xff0c;无解 #include<iostream> using namespace std; const i…...

    2024/4/19 23:43:17
  4. JVM笔记

    1.JVM与Java体系结构 1.1. 前言 作为Java工程师的你曾被伤害过吗&#xff1f;你是否也遇到过这些问题&#xff1f; 运行着的线上系统突然卡死&#xff0c;系统无法访问&#xff0c;甚至直接OOM想解决线上JVM GC问题&#xff0c;但却无从下手新项目上线&#xff0c;对各种JVM…...

    2024/4/19 11:46:53
  5. 416. 分割等和子集问题(动态规划)

    题目 题解 class Solution:def canPartition(self, nums: List[int]) -> bool:# badcaseif not nums:return True# 不能被2整除if sum(nums) % 2 ! 0:return False# 状态定义&#xff1a;dp[i][j]表示当背包容量为j&#xff0c;用前i个物品是否正好可以将背包填满&#xff…...

    2024/4/19 19:02:10
  6. 【Java】ExcelWriter自适应宽度工具类(支持中文)

    工具类 import org.apache.poi.ss.usermodel.Cell; import org.apache.poi.ss.usermodel.CellType; import org.apache.poi.ss.usermodel.Row; import org.apache.poi.ss.usermodel.Sheet;/*** Excel工具类** author xiaoming* date 2023/11/17 10:40*/ public class ExcelUti…...

    2024/4/19 11:51:49
  7. Spring cloud负载均衡@LoadBalanced LoadBalancerClient

    LoadBalance vs Ribbon 由于Spring cloud2020之后移除了Ribbon&#xff0c;直接使用Spring Cloud LoadBalancer作为客户端负载均衡组件&#xff0c;我们讨论Spring负载均衡以Spring Cloud2020之后版本为主&#xff0c;学习Spring Cloud LoadBalance&#xff0c;暂不讨论Ribbon…...

    2024/4/19 11:33:34
  8. TSINGSEE青犀AI智能分析+视频监控工业园区周界安全防范方案

    一、背景需求分析 在工业产业园、化工园或生产制造园区中&#xff0c;周界防范意义重大&#xff0c;对园区的安全起到重要的作用。常规的安防方式是采用人员巡查&#xff0c;人力投入成本大而且效率低。周界一旦被破坏或入侵&#xff0c;会影响园区人员和资产安全&#xff0c;…...

    2024/4/19 11:52:08
  9. VB.net WebBrowser网页元素抓取分析方法

    在用WebBrowser编程实现网页操作自动化时&#xff0c;常要分析网页Html&#xff0c;例如网页在加载数据时&#xff0c;常会显示“系统处理中&#xff0c;请稍候..”&#xff0c;我们需要在数据加载完成后才能继续下一步操作&#xff0c;如何抓取这个信息的网页html元素变化&…...

    2024/4/19 2:38:12
  10. 【Objective-C】Objective-C汇总

    方法定义 参考&#xff1a;https://www.yiibai.com/objective_c/objective_c_functions.html Objective-C编程语言中方法定义的一般形式如下 - (return_type) method_name:( argumentType1 )argumentName1 joiningArgument2:( argumentType2 )argumentName2 ... joiningArgu…...

    2024/4/19 1:39:20
  11. 【洛谷算法题】P5713-洛谷团队系统【入门2分支结构】

    &#x1f468;‍&#x1f4bb;博客主页&#xff1a;花无缺 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P5713-洛谷团队系统【入门2分支结构】&#x1f30f;题目描述&#x1f30f;输入格…...

    2024/4/19 11:52:49
  12. 【ES6.0】- 扩展运算符(...)

    【ES6.0】- 扩展运算符... 文章目录 【ES6.0】- 扩展运算符...一、概述二、拷贝数组对象三、合并操作四、参数传递五、数组去重六、字符串转字符数组七、NodeList转数组八、解构变量九、打印日志十、总结 一、概述 **扩展运算符(...)**允许一个表达式在期望多个参数&#xff0…...

    2024/4/19 18:52:15
  13. 摩根看好的前智能硬件头部品牌双11交易数据极度异常!——是模式创新还是饮鸩止渴?

    文 | 螳螂观察 作者 | 李燃 双11狂欢已落下帷幕&#xff0c;各大品牌纷纷晒出优异的成绩单&#xff0c;摩根士丹利投资的智能硬件头部品牌凯迪仕也不例外。然而有爆料称&#xff0c;在自媒体平台发布霸榜各大榜单喜讯的凯迪仕智能锁&#xff0c;多个平台数据都表现出极度异常…...

    2024/4/19 23:08:02
  14. Go语言常用命令详解(二)

    文章目录 前言常用命令go bug示例参数说明 go doc示例参数说明 go env示例 go fix示例 go fmt示例 go generate示例 总结写在最后 前言 接着上一篇继续介绍Go语言的常用命令 常用命令 以下是一些常用的Go命令&#xff0c;这些命令可以帮助您在Go开发中进行编译、测试、运行和…...

    2024/4/20 0:22:23
  15. 用欧拉路径判断图同构推出reverse合法性:1116T4

    http://cplusoj.com/d/senior/p/SS231116D 假设我们要把 a a a 变成 b b b&#xff0c;我们在 a i a_i ai​ 和 a i 1 a_{i1} ai1​ 之间连边&#xff0c; b b b 同理&#xff0c;则 a a a 能变成 b b b 的充要条件是两图 A , B A,B A,B 同构。 必要性显然&#xff0…...

    2024/4/19 23:04:54
  16. 【NGINX--1】基础知识

    1、在 Debian/Ubuntu 上安装 NGINX 在 Debian 或 Ubuntu 机器上安装 NGINX 开源版。 更新已配置源的软件包信息&#xff0c;并安装一些有助于配置官方 NGINX 软件包仓库的软件包&#xff1a; apt-get update apt install -y curl gnupg2 ca-certificates lsb-release debian-…...

    2024/4/20 1:12:38
  17. Hive默认分割符、存储格式与数据压缩

    目录 1、Hive默认分割符2、Hive存储格式3、Hive数据压缩 1、Hive默认分割符 Hive创建表时指定的行受限&#xff08;ROW FORMAT&#xff09;配置标准HQL为&#xff1a; ... ROW FORMAT DELIMITED FIELDS TERMINATED BY \u0001 COLLECTION ITEMS TERMINATED BY , MAP KEYS TERMI…...

    2024/4/19 3:53:57
  18. 【论文阅读】MAG:一种用于航天器遥测数据中有效异常检测的新方法

    文章目录 摘要1 引言2 问题描述3 拟议框架4 所提出方法的细节A.数据预处理B.变量相关分析C.MAG模型D.异常分数 5 实验A.数据集和性能指标B.实验设置与平台C.结果和比较 6 结论 摘要 异常检测是保证航天器稳定性的关键。在航天器运行过程中&#xff0c;传感器和控制器产生大量周…...

    2024/4/19 19:50:16
  19. --max-old-space-size=8192报错

    vue项目运行时&#xff0c;如果经常运行慢&#xff0c;崩溃停止服务&#xff0c;报如下错误 FATAL ERROR: CALL_AND_RETRY_LAST Allocation failed - JavaScript heap out of memory 因为在 Node 中&#xff0c;通过JavaScript使用内存时只能使用部分内存&#xff08;64位系统&…...

    2024/4/20 1:43:00
  20. 基于深度学习的恶意软件检测

    恶意软件是指恶意软件犯罪者用来感染个人计算机或整个组织的网络的软件。 它利用目标系统漏洞&#xff0c;例如可以被劫持的合法软件&#xff08;例如浏览器或 Web 应用程序插件&#xff09;中的错误。 恶意软件渗透可能会造成灾难性的后果&#xff0c;包括数据被盗、勒索或网…...

    2024/4/19 11:54:11
  21. JS原型对象prototype

    让我简单的为大家介绍一下原型对象prototype吧&#xff01; 使用原型实现方法共享 1.构造函数通过原型分配的函数是所有对象所 共享的。 2.JavaScript 规定&#xff0c;每一个构造函数都有一个 prototype 属性&#xff0c;指向另一个对象&#xff0c;所以我们也称为原型对象…...

    2024/4/19 23:35:17
  22. C++中只能有一个实例的单例类

    C中只能有一个实例的单例类 前面讨论的 President 类很不错&#xff0c;但存在一个缺陷&#xff1a;无法禁止通过实例化多个对象来创建多名总统&#xff1a; President One, Two, Three; 由于复制构造函数是私有的&#xff0c;其中每个对象都是不可复制的&#xff0c;但您的目…...

    2024/4/19 10:00:05
  23. python django 小程序图书借阅源码

    开发工具&#xff1a; PyCharm&#xff0c;mysql5.7&#xff0c;微信开发者工具 技术说明&#xff1a; python django html 小程序 功能介绍&#xff1a; 用户端&#xff1a; 登录注册&#xff08;含授权登录&#xff09; 首页显示搜索图书&#xff0c;轮播图&#xff0…...

    2024/4/18 18:47:01
  24. 电子学会C/C++编程等级考试2022年03月(一级)真题解析

    C/C++等级考试(1~8级)全部真题・点这里 第1题:双精度浮点数的输入输出 输入一个双精度浮点数,保留8位小数,输出这个浮点数。 时间限制:1000 内存限制:65536输入 只有一行,一个双精度浮点数。输出 一行,保留8位小数的浮点数。样例输入 3.1415926535798932样例输出 3.1…...

    2024/4/19 2:37:58
  25. 配置失败还原请勿关闭计算机,电脑开机屏幕上面显示,配置失败还原更改 请勿关闭计算机 开不了机 这个问题怎么办...

    解析如下&#xff1a;1、长按电脑电源键直至关机&#xff0c;然后再按一次电源健重启电脑&#xff0c;按F8健进入安全模式2、安全模式下进入Windows系统桌面后&#xff0c;按住“winR”打开运行窗口&#xff0c;输入“services.msc”打开服务设置3、在服务界面&#xff0c;选中…...

    2022/11/19 21:17:18
  26. 错误使用 reshape要执行 RESHAPE,请勿更改元素数目。

    %读入6幅图像&#xff08;每一幅图像的大小是564*564&#xff09; f1 imread(WashingtonDC_Band1_564.tif); subplot(3,2,1),imshow(f1); f2 imread(WashingtonDC_Band2_564.tif); subplot(3,2,2),imshow(f2); f3 imread(WashingtonDC_Band3_564.tif); subplot(3,2,3),imsho…...

    2022/11/19 21:17:16
  27. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机...

    win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”问题的解决方法在win7系统关机时如果有升级系统的或者其他需要会直接进入一个 等待界面&#xff0c;在等待界面中我们需要等待操作结束才能关机&#xff0c;虽然这比较麻烦&#xff0c;但是对系统进行配置和升级…...

    2022/11/19 21:17:15
  28. 台式电脑显示配置100%请勿关闭计算机,“准备配置windows 请勿关闭计算机”的解决方法...

    有不少用户在重装Win7系统或更新系统后会遇到“准备配置windows&#xff0c;请勿关闭计算机”的提示&#xff0c;要过很久才能进入系统&#xff0c;有的用户甚至几个小时也无法进入&#xff0c;下面就教大家这个问题的解决方法。第一种方法&#xff1a;我们首先在左下角的“开始…...

    2022/11/19 21:17:14
  29. win7 正在配置 请勿关闭计算机,怎么办Win7开机显示正在配置Windows Update请勿关机...

    置信有很多用户都跟小编一样遇到过这样的问题&#xff0c;电脑时发现开机屏幕显现“正在配置Windows Update&#xff0c;请勿关机”(如下图所示)&#xff0c;而且还需求等大约5分钟才干进入系统。这是怎样回事呢&#xff1f;一切都是正常操作的&#xff0c;为什么开时机呈现“正…...

    2022/11/19 21:17:13
  30. 准备配置windows 请勿关闭计算机 蓝屏,Win7开机总是出现提示“配置Windows请勿关机”...

    Win7系统开机启动时总是出现“配置Windows请勿关机”的提示&#xff0c;没过几秒后电脑自动重启&#xff0c;每次开机都这样无法进入系统&#xff0c;此时碰到这种现象的用户就可以使用以下5种方法解决问题。方法一&#xff1a;开机按下F8&#xff0c;在出现的Windows高级启动选…...

    2022/11/19 21:17:12
  31. 准备windows请勿关闭计算机要多久,windows10系统提示正在准备windows请勿关闭计算机怎么办...

    有不少windows10系统用户反映说碰到这样一个情况&#xff0c;就是电脑提示正在准备windows请勿关闭计算机&#xff0c;碰到这样的问题该怎么解决呢&#xff0c;现在小编就给大家分享一下windows10系统提示正在准备windows请勿关闭计算机的具体第一种方法&#xff1a;1、2、依次…...

    2022/11/19 21:17:11
  32. 配置 已完成 请勿关闭计算机,win7系统关机提示“配置Windows Update已完成30%请勿关闭计算机”的解决方法...

    今天和大家分享一下win7系统重装了Win7旗舰版系统后&#xff0c;每次关机的时候桌面上都会显示一个“配置Windows Update的界面&#xff0c;提示请勿关闭计算机”&#xff0c;每次停留好几分钟才能正常关机&#xff0c;导致什么情况引起的呢&#xff1f;出现配置Windows Update…...

    2022/11/19 21:17:10
  33. 电脑桌面一直是清理请关闭计算机,windows7一直卡在清理 请勿关闭计算机-win7清理请勿关机,win7配置更新35%不动...

    只能是等着&#xff0c;别无他法。说是卡着如果你看硬盘灯应该在读写。如果从 Win 10 无法正常回滚&#xff0c;只能是考虑备份数据后重装系统了。解决来方案一&#xff1a;管理员运行cmd&#xff1a;net stop WuAuServcd %windir%ren SoftwareDistribution SDoldnet start WuA…...

    2022/11/19 21:17:09
  34. 计算机配置更新不起,电脑提示“配置Windows Update请勿关闭计算机”怎么办?

    原标题&#xff1a;电脑提示“配置Windows Update请勿关闭计算机”怎么办&#xff1f;win7系统中在开机与关闭的时候总是显示“配置windows update请勿关闭计算机”相信有不少朋友都曾遇到过一次两次还能忍但经常遇到就叫人感到心烦了遇到这种问题怎么办呢&#xff1f;一般的方…...

    2022/11/19 21:17:08
  35. 计算机正在配置无法关机,关机提示 windows7 正在配置windows 请勿关闭计算机 ,然后等了一晚上也没有关掉。现在电脑无法正常关机...

    关机提示 windows7 正在配置windows 请勿关闭计算机 &#xff0c;然后等了一晚上也没有关掉。现在电脑无法正常关机以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;关机提示 windows7 正在配…...

    2022/11/19 21:17:05
  36. 钉钉提示请勿通过开发者调试模式_钉钉请勿通过开发者调试模式是真的吗好不好用...

    钉钉请勿通过开发者调试模式是真的吗好不好用 更新时间:2020-04-20 22:24:19 浏览次数:729次 区域: 南阳 > 卧龙 列举网提醒您:为保障您的权益,请不要提前支付任何费用! 虚拟位置外设器!!轨迹模拟&虚拟位置外设神器 专业用于:钉钉,外勤365,红圈通,企业微信和…...

    2022/11/19 21:17:05
  37. 配置失败还原请勿关闭计算机怎么办,win7系统出现“配置windows update失败 还原更改 请勿关闭计算机”,长时间没反应,无法进入系统的解决方案...

    前几天班里有位学生电脑(windows 7系统)出问题了&#xff0c;具体表现是开机时一直停留在“配置windows update失败 还原更改 请勿关闭计算机”这个界面&#xff0c;长时间没反应&#xff0c;无法进入系统。这个问题原来帮其他同学也解决过&#xff0c;网上搜了不少资料&#x…...

    2022/11/19 21:17:04
  38. 一个电脑无法关闭计算机你应该怎么办,电脑显示“清理请勿关闭计算机”怎么办?...

    本文为你提供了3个有效解决电脑显示“清理请勿关闭计算机”问题的方法&#xff0c;并在最后教给你1种保护系统安全的好方法&#xff0c;一起来看看&#xff01;电脑出现“清理请勿关闭计算机”在Windows 7(SP1)和Windows Server 2008 R2 SP1中&#xff0c;添加了1个新功能在“磁…...

    2022/11/19 21:17:03
  39. 请勿关闭计算机还原更改要多久,电脑显示:配置windows更新失败,正在还原更改,请勿关闭计算机怎么办...

    许多用户在长期不使用电脑的时候&#xff0c;开启电脑发现电脑显示&#xff1a;配置windows更新失败&#xff0c;正在还原更改&#xff0c;请勿关闭计算机。。.这要怎么办呢&#xff1f;下面小编就带着大家一起看看吧&#xff01;如果能够正常进入系统&#xff0c;建议您暂时移…...

    2022/11/19 21:17:02
  40. 还原更改请勿关闭计算机 要多久,配置windows update失败 还原更改 请勿关闭计算机,电脑开机后一直显示以...

    配置windows update失败 还原更改 请勿关闭计算机&#xff0c;电脑开机后一直显示以以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01;配置windows update失败 还原更改 请勿关闭计算机&#x…...

    2022/11/19 21:17:01
  41. 电脑配置中请勿关闭计算机怎么办,准备配置windows请勿关闭计算机一直显示怎么办【图解】...

    不知道大家有没有遇到过这样的一个问题&#xff0c;就是我们的win7系统在关机的时候&#xff0c;总是喜欢显示“准备配置windows&#xff0c;请勿关机”这样的一个页面&#xff0c;没有什么大碍&#xff0c;但是如果一直等着的话就要两个小时甚至更久都关不了机&#xff0c;非常…...

    2022/11/19 21:17:00
  42. 正在准备配置请勿关闭计算机,正在准备配置windows请勿关闭计算机时间长了解决教程...

    当电脑出现正在准备配置windows请勿关闭计算机时&#xff0c;一般是您正对windows进行升级&#xff0c;但是这个要是长时间没有反应&#xff0c;我们不能再傻等下去了。可能是电脑出了别的问题了&#xff0c;来看看教程的说法。正在准备配置windows请勿关闭计算机时间长了方法一…...

    2022/11/19 21:16:59
  43. 配置失败还原请勿关闭计算机,配置Windows Update失败,还原更改请勿关闭计算机...

    我们使用电脑的过程中有时会遇到这种情况&#xff0c;当我们打开电脑之后&#xff0c;发现一直停留在一个界面&#xff1a;“配置Windows Update失败&#xff0c;还原更改请勿关闭计算机”&#xff0c;等了许久还是无法进入系统。如果我们遇到此类问题应该如何解决呢&#xff0…...

    2022/11/19 21:16:58
  44. 如何在iPhone上关闭“请勿打扰”

    Apple’s “Do Not Disturb While Driving” is a potentially lifesaving iPhone feature, but it doesn’t always turn on automatically at the appropriate time. For example, you might be a passenger in a moving car, but your iPhone may think you’re the one dri…...

    2022/11/19 21:16:57